123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // PBQP Graph class.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_PBQP_GRAPH_H
- #define LLVM_CODEGEN_PBQP_GRAPH_H
- #include "llvm/ADT/STLExtras.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- #include <limits>
- #include <vector>
- namespace llvm {
- namespace PBQP {
- class GraphBase {
- public:
- using NodeId = unsigned;
- using EdgeId = unsigned;
- /// Returns a value representing an invalid (non-existent) node.
- static NodeId invalidNodeId() {
- return std::numeric_limits<NodeId>::max();
- }
- /// Returns a value representing an invalid (non-existent) edge.
- static EdgeId invalidEdgeId() {
- return std::numeric_limits<EdgeId>::max();
- }
- };
- /// PBQP Graph class.
- /// Instances of this class describe PBQP problems.
- ///
- template <typename SolverT>
- class Graph : public GraphBase {
- private:
- using CostAllocator = typename SolverT::CostAllocator;
- public:
- using RawVector = typename SolverT::RawVector;
- using RawMatrix = typename SolverT::RawMatrix;
- using Vector = typename SolverT::Vector;
- using Matrix = typename SolverT::Matrix;
- using VectorPtr = typename CostAllocator::VectorPtr;
- using MatrixPtr = typename CostAllocator::MatrixPtr;
- using NodeMetadata = typename SolverT::NodeMetadata;
- using EdgeMetadata = typename SolverT::EdgeMetadata;
- using GraphMetadata = typename SolverT::GraphMetadata;
- private:
- class NodeEntry {
- public:
- using AdjEdgeList = std::vector<EdgeId>;
- using AdjEdgeIdx = AdjEdgeList::size_type;
- using AdjEdgeItr = AdjEdgeList::const_iterator;
- NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
- static AdjEdgeIdx getInvalidAdjEdgeIdx() {
- return std::numeric_limits<AdjEdgeIdx>::max();
- }
- AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
- AdjEdgeIdx Idx = AdjEdgeIds.size();
- AdjEdgeIds.push_back(EId);
- return Idx;
- }
- void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
- // Swap-and-pop for fast removal.
- // 1) Update the adj index of the edge currently at back().
- // 2) Move last Edge down to Idx.
- // 3) pop_back()
- // If Idx == size() - 1 then the setAdjEdgeIdx and swap are
- // redundant, but both operations are cheap.
- G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
- AdjEdgeIds[Idx] = AdjEdgeIds.back();
- AdjEdgeIds.pop_back();
- }
- const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
- VectorPtr Costs;
- NodeMetadata Metadata;
- private:
- AdjEdgeList AdjEdgeIds;
- };
- class EdgeEntry {
- public:
- EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
- : Costs(std::move(Costs)) {
- NIds[0] = N1Id;
- NIds[1] = N2Id;
- ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
- ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
- }
- void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
- assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
- "Edge already connected to NIds[NIdx].");
- NodeEntry &N = G.getNode(NIds[NIdx]);
- ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
- }
- void connect(Graph &G, EdgeId ThisEdgeId) {
- connectToN(G, ThisEdgeId, 0);
- connectToN(G, ThisEdgeId, 1);
- }
- void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
- if (NId == NIds[0])
- ThisEdgeAdjIdxs[0] = NewIdx;
- else {
- assert(NId == NIds[1] && "Edge not connected to NId");
- ThisEdgeAdjIdxs[1] = NewIdx;
- }
- }
- void disconnectFromN(Graph &G, unsigned NIdx) {
- assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
- "Edge not connected to NIds[NIdx].");
- NodeEntry &N = G.getNode(NIds[NIdx]);
- N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
- ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
- }
- void disconnectFrom(Graph &G, NodeId NId) {
- if (NId == NIds[0])
- disconnectFromN(G, 0);
- else {
- assert(NId == NIds[1] && "Edge does not connect NId");
- disconnectFromN(G, 1);
- }
- }
- NodeId getN1Id() const { return NIds[0]; }
- NodeId getN2Id() const { return NIds[1]; }
- MatrixPtr Costs;
- EdgeMetadata Metadata;
- private:
- NodeId NIds[2];
- typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
- };
- // ----- MEMBERS -----
- GraphMetadata Metadata;
- CostAllocator CostAlloc;
- SolverT *Solver = nullptr;
- using NodeVector = std::vector<NodeEntry>;
- using FreeNodeVector = std::vector<NodeId>;
- NodeVector Nodes;
- FreeNodeVector FreeNodeIds;
- using EdgeVector = std::vector<EdgeEntry>;
- using FreeEdgeVector = std::vector<EdgeId>;
- EdgeVector Edges;
- FreeEdgeVector FreeEdgeIds;
- Graph(const Graph &Other) {}
- // ----- INTERNAL METHODS -----
- NodeEntry &getNode(NodeId NId) {
- assert(NId < Nodes.size() && "Out of bound NodeId");
- return Nodes[NId];
- }
- const NodeEntry &getNode(NodeId NId) const {
- assert(NId < Nodes.size() && "Out of bound NodeId");
- return Nodes[NId];
- }
- EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
- const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
- NodeId addConstructedNode(NodeEntry N) {
- NodeId NId = 0;
- if (!FreeNodeIds.empty()) {
- NId = FreeNodeIds.back();
- FreeNodeIds.pop_back();
- Nodes[NId] = std::move(N);
- } else {
- NId = Nodes.size();
- Nodes.push_back(std::move(N));
- }
- return NId;
- }
- EdgeId addConstructedEdge(EdgeEntry E) {
- assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
- "Attempt to add duplicate edge.");
- EdgeId EId = 0;
- if (!FreeEdgeIds.empty()) {
- EId = FreeEdgeIds.back();
- FreeEdgeIds.pop_back();
- Edges[EId] = std::move(E);
- } else {
- EId = Edges.size();
- Edges.push_back(std::move(E));
- }
- EdgeEntry &NE = getEdge(EId);
- // Add the edge to the adjacency sets of its nodes.
- NE.connect(*this, EId);
- return EId;
- }
- void operator=(const Graph &Other) {}
- public:
- using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
- class NodeItr {
- public:
- using iterator_category = std::forward_iterator_tag;
- using value_type = NodeId;
- using difference_type = int;
- using pointer = NodeId *;
- using reference = NodeId &;
- NodeItr(NodeId CurNId, const Graph &G)
- : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
- this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
- }
- bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
- bool operator!=(const NodeItr &O) const { return !(*this == O); }
- NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
- NodeId operator*() const { return CurNId; }
- private:
- NodeId findNextInUse(NodeId NId) const {
- while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
- ++NId;
- }
- return NId;
- }
- NodeId CurNId, EndNId;
- const FreeNodeVector &FreeNodeIds;
- };
- class EdgeItr {
- public:
- EdgeItr(EdgeId CurEId, const Graph &G)
- : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
- this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
- }
- bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
- bool operator!=(const EdgeItr &O) const { return !(*this == O); }
- EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
- EdgeId operator*() const { return CurEId; }
- private:
- EdgeId findNextInUse(EdgeId EId) const {
- while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
- ++EId;
- }
- return EId;
- }
- EdgeId CurEId, EndEId;
- const FreeEdgeVector &FreeEdgeIds;
- };
- class NodeIdSet {
- public:
- NodeIdSet(const Graph &G) : G(G) {}
- NodeItr begin() const { return NodeItr(0, G); }
- NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
- bool empty() const { return G.Nodes.empty(); }
- typename NodeVector::size_type size() const {
- return G.Nodes.size() - G.FreeNodeIds.size();
- }
- private:
- const Graph& G;
- };
- class EdgeIdSet {
- public:
- EdgeIdSet(const Graph &G) : G(G) {}
- EdgeItr begin() const { return EdgeItr(0, G); }
- EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
- bool empty() const { return G.Edges.empty(); }
- typename NodeVector::size_type size() const {
- return G.Edges.size() - G.FreeEdgeIds.size();
- }
- private:
- const Graph& G;
- };
- class AdjEdgeIdSet {
- public:
- AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
- typename NodeEntry::AdjEdgeItr begin() const {
- return NE.getAdjEdgeIds().begin();
- }
- typename NodeEntry::AdjEdgeItr end() const {
- return NE.getAdjEdgeIds().end();
- }
- bool empty() const { return NE.getAdjEdgeIds().empty(); }
- typename NodeEntry::AdjEdgeList::size_type size() const {
- return NE.getAdjEdgeIds().size();
- }
- private:
- const NodeEntry &NE;
- };
- /// Construct an empty PBQP graph.
- Graph() = default;
- /// Construct an empty PBQP graph with the given graph metadata.
- Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
- /// Get a reference to the graph metadata.
- GraphMetadata& getMetadata() { return Metadata; }
- /// Get a const-reference to the graph metadata.
- const GraphMetadata& getMetadata() const { return Metadata; }
- /// Lock this graph to the given solver instance in preparation
- /// for running the solver. This method will call solver.handleAddNode for
- /// each node in the graph, and handleAddEdge for each edge, to give the
- /// solver an opportunity to set up any requried metadata.
- void setSolver(SolverT &S) {
- assert(!Solver && "Solver already set. Call unsetSolver().");
- Solver = &S;
- for (auto NId : nodeIds())
- Solver->handleAddNode(NId);
- for (auto EId : edgeIds())
- Solver->handleAddEdge(EId);
- }
- /// Release from solver instance.
- void unsetSolver() {
- assert(Solver && "Solver not set.");
- Solver = nullptr;
- }
- /// Add a node with the given costs.
- /// @param Costs Cost vector for the new node.
- /// @return Node iterator for the added node.
- template <typename OtherVectorT>
- NodeId addNode(OtherVectorT Costs) {
- // Get cost vector from the problem domain
- VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
- NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
- if (Solver)
- Solver->handleAddNode(NId);
- return NId;
- }
- /// Add a node bypassing the cost allocator.
- /// @param Costs Cost vector ptr for the new node (must be convertible to
- /// VectorPtr).
- /// @return Node iterator for the added node.
- ///
- /// This method allows for fast addition of a node whose costs don't need
- /// to be passed through the cost allocator. The most common use case for
- /// this is when duplicating costs from an existing node (when using a
- /// pooling allocator). These have already been uniqued, so we can avoid
- /// re-constructing and re-uniquing them by attaching them directly to the
- /// new node.
- template <typename OtherVectorPtrT>
- NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
- NodeId NId = addConstructedNode(NodeEntry(Costs));
- if (Solver)
- Solver->handleAddNode(NId);
- return NId;
- }
- /// Add an edge between the given nodes with the given costs.
- /// @param N1Id First node.
- /// @param N2Id Second node.
- /// @param Costs Cost matrix for new edge.
- /// @return Edge iterator for the added edge.
- template <typename OtherVectorT>
- EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
- assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
- getNodeCosts(N2Id).getLength() == Costs.getCols() &&
- "Matrix dimensions mismatch.");
- // Get cost matrix from the problem domain.
- MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
- EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
- if (Solver)
- Solver->handleAddEdge(EId);
- return EId;
- }
- /// Add an edge bypassing the cost allocator.
- /// @param N1Id First node.
- /// @param N2Id Second node.
- /// @param Costs Cost matrix for new edge.
- /// @return Edge iterator for the added edge.
- ///
- /// This method allows for fast addition of an edge whose costs don't need
- /// to be passed through the cost allocator. The most common use case for
- /// this is when duplicating costs from an existing edge (when using a
- /// pooling allocator). These have already been uniqued, so we can avoid
- /// re-constructing and re-uniquing them by attaching them directly to the
- /// new edge.
- template <typename OtherMatrixPtrT>
- NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
- OtherMatrixPtrT Costs) {
- assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
- getNodeCosts(N2Id).getLength() == Costs->getCols() &&
- "Matrix dimensions mismatch.");
- // Get cost matrix from the problem domain.
- EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
- if (Solver)
- Solver->handleAddEdge(EId);
- return EId;
- }
- /// Returns true if the graph is empty.
- bool empty() const { return NodeIdSet(*this).empty(); }
- NodeIdSet nodeIds() const { return NodeIdSet(*this); }
- EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
- AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
- /// Get the number of nodes in the graph.
- /// @return Number of nodes in the graph.
- unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
- /// Get the number of edges in the graph.
- /// @return Number of edges in the graph.
- unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
- /// Set a node's cost vector.
- /// @param NId Node to update.
- /// @param Costs New costs to set.
- template <typename OtherVectorT>
- void setNodeCosts(NodeId NId, OtherVectorT Costs) {
- VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
- if (Solver)
- Solver->handleSetNodeCosts(NId, *AllocatedCosts);
- getNode(NId).Costs = AllocatedCosts;
- }
- /// Get a VectorPtr to a node's cost vector. Rarely useful - use
- /// getNodeCosts where possible.
- /// @param NId Node id.
- /// @return VectorPtr to node cost vector.
- ///
- /// This method is primarily useful for duplicating costs quickly by
- /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
- /// getNodeCosts when dealing with node cost values.
- const VectorPtr& getNodeCostsPtr(NodeId NId) const {
- return getNode(NId).Costs;
- }
- /// Get a node's cost vector.
- /// @param NId Node id.
- /// @return Node cost vector.
- const Vector& getNodeCosts(NodeId NId) const {
- return *getNodeCostsPtr(NId);
- }
- NodeMetadata& getNodeMetadata(NodeId NId) {
- return getNode(NId).Metadata;
- }
- const NodeMetadata& getNodeMetadata(NodeId NId) const {
- return getNode(NId).Metadata;
- }
- typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
- return getNode(NId).getAdjEdgeIds().size();
- }
- /// Update an edge's cost matrix.
- /// @param EId Edge id.
- /// @param Costs New cost matrix.
- template <typename OtherMatrixT>
- void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
- MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
- if (Solver)
- Solver->handleUpdateCosts(EId, *AllocatedCosts);
- getEdge(EId).Costs = AllocatedCosts;
- }
- /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
- /// getEdgeCosts where possible.
- /// @param EId Edge id.
- /// @return MatrixPtr to edge cost matrix.
- ///
- /// This method is primarily useful for duplicating costs quickly by
- /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
- /// getEdgeCosts when dealing with edge cost values.
- const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
- return getEdge(EId).Costs;
- }
- /// Get an edge's cost matrix.
- /// @param EId Edge id.
- /// @return Edge cost matrix.
- const Matrix& getEdgeCosts(EdgeId EId) const {
- return *getEdge(EId).Costs;
- }
- EdgeMetadata& getEdgeMetadata(EdgeId EId) {
- return getEdge(EId).Metadata;
- }
- const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
- return getEdge(EId).Metadata;
- }
- /// Get the first node connected to this edge.
- /// @param EId Edge id.
- /// @return The first node connected to the given edge.
- NodeId getEdgeNode1Id(EdgeId EId) const {
- return getEdge(EId).getN1Id();
- }
- /// Get the second node connected to this edge.
- /// @param EId Edge id.
- /// @return The second node connected to the given edge.
- NodeId getEdgeNode2Id(EdgeId EId) const {
- return getEdge(EId).getN2Id();
- }
- /// Get the "other" node connected to this edge.
- /// @param EId Edge id.
- /// @param NId Node id for the "given" node.
- /// @return The iterator for the "other" node connected to this edge.
- NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
- EdgeEntry &E = getEdge(EId);
- if (E.getN1Id() == NId) {
- return E.getN2Id();
- } // else
- return E.getN1Id();
- }
- /// Get the edge connecting two nodes.
- /// @param N1Id First node id.
- /// @param N2Id Second node id.
- /// @return An id for edge (N1Id, N2Id) if such an edge exists,
- /// otherwise returns an invalid edge id.
- EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
- for (auto AEId : adjEdgeIds(N1Id)) {
- if ((getEdgeNode1Id(AEId) == N2Id) ||
- (getEdgeNode2Id(AEId) == N2Id)) {
- return AEId;
- }
- }
- return invalidEdgeId();
- }
- /// Remove a node from the graph.
- /// @param NId Node id.
- void removeNode(NodeId NId) {
- if (Solver)
- Solver->handleRemoveNode(NId);
- NodeEntry &N = getNode(NId);
- // TODO: Can this be for-each'd?
- for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
- AEEnd = N.adjEdgesEnd();
- AEItr != AEEnd;) {
- EdgeId EId = *AEItr;
- ++AEItr;
- removeEdge(EId);
- }
- FreeNodeIds.push_back(NId);
- }
- /// Disconnect an edge from the given node.
- ///
- /// Removes the given edge from the adjacency list of the given node.
- /// This operation leaves the edge in an 'asymmetric' state: It will no
- /// longer appear in an iteration over the given node's (NId's) edges, but
- /// will appear in an iteration over the 'other', unnamed node's edges.
- ///
- /// This does not correspond to any normal graph operation, but exists to
- /// support efficient PBQP graph-reduction based solvers. It is used to
- /// 'effectively' remove the unnamed node from the graph while the solver
- /// is performing the reduction. The solver will later call reconnectNode
- /// to restore the edge in the named node's adjacency list.
- ///
- /// Since the degree of a node is the number of connected edges,
- /// disconnecting an edge from a node 'u' will cause the degree of 'u' to
- /// drop by 1.
- ///
- /// A disconnected edge WILL still appear in an iteration over the graph
- /// edges.
- ///
- /// A disconnected edge should not be removed from the graph, it should be
- /// reconnected first.
- ///
- /// A disconnected edge can be reconnected by calling the reconnectEdge
- /// method.
- void disconnectEdge(EdgeId EId, NodeId NId) {
- if (Solver)
- Solver->handleDisconnectEdge(EId, NId);
- EdgeEntry &E = getEdge(EId);
- E.disconnectFrom(*this, NId);
- }
- /// Convenience method to disconnect all neighbours from the given
- /// node.
- void disconnectAllNeighborsFromNode(NodeId NId) {
- for (auto AEId : adjEdgeIds(NId))
- disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
- }
- /// Re-attach an edge to its nodes.
- ///
- /// Adds an edge that had been previously disconnected back into the
- /// adjacency set of the nodes that the edge connects.
- void reconnectEdge(EdgeId EId, NodeId NId) {
- EdgeEntry &E = getEdge(EId);
- E.connectTo(*this, EId, NId);
- if (Solver)
- Solver->handleReconnectEdge(EId, NId);
- }
- /// Remove an edge from the graph.
- /// @param EId Edge id.
- void removeEdge(EdgeId EId) {
- if (Solver)
- Solver->handleRemoveEdge(EId);
- EdgeEntry &E = getEdge(EId);
- E.disconnect();
- FreeEdgeIds.push_back(EId);
- Edges[EId].invalidate();
- }
- /// Remove all nodes and edges from the graph.
- void clear() {
- Nodes.clear();
- FreeNodeIds.clear();
- Edges.clear();
- FreeEdgeIds.clear();
- }
- };
- } // end namespace PBQP
- } // end namespace llvm
- #endif // LLVM_CODEGEN_PBQP_GRAPH_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|