import numpy as np ## Some polygon converted to an array class ShapeArray: def __init__(self, arr, offset_x, offset_y, scale = 1): self.arr = arr self.offset_x = offset_x self.offset_y = offset_y self.scale = scale @classmethod def from_polygon(cls, vertices, scale = 1): # scale vertices = vertices * scale # offset offset_y = int(np.amin(vertices[:, 0])) offset_x = int(np.amin(vertices[:, 1])) # normalize to 0 vertices[:, 0] = np.add(vertices[:, 0], -offset_y) vertices[:, 1] = np.add(vertices[:, 1], -offset_x) shape = [int(np.amax(vertices[:, 0])), int(np.amax(vertices[:, 1]))] arr = cls.array_from_polygon(shape, vertices) return cls(arr, offset_x, offset_y) ## Return indices that mark one side of the line, used by array_from_polygon # Uses the line defined by p1 and p2 to check array of # input indices against interpolated value # Returns boolean array, with True inside and False outside of shape # Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array @classmethod def _check(cls, p1, p2, base_array): """ """ if p1[0] == p2[0] and p1[1] == p2[1]: return idxs = np.indices(base_array.shape) # Create 3D array of indices p1 = p1.astype(float) p2 = p2.astype(float) if p2[0] == p1[0]: sign = np.sign(p2[1] - p1[1]) return idxs[1] * sign if p2[1] == p1[1]: sign = np.sign(p2[0] - p1[0]) return idxs[1] * sign # Calculate max column idx for each row idx based on interpolated line between two points max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1] sign = np.sign(p2[0] - p1[0]) return idxs[1] * sign <= max_col_idx * sign @classmethod def array_from_polygon(cls, shape, vertices): """ Creates np.array with dimensions defined by shape Fills polygon defined by vertices with ones, all other values zero Only works correctly for convex hull vertices """ base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill # Create check array for each edge segment, combine into fill array for k in range(vertices.shape[0]): fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0) # Set all values inside polygon to one base_array[fill] = 1 return base_array class Arrange: def __init__(self, x, y, offset_x, offset_y, scale=1): self.shape = (y, x) self._priority = np.zeros((x, y), dtype=np.int32) self._occupied = np.zeros((x, y), dtype=np.int32) self._scale = scale # convert input coordinates to arrange coordinates self._offset_x = offset_x self._offset_y = offset_y ## Fill priority, take offset as center. lower is better def centerFirst(self): self._priority = np.fromfunction( lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape) ## Return the amount of "penalty points" for polygon, which is the sum of priority # 999999 if occupied def check_shape(self, x, y, shape_arr): x = int(self._scale * x) y = int(self._scale * y) offset_x = x + self._offset_x + shape_arr.offset_x offset_y = y + self._offset_y + shape_arr.offset_y occupied_slice = self._occupied[ offset_y:offset_y + shape_arr.arr.shape[0], offset_x:offset_x + shape_arr.arr.shape[1]] if np.any(occupied_slice[np.where(shape_arr.arr == 1)]): return 999999 prio_slice = self._priority[ offset_y:offset_y + shape_arr.arr.shape[0], offset_x:offset_x + shape_arr.arr.shape[1]] return np.sum(prio_slice[np.where(shape_arr.arr == 1)]) ## Slower but better (it tries all possible locations) def bestSpot2(self, shape_arr): best_x, best_y, best_points = None, None, None min_y = max(-shape_arr.offset_y, 0) - self._offset_y max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y min_x = max(-shape_arr.offset_x, 0) - self._offset_x max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x for y in range(min_y, max_y): for x in range(min_x, max_x): penalty_points = self.check_shape(x, y, shape_arr) if best_points is None or penalty_points < best_points: best_points = penalty_points best_x, best_y = x, y return best_x, best_y, best_points ## Faster def bestSpot(self, shape_arr): min_y = max(-shape_arr.offset_y, 0) - self._offset_y max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y min_x = max(-shape_arr.offset_x, 0) - self._offset_x max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x for prio in range(200): tryout_idx = np.where(self._priority == prio) for idx in range(len(tryout_idx[0])): x = tryout_idx[0][idx] y = tryout_idx[1][idx] projected_x = x - self._offset_x projected_y = y - self._offset_y if projected_x < min_x or projected_x > max_x or projected_y < min_y or projected_y > max_y: continue # array to "world" coordinates penalty_points = self.check_shape(projected_x, projected_y, shape_arr) if penalty_points != 999999: return projected_x, projected_y, penalty_points return None, None, None # No suitable location found :-( def place(self, x, y, shape_arr): x = int(self._scale * x) y = int(self._scale * y) offset_x = x + self._offset_x + shape_arr.offset_x offset_y = y + self._offset_y + shape_arr.offset_y occupied_slice = self._occupied[ offset_y:offset_y + shape_arr.arr.shape[0], offset_x:offset_x + shape_arr.arr.shape[1]] occupied_slice[np.where(shape_arr.arr == 1)] = 1