123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697 |
- /* cgemm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int cgemm_(char *transa, char *transb, integer *m, integer *
- n, integer *k, complex *alpha, complex *a, integer *lda, complex *b,
- integer *ldb, complex *beta, complex *c__, integer *ldc)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4, i__5, i__6;
- complex q__1, q__2, q__3, q__4;
- /* Builtin functions */
- void r_cnjg(complex *, complex *);
- /* Local variables */
- integer i__, j, l, info;
- logical nota, notb;
- complex temp;
- logical conja, conjb;
- integer ncola;
- extern logical lsame_(char *, char *);
- integer nrowa, nrowb;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* CGEMM performs one of the matrix-matrix operations */
- /* C := alpha*op( A )*op( B ) + beta*C, */
- /* where op( X ) is one of */
- /* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), */
- /* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
- /* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
- /* Arguments */
- /* ========== */
- /* TRANSA - CHARACTER*1. */
- /* On entry, TRANSA specifies the form of op( A ) to be used in */
- /* the matrix multiplication as follows: */
- /* TRANSA = 'N' or 'n', op( A ) = A. */
- /* TRANSA = 'T' or 't', op( A ) = A'. */
- /* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). */
- /* Unchanged on exit. */
- /* TRANSB - CHARACTER*1. */
- /* On entry, TRANSB specifies the form of op( B ) to be used in */
- /* the matrix multiplication as follows: */
- /* TRANSB = 'N' or 'n', op( B ) = B. */
- /* TRANSB = 'T' or 't', op( B ) = B'. */
- /* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). */
- /* Unchanged on exit. */
- /* M - INTEGER. */
- /* On entry, M specifies the number of rows of the matrix */
- /* op( A ) and of the matrix C. M must be at least zero. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the number of columns of the matrix */
- /* op( B ) and the number of columns of the matrix C. N must be */
- /* at least zero. */
- /* Unchanged on exit. */
- /* K - INTEGER. */
- /* On entry, K specifies the number of columns of the matrix */
- /* op( A ) and the number of rows of the matrix op( B ). K must */
- /* be at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - COMPLEX . */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is */
- /* k when TRANSA = 'N' or 'n', and is m otherwise. */
- /* Before entry with TRANSA = 'N' or 'n', the leading m by k */
- /* part of the array A must contain the matrix A, otherwise */
- /* the leading k by m part of the array A must contain the */
- /* matrix A. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
- /* LDA must be at least max( 1, m ), otherwise LDA must be at */
- /* least max( 1, k ). */
- /* Unchanged on exit. */
- /* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is */
- /* n when TRANSB = 'N' or 'n', and is k otherwise. */
- /* Before entry with TRANSB = 'N' or 'n', the leading k by n */
- /* part of the array B must contain the matrix B, otherwise */
- /* the leading n by k part of the array B must contain the */
- /* matrix B. */
- /* Unchanged on exit. */
- /* LDB - INTEGER. */
- /* On entry, LDB specifies the first dimension of B as declared */
- /* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
- /* LDB must be at least max( 1, k ), otherwise LDB must be at */
- /* least max( 1, n ). */
- /* Unchanged on exit. */
- /* BETA - COMPLEX . */
- /* On entry, BETA specifies the scalar beta. When BETA is */
- /* supplied as zero then C need not be set on input. */
- /* Unchanged on exit. */
- /* C - COMPLEX array of DIMENSION ( LDC, n ). */
- /* Before entry, the leading m by n part of the array C must */
- /* contain the matrix C, except when beta is zero, in which */
- /* case C need not be set on entry. */
- /* On exit, the array C is overwritten by the m by n matrix */
- /* ( alpha*op( A )*op( B ) + beta*C ). */
- /* LDC - INTEGER. */
- /* On entry, LDC specifies the first dimension of C as declared */
- /* in the calling (sub) program. LDC must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* Level 3 Blas routine. */
- /* -- Written on 8-February-1989. */
- /* Jack Dongarra, Argonne National Laboratory. */
- /* Iain Duff, AERE Harwell. */
- /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
- /* Sven Hammarling, Numerical Algorithms Group Ltd. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* Set NOTA and NOTB as true if A and B respectively are not */
- /* conjugated or transposed, set CONJA and CONJB as true if A and */
- /* B respectively are to be transposed but not conjugated and set */
- /* NROWA, NCOLA and NROWB as the number of rows and columns of A */
- /* and the number of rows of B respectively. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- /* Function Body */
- nota = lsame_(transa, "N");
- notb = lsame_(transb, "N");
- conja = lsame_(transa, "C");
- conjb = lsame_(transb, "C");
- if (nota) {
- nrowa = *m;
- ncola = *k;
- } else {
- nrowa = *k;
- ncola = *m;
- }
- if (notb) {
- nrowb = *k;
- } else {
- nrowb = *n;
- }
- /* Test the input parameters. */
- info = 0;
- if (! nota && ! conja && ! lsame_(transa, "T")) {
- info = 1;
- } else if (! notb && ! conjb && ! lsame_(transb, "T")) {
- info = 2;
- } else if (*m < 0) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < max(1,nrowa)) {
- info = 8;
- } else if (*ldb < max(1,nrowb)) {
- info = 10;
- } else if (*ldc < max(1,*m)) {
- info = 13;
- }
- if (info != 0) {
- xerbla_("CGEMM ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0 || (alpha->r == 0.f && alpha->i == 0.f || *k == 0)
- && (beta->r == 1.f && beta->i == 0.f)) {
- return 0;
- }
- /* And when alpha.eq.zero. */
- if (alpha->r == 0.f && alpha->i == 0.f) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0.f, c__[i__3].i = 0.f;
- /* L10: */
- }
- /* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
- q__1.i = beta->r * c__[i__4].i + beta->i * c__[
- i__4].r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L30: */
- }
- /* L40: */
- }
- }
- return 0;
- }
- /* Start the operations. */
- if (notb) {
- if (nota) {
- /* Form C := alpha*A*B + beta*C. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0.f, c__[i__3].i = 0.f;
- /* L50: */
- }
- } else if (beta->r != 1.f || beta->i != 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__1.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L60: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = l + j * b_dim1;
- if (b[i__3].r != 0.f || b[i__3].i != 0.f) {
- i__3 = l + j * b_dim1;
- q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- q__1.i = alpha->r * b[i__3].i + alpha->i * b[
- i__3].r;
- temp.r = q__1.r, temp.i = q__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- q__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
- .i + q__2.i;
- c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
- /* L70: */
- }
- }
- /* L80: */
- }
- /* L90: */
- }
- } else if (conja) {
- /* Form C := alpha*conjg( A' )*B + beta*C. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0.f, temp.i = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- r_cnjg(&q__3, &a[l + i__ * a_dim1]);
- i__4 = l + j * b_dim1;
- q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
- q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
- .r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- /* L100: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- q__1.r = alpha->r * temp.r - alpha->i * temp.i,
- q__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- q__2.r = alpha->r * temp.r - alpha->i * temp.i,
- q__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L110: */
- }
- /* L120: */
- }
- } else {
- /* Form C := alpha*A'*B + beta*C */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0.f, temp.i = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + i__ * a_dim1;
- i__5 = l + j * b_dim1;
- q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
- .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
- .i * b[i__5].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- /* L130: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- q__1.r = alpha->r * temp.r - alpha->i * temp.i,
- q__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- q__2.r = alpha->r * temp.r - alpha->i * temp.i,
- q__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L140: */
- }
- /* L150: */
- }
- }
- } else if (nota) {
- if (conjb) {
- /* Form C := alpha*A*conjg( B' ) + beta*C. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0.f, c__[i__3].i = 0.f;
- /* L160: */
- }
- } else if (beta->r != 1.f || beta->i != 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__1.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L170: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * b_dim1;
- if (b[i__3].r != 0.f || b[i__3].i != 0.f) {
- r_cnjg(&q__2, &b[j + l * b_dim1]);
- q__1.r = alpha->r * q__2.r - alpha->i * q__2.i,
- q__1.i = alpha->r * q__2.i + alpha->i *
- q__2.r;
- temp.r = q__1.r, temp.i = q__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- q__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
- .i + q__2.i;
- c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
- /* L180: */
- }
- }
- /* L190: */
- }
- /* L200: */
- }
- } else {
- /* Form C := alpha*A*B' + beta*C */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (beta->r == 0.f && beta->i == 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- c__[i__3].r = 0.f, c__[i__3].i = 0.f;
- /* L210: */
- }
- } else if (beta->r != 1.f || beta->i != 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * c_dim1;
- i__4 = i__ + j * c_dim1;
- q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__1.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- /* L220: */
- }
- }
- i__2 = *k;
- for (l = 1; l <= i__2; ++l) {
- i__3 = j + l * b_dim1;
- if (b[i__3].r != 0.f || b[i__3].i != 0.f) {
- i__3 = j + l * b_dim1;
- q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- q__1.i = alpha->r * b[i__3].i + alpha->i * b[
- i__3].r;
- temp.r = q__1.r, temp.i = q__1.i;
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * c_dim1;
- i__5 = i__ + j * c_dim1;
- i__6 = i__ + l * a_dim1;
- q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
- q__2.i = temp.r * a[i__6].i + temp.i * a[
- i__6].r;
- q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
- .i + q__2.i;
- c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
- /* L230: */
- }
- }
- /* L240: */
- }
- /* L250: */
- }
- }
- } else if (conja) {
- if (conjb) {
- /* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0.f, temp.i = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- r_cnjg(&q__3, &a[l + i__ * a_dim1]);
- r_cnjg(&q__4, &b[j + l * b_dim1]);
- q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i =
- q__3.r * q__4.i + q__3.i * q__4.r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- /* L260: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- q__1.r = alpha->r * temp.r - alpha->i * temp.i,
- q__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- q__2.r = alpha->r * temp.r - alpha->i * temp.i,
- q__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L270: */
- }
- /* L280: */
- }
- } else {
- /* Form C := alpha*conjg( A' )*B' + beta*C */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0.f, temp.i = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- r_cnjg(&q__3, &a[l + i__ * a_dim1]);
- i__4 = j + l * b_dim1;
- q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
- q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
- .r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- /* L290: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- q__1.r = alpha->r * temp.r - alpha->i * temp.i,
- q__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- q__2.r = alpha->r * temp.r - alpha->i * temp.i,
- q__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L300: */
- }
- /* L310: */
- }
- }
- } else {
- if (conjb) {
- /* Form C := alpha*A'*conjg( B' ) + beta*C */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0.f, temp.i = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + i__ * a_dim1;
- r_cnjg(&q__3, &b[j + l * b_dim1]);
- q__2.r = a[i__4].r * q__3.r - a[i__4].i * q__3.i,
- q__2.i = a[i__4].r * q__3.i + a[i__4].i *
- q__3.r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- /* L320: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- q__1.r = alpha->r * temp.r - alpha->i * temp.i,
- q__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- q__2.r = alpha->r * temp.r - alpha->i * temp.i,
- q__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L330: */
- }
- /* L340: */
- }
- } else {
- /* Form C := alpha*A'*B' + beta*C */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp.r = 0.f, temp.i = 0.f;
- i__3 = *k;
- for (l = 1; l <= i__3; ++l) {
- i__4 = l + i__ * a_dim1;
- i__5 = j + l * b_dim1;
- q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
- .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
- .i * b[i__5].r;
- q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
- temp.r = q__1.r, temp.i = q__1.i;
- /* L350: */
- }
- if (beta->r == 0.f && beta->i == 0.f) {
- i__3 = i__ + j * c_dim1;
- q__1.r = alpha->r * temp.r - alpha->i * temp.i,
- q__1.i = alpha->r * temp.i + alpha->i *
- temp.r;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- } else {
- i__3 = i__ + j * c_dim1;
- q__2.r = alpha->r * temp.r - alpha->i * temp.i,
- q__2.i = alpha->r * temp.i + alpha->i *
- temp.r;
- i__4 = i__ + j * c_dim1;
- q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
- .i, q__3.i = beta->r * c__[i__4].i + beta->i *
- c__[i__4].r;
- q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
- c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
- }
- /* L360: */
- }
- /* L370: */
- }
- }
- }
- return 0;
- /* End of CGEMM . */
- } /* cgemm_ */
|