|
@@ -0,0 +1,154 @@
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+## Some polygon converted to an array
|
|
|
+class ShapeArray:
|
|
|
+ def __init__(self, arr, offset_x, offset_y, scale = 1):
|
|
|
+ self.arr = arr
|
|
|
+ self.offset_x = offset_x
|
|
|
+ self.offset_y = offset_y
|
|
|
+ self.scale = scale
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def from_polygon(cls, vertices, scale = 1):
|
|
|
+ # scale
|
|
|
+ vertices = vertices * scale
|
|
|
+ # offset
|
|
|
+ offset_y = int(np.amin(vertices[:, 0]))
|
|
|
+ offset_x = int(np.amin(vertices[:, 1]))
|
|
|
+ # normalize to 0
|
|
|
+ vertices[:, 0] = np.add(vertices[:, 0], -offset_y)
|
|
|
+ vertices[:, 1] = np.add(vertices[:, 1], -offset_x)
|
|
|
+ shape = [int(np.amax(vertices[:, 0])), int(np.amax(vertices[:, 1]))]
|
|
|
+ arr = cls.array_from_polygon(shape, vertices)
|
|
|
+ return cls(arr, offset_x, offset_y)
|
|
|
+
|
|
|
+ ## Return indices that mark one side of the line, used by array_from_polygon
|
|
|
+ # Uses the line defined by p1 and p2 to check array of
|
|
|
+ # input indices against interpolated value
|
|
|
+
|
|
|
+ # Returns boolean array, with True inside and False outside of shape
|
|
|
+ # Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
|
|
|
+ @classmethod
|
|
|
+ def _check(cls, p1, p2, base_array):
|
|
|
+ """
|
|
|
+ """
|
|
|
+ if p1[0] == p2[0] and p1[1] == p2[1]:
|
|
|
+ return
|
|
|
+ idxs = np.indices(base_array.shape) # Create 3D array of indices
|
|
|
+
|
|
|
+ p1 = p1.astype(float)
|
|
|
+ p2 = p2.astype(float)
|
|
|
+
|
|
|
+ if p2[0] == p1[0]:
|
|
|
+ sign = np.sign(p2[1] - p1[1])
|
|
|
+ return idxs[1] * sign
|
|
|
+
|
|
|
+ if p2[1] == p1[1]:
|
|
|
+ sign = np.sign(p2[0] - p1[0])
|
|
|
+ return idxs[1] * sign
|
|
|
+
|
|
|
+ # Calculate max column idx for each row idx based on interpolated line between two points
|
|
|
+
|
|
|
+ max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
|
|
|
+ sign = np.sign(p2[0] - p1[0])
|
|
|
+ return idxs[1] * sign <= max_col_idx * sign
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def array_from_polygon(cls, shape, vertices):
|
|
|
+ """
|
|
|
+ Creates np.array with dimensions defined by shape
|
|
|
+ Fills polygon defined by vertices with ones, all other values zero
|
|
|
+
|
|
|
+ Only works correctly for convex hull vertices
|
|
|
+ """
|
|
|
+ base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
|
|
|
+
|
|
|
+ fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
|
|
|
+
|
|
|
+ # Create check array for each edge segment, combine into fill array
|
|
|
+ for k in range(vertices.shape[0]):
|
|
|
+ fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
|
|
|
+
|
|
|
+ # Set all values inside polygon to one
|
|
|
+ base_array[fill] = 1
|
|
|
+
|
|
|
+ return base_array
|
|
|
+
|
|
|
+
|
|
|
+class Arrange:
|
|
|
+ def __init__(self, x, y, offset_x, offset_y, scale=1):
|
|
|
+ self.shape = (y, x)
|
|
|
+ self._priority = np.zeros((x, y), dtype=np.int32)
|
|
|
+ self._occupied = np.zeros((x, y), dtype=np.int32)
|
|
|
+ self._scale = scale # convert input coordinates to arrange coordinates
|
|
|
+ self._offset_x = offset_x
|
|
|
+ self._offset_y = offset_y
|
|
|
+
|
|
|
+ ## Fill priority, take offset as center. lower is better
|
|
|
+ def centerFirst(self):
|
|
|
+ self._priority = np.fromfunction(
|
|
|
+ lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
|
|
|
+
|
|
|
+ ## Return the amount of "penalty points" for polygon, which is the sum of priority
|
|
|
+ # 999999 if occupied
|
|
|
+ def check_shape(self, x, y, shape_arr):
|
|
|
+ x = int(self._scale * x)
|
|
|
+ y = int(self._scale * y)
|
|
|
+ offset_x = x + self._offset_x + shape_arr.offset_x
|
|
|
+ offset_y = y + self._offset_y + shape_arr.offset_y
|
|
|
+ occupied_slice = self._occupied[
|
|
|
+ offset_y:offset_y + shape_arr.arr.shape[0],
|
|
|
+ offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
|
+ if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
|
|
|
+ return 999999
|
|
|
+ prio_slice = self._priority[
|
|
|
+ offset_y:offset_y + shape_arr.arr.shape[0],
|
|
|
+ offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
|
+ return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
|
|
|
+
|
|
|
+ ## Slower but better (it tries all possible locations)
|
|
|
+ def bestSpot2(self, shape_arr):
|
|
|
+ best_x, best_y, best_points = None, None, None
|
|
|
+ min_y = max(-shape_arr.offset_y, 0) - self._offset_y
|
|
|
+ max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
|
|
|
+ min_x = max(-shape_arr.offset_x, 0) - self._offset_x
|
|
|
+ max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
|
|
|
+ for y in range(min_y, max_y):
|
|
|
+ for x in range(min_x, max_x):
|
|
|
+ penalty_points = self.check_shape(x, y, shape_arr)
|
|
|
+ if best_points is None or penalty_points < best_points:
|
|
|
+ best_points = penalty_points
|
|
|
+ best_x, best_y = x, y
|
|
|
+ return best_x, best_y, best_points
|
|
|
+
|
|
|
+ ## Faster
|
|
|
+ def bestSpot(self, shape_arr):
|
|
|
+ min_y = max(-shape_arr.offset_y, 0) - self._offset_y
|
|
|
+ max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
|
|
|
+ min_x = max(-shape_arr.offset_x, 0) - self._offset_x
|
|
|
+ max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
|
|
|
+
|
|
|
+ for prio in range(200):
|
|
|
+ tryout_idx = np.where(self._priority == prio)
|
|
|
+ for idx in range(len(tryout_idx[0])):
|
|
|
+ x = tryout_idx[0][idx]
|
|
|
+ y = tryout_idx[1][idx]
|
|
|
+ projected_x = x - self._offset_x
|
|
|
+ projected_y = y - self._offset_y
|
|
|
+ if projected_x < min_x or projected_x > max_x or projected_y < min_y or projected_y > max_y:
|
|
|
+ continue
|
|
|
+ # array to "world" coordinates
|
|
|
+ penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
|
|
|
+ if penalty_points != 999999:
|
|
|
+ return projected_x, projected_y, penalty_points
|
|
|
+ return None, None, None # No suitable location found :-(
|
|
|
+
|
|
|
+ def place(self, x, y, shape_arr):
|
|
|
+ x = int(self._scale * x)
|
|
|
+ y = int(self._scale * y)
|
|
|
+ offset_x = x + self._offset_x + shape_arr.offset_x
|
|
|
+ offset_y = y + self._offset_y + shape_arr.offset_y
|
|
|
+ occupied_slice = self._occupied[
|
|
|
+ offset_y:offset_y + shape_arr.arr.shape[0],
|
|
|
+ offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
|
+ occupied_slice[np.where(shape_arr.arr == 1)] = 1
|