123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Reduction Rules.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
- #define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
- #include "Graph.h"
- #include "Math.h"
- #include "Solution.h"
- #include <cassert>
- #include <limits>
- namespace llvm {
- namespace PBQP {
- /// Reduce a node of degree one.
- ///
- /// Propagate costs from the given node, which must be of degree one, to its
- /// neighbor. Notify the problem domain.
- template <typename GraphT>
- void applyR1(GraphT &G, typename GraphT::NodeId NId) {
- using NodeId = typename GraphT::NodeId;
- using EdgeId = typename GraphT::EdgeId;
- using Vector = typename GraphT::Vector;
- using Matrix = typename GraphT::Matrix;
- using RawVector = typename GraphT::RawVector;
- assert(G.getNodeDegree(NId) == 1 &&
- "R1 applied to node with degree != 1.");
- EdgeId EId = *G.adjEdgeIds(NId).begin();
- NodeId MId = G.getEdgeOtherNodeId(EId, NId);
- const Matrix &ECosts = G.getEdgeCosts(EId);
- const Vector &XCosts = G.getNodeCosts(NId);
- RawVector YCosts = G.getNodeCosts(MId);
- // Duplicate a little to avoid transposing matrices.
- if (NId == G.getEdgeNode1Id(EId)) {
- for (unsigned j = 0; j < YCosts.getLength(); ++j) {
- PBQPNum Min = ECosts[0][j] + XCosts[0];
- for (unsigned i = 1; i < XCosts.getLength(); ++i) {
- PBQPNum C = ECosts[i][j] + XCosts[i];
- if (C < Min)
- Min = C;
- }
- YCosts[j] += Min;
- }
- } else {
- for (unsigned i = 0; i < YCosts.getLength(); ++i) {
- PBQPNum Min = ECosts[i][0] + XCosts[0];
- for (unsigned j = 1; j < XCosts.getLength(); ++j) {
- PBQPNum C = ECosts[i][j] + XCosts[j];
- if (C < Min)
- Min = C;
- }
- YCosts[i] += Min;
- }
- }
- G.setNodeCosts(MId, YCosts);
- G.disconnectEdge(EId, MId);
- }
- template <typename GraphT>
- void applyR2(GraphT &G, typename GraphT::NodeId NId) {
- using NodeId = typename GraphT::NodeId;
- using EdgeId = typename GraphT::EdgeId;
- using Vector = typename GraphT::Vector;
- using Matrix = typename GraphT::Matrix;
- using RawMatrix = typename GraphT::RawMatrix;
- assert(G.getNodeDegree(NId) == 2 &&
- "R2 applied to node with degree != 2.");
- const Vector &XCosts = G.getNodeCosts(NId);
- typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
- EdgeId YXEId = *AEItr,
- ZXEId = *(++AEItr);
- NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
- ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
- bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
- FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
- const Matrix *YXECosts = FlipEdge1 ?
- new Matrix(G.getEdgeCosts(YXEId).transpose()) :
- &G.getEdgeCosts(YXEId);
- const Matrix *ZXECosts = FlipEdge2 ?
- new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
- &G.getEdgeCosts(ZXEId);
- unsigned XLen = XCosts.getLength(),
- YLen = YXECosts->getRows(),
- ZLen = ZXECosts->getRows();
- RawMatrix Delta(YLen, ZLen);
- for (unsigned i = 0; i < YLen; ++i) {
- for (unsigned j = 0; j < ZLen; ++j) {
- PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
- for (unsigned k = 1; k < XLen; ++k) {
- PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
- if (C < Min) {
- Min = C;
- }
- }
- Delta[i][j] = Min;
- }
- }
- if (FlipEdge1)
- delete YXECosts;
- if (FlipEdge2)
- delete ZXECosts;
- EdgeId YZEId = G.findEdge(YNId, ZNId);
- if (YZEId == G.invalidEdgeId()) {
- YZEId = G.addEdge(YNId, ZNId, Delta);
- } else {
- const Matrix &YZECosts = G.getEdgeCosts(YZEId);
- if (YNId == G.getEdgeNode1Id(YZEId)) {
- G.updateEdgeCosts(YZEId, Delta + YZECosts);
- } else {
- G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
- }
- }
- G.disconnectEdge(YXEId, YNId);
- G.disconnectEdge(ZXEId, ZNId);
- // TODO: Try to normalize newly added/modified edge.
- }
- #ifndef NDEBUG
- // Does this Cost vector have any register options ?
- template <typename VectorT>
- bool hasRegisterOptions(const VectorT &V) {
- unsigned VL = V.getLength();
- // An empty or spill only cost vector does not provide any register option.
- if (VL <= 1)
- return false;
- // If there are registers in the cost vector, but all of them have infinite
- // costs, then ... there is no available register.
- for (unsigned i = 1; i < VL; ++i)
- if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
- return true;
- return false;
- }
- #endif
- // Find a solution to a fully reduced graph by backpropagation.
- //
- // Given a graph and a reduction order, pop each node from the reduction
- // order and greedily compute a minimum solution based on the node costs, and
- // the dependent costs due to previously solved nodes.
- //
- // Note - This does not return the graph to its original (pre-reduction)
- // state: the existing solvers destructively alter the node and edge
- // costs. Given that, the backpropagate function doesn't attempt to
- // replace the edges either, but leaves the graph in its reduced
- // state.
- template <typename GraphT, typename StackT>
- Solution backpropagate(GraphT& G, StackT stack) {
- using NodeId = GraphBase::NodeId;
- using Matrix = typename GraphT::Matrix;
- using RawVector = typename GraphT::RawVector;
- Solution s;
- while (!stack.empty()) {
- NodeId NId = stack.back();
- stack.pop_back();
- RawVector v = G.getNodeCosts(NId);
- #ifndef NDEBUG
- // Although a conservatively allocatable node can be allocated to a register,
- // spilling it may provide a lower cost solution. Assert here that spilling
- // is done by choice, not because there were no register available.
- if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
- assert(hasRegisterOptions(v) && "A conservatively allocatable node "
- "must have available register options");
- #endif
- for (auto EId : G.adjEdgeIds(NId)) {
- const Matrix& edgeCosts = G.getEdgeCosts(EId);
- if (NId == G.getEdgeNode1Id(EId)) {
- NodeId mId = G.getEdgeNode2Id(EId);
- v += edgeCosts.getColAsVector(s.getSelection(mId));
- } else {
- NodeId mId = G.getEdgeNode1Id(EId);
- v += edgeCosts.getRowAsVector(s.getSelection(mId));
- }
- }
- s.setSelection(NId, v.minIndex());
- }
- return s;
- }
- } // end namespace PBQP
- } // end namespace llvm
- #endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|