123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Implementation of some scaled number algorithms.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Support/ScaledNumber.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- using namespace llvm::ScaledNumbers;
- std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS,
- uint64_t RHS) {
- // Separate into two 32-bit digits (U.L).
- auto getU = [](uint64_t N) { return N >> 32; };
- auto getL = [](uint64_t N) { return N & UINT32_MAX; };
- uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS);
- // Compute cross products.
- uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
- // Sum into two 64-bit digits.
- uint64_t Upper = P1, Lower = P4;
- auto addWithCarry = [&](uint64_t N) {
- uint64_t NewLower = Lower + (getL(N) << 32);
- Upper += getU(N) + (NewLower < Lower);
- Lower = NewLower;
- };
- addWithCarry(P2);
- addWithCarry(P3);
- // Check whether the upper digit is empty.
- if (!Upper)
- return std::make_pair(Lower, 0);
- // Shift as little as possible to maximize precision.
- unsigned LeadingZeros = countLeadingZeros(Upper);
- int Shift = 64 - LeadingZeros;
- if (LeadingZeros)
- Upper = Upper << LeadingZeros | Lower >> Shift;
- return getRounded(Upper, Shift,
- Shift && (Lower & UINT64_C(1) << (Shift - 1)));
- }
- static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
- std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend,
- uint32_t Divisor) {
- assert(Dividend && "expected non-zero dividend");
- assert(Divisor && "expected non-zero divisor");
- // Use 64-bit math and canonicalize the dividend to gain precision.
- uint64_t Dividend64 = Dividend;
- int Shift = 0;
- if (int Zeros = countLeadingZeros(Dividend64)) {
- Shift -= Zeros;
- Dividend64 <<= Zeros;
- }
- uint64_t Quotient = Dividend64 / Divisor;
- uint64_t Remainder = Dividend64 % Divisor;
- // If Quotient needs to be shifted, leave the rounding to getAdjusted().
- if (Quotient > UINT32_MAX)
- return getAdjusted<uint32_t>(Quotient, Shift);
- // Round based on the value of the next bit.
- return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor));
- }
- std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend,
- uint64_t Divisor) {
- assert(Dividend && "expected non-zero dividend");
- assert(Divisor && "expected non-zero divisor");
- // Minimize size of divisor.
- int Shift = 0;
- if (int Zeros = countTrailingZeros(Divisor)) {
- Shift -= Zeros;
- Divisor >>= Zeros;
- }
- // Check for powers of two.
- if (Divisor == 1)
- return std::make_pair(Dividend, Shift);
- // Maximize size of dividend.
- if (int Zeros = countLeadingZeros(Dividend)) {
- Shift -= Zeros;
- Dividend <<= Zeros;
- }
- // Start with the result of a divide.
- uint64_t Quotient = Dividend / Divisor;
- Dividend %= Divisor;
- // Continue building the quotient with long division.
- while (!(Quotient >> 63) && Dividend) {
- // Shift Dividend and check for overflow.
- bool IsOverflow = Dividend >> 63;
- Dividend <<= 1;
- --Shift;
- // Get the next bit of Quotient.
- Quotient <<= 1;
- if (IsOverflow || Divisor <= Dividend) {
- Quotient |= 1;
- Dividend -= Divisor;
- }
- }
- return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor));
- }
- int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) {
- assert(ScaleDiff >= 0 && "wrong argument order");
- assert(ScaleDiff < 64 && "numbers too far apart");
- uint64_t L_adjusted = L >> ScaleDiff;
- if (L_adjusted < R)
- return -1;
- if (L_adjusted > R)
- return 1;
- return L > L_adjusted << ScaleDiff ? 1 : 0;
- }
- static void appendDigit(std::string &Str, unsigned D) {
- assert(D < 10);
- Str += '0' + D % 10;
- }
- static void appendNumber(std::string &Str, uint64_t N) {
- while (N) {
- appendDigit(Str, N % 10);
- N /= 10;
- }
- }
- static bool doesRoundUp(char Digit) {
- switch (Digit) {
- case '5':
- case '6':
- case '7':
- case '8':
- case '9':
- return true;
- default:
- return false;
- }
- }
- static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
- assert(E >= ScaledNumbers::MinScale);
- assert(E <= ScaledNumbers::MaxScale);
- // Find a new E, but don't let it increase past MaxScale.
- int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D);
- int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros);
- int Shift = 63 - (NewE - E);
- assert(Shift <= LeadingZeros);
- assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale);
- assert(Shift >= 0 && Shift < 64 && "undefined behavior");
- D <<= Shift;
- E = NewE;
- // Check for a denormal.
- unsigned AdjustedE = E + 16383;
- if (!(D >> 63)) {
- assert(E == ScaledNumbers::MaxScale);
- AdjustedE = 0;
- }
- // Build the float and print it.
- uint64_t RawBits[2] = {D, AdjustedE};
- APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits));
- SmallVector<char, 24> Chars;
- Float.toString(Chars, Precision, 0);
- return std::string(Chars.begin(), Chars.end());
- }
- static std::string stripTrailingZeros(const std::string &Float) {
- size_t NonZero = Float.find_last_not_of('0');
- assert(NonZero != std::string::npos && "no . in floating point string");
- if (Float[NonZero] == '.')
- ++NonZero;
- return Float.substr(0, NonZero + 1);
- }
- std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width,
- unsigned Precision) {
- if (!D)
- return "0.0";
- // Canonicalize exponent and digits.
- uint64_t Above0 = 0;
- uint64_t Below0 = 0;
- uint64_t Extra = 0;
- int ExtraShift = 0;
- if (E == 0) {
- Above0 = D;
- } else if (E > 0) {
- if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
- D <<= Shift;
- E -= Shift;
- if (!E)
- Above0 = D;
- }
- } else if (E > -64) {
- Above0 = D >> -E;
- Below0 = D << (64 + E);
- } else if (E == -64) {
- // Special case: shift by 64 bits is undefined behavior.
- Below0 = D;
- } else if (E > -120) {
- Below0 = D >> (-E - 64);
- Extra = D << (128 + E);
- ExtraShift = -64 - E;
- }
- // Fall back on APFloat for very small and very large numbers.
- if (!Above0 && !Below0)
- return toStringAPFloat(D, E, Precision);
- // Append the digits before the decimal.
- std::string Str;
- size_t DigitsOut = 0;
- if (Above0) {
- appendNumber(Str, Above0);
- DigitsOut = Str.size();
- } else
- appendDigit(Str, 0);
- std::reverse(Str.begin(), Str.end());
- // Return early if there's nothing after the decimal.
- if (!Below0)
- return Str + ".0";
- // Append the decimal and beyond.
- Str += '.';
- uint64_t Error = UINT64_C(1) << (64 - Width);
- // We need to shift Below0 to the right to make space for calculating
- // digits. Save the precision we're losing in Extra.
- Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
- Below0 >>= 4;
- size_t SinceDot = 0;
- size_t AfterDot = Str.size();
- do {
- if (ExtraShift) {
- --ExtraShift;
- Error *= 5;
- } else
- Error *= 10;
- Below0 *= 10;
- Extra *= 10;
- Below0 += (Extra >> 60);
- Extra = Extra & (UINT64_MAX >> 4);
- appendDigit(Str, Below0 >> 60);
- Below0 = Below0 & (UINT64_MAX >> 4);
- if (DigitsOut || Str.back() != '0')
- ++DigitsOut;
- ++SinceDot;
- } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
- (!Precision || DigitsOut <= Precision || SinceDot < 2));
- // Return early for maximum precision.
- if (!Precision || DigitsOut <= Precision)
- return stripTrailingZeros(Str);
- // Find where to truncate.
- size_t Truncate =
- std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
- // Check if there's anything to truncate.
- if (Truncate >= Str.size())
- return stripTrailingZeros(Str);
- bool Carry = doesRoundUp(Str[Truncate]);
- if (!Carry)
- return stripTrailingZeros(Str.substr(0, Truncate));
- // Round with the first truncated digit.
- for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
- I != E; ++I) {
- if (*I == '.')
- continue;
- if (*I == '9') {
- *I = '0';
- continue;
- }
- ++*I;
- Carry = false;
- break;
- }
- // Add "1" in front if we still need to carry.
- return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
- }
- raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E,
- int Width, unsigned Precision) {
- return OS << toString(D, E, Width, Precision);
- }
- void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) {
- print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
- << "]";
- }
|