123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345 |
- Compiler-RT
- ================================
- This directory and its subdirectories contain source code for the compiler
- support routines.
- Compiler-RT is open source software. You may freely distribute it under the
- terms of the license agreement found in LICENSE.txt.
- ================================
- This is a replacement library for libgcc. Each function is contained
- in its own file. Each function has a corresponding unit test under
- test/Unit.
- A rudimentary script to test each file is in the file called
- test/Unit/test.
- Here is the specification for this library:
- http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
- Here is a synopsis of the contents of this library:
- typedef int si_int;
- typedef unsigned su_int;
- typedef long long di_int;
- typedef unsigned long long du_int;
- // Integral bit manipulation
- di_int __ashldi3(di_int a, si_int b); // a << b
- ti_int __ashlti3(ti_int a, si_int b); // a << b
- di_int __ashrdi3(di_int a, si_int b); // a >> b arithmetic (sign fill)
- ti_int __ashrti3(ti_int a, si_int b); // a >> b arithmetic (sign fill)
- di_int __lshrdi3(di_int a, si_int b); // a >> b logical (zero fill)
- ti_int __lshrti3(ti_int a, si_int b); // a >> b logical (zero fill)
- si_int __clzsi2(si_int a); // count leading zeros
- si_int __clzdi2(di_int a); // count leading zeros
- si_int __clzti2(ti_int a); // count leading zeros
- si_int __ctzsi2(si_int a); // count trailing zeros
- si_int __ctzdi2(di_int a); // count trailing zeros
- si_int __ctzti2(ti_int a); // count trailing zeros
- si_int __ffsdi2(di_int a); // find least significant 1 bit
- si_int __ffsti2(ti_int a); // find least significant 1 bit
- si_int __paritysi2(si_int a); // bit parity
- si_int __paritydi2(di_int a); // bit parity
- si_int __parityti2(ti_int a); // bit parity
- si_int __popcountsi2(si_int a); // bit population
- si_int __popcountdi2(di_int a); // bit population
- si_int __popcountti2(ti_int a); // bit population
- uint32_t __bswapsi2(uint32_t a); // a byteswapped, arm only
- uint64_t __bswapdi2(uint64_t a); // a byteswapped, arm only
- // Integral arithmetic
- di_int __negdi2 (di_int a); // -a
- ti_int __negti2 (ti_int a); // -a
- di_int __muldi3 (di_int a, di_int b); // a * b
- ti_int __multi3 (ti_int a, ti_int b); // a * b
- si_int __divsi3 (si_int a, si_int b); // a / b signed
- di_int __divdi3 (di_int a, di_int b); // a / b signed
- ti_int __divti3 (ti_int a, ti_int b); // a / b signed
- su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
- du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
- tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
- si_int __modsi3 (si_int a, si_int b); // a % b signed
- di_int __moddi3 (di_int a, di_int b); // a % b signed
- ti_int __modti3 (ti_int a, ti_int b); // a % b signed
- su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
- du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
- tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
- du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
- tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
- su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
- si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
- // Integral arithmetic with trapping overflow
- si_int __absvsi2(si_int a); // abs(a)
- di_int __absvdi2(di_int a); // abs(a)
- ti_int __absvti2(ti_int a); // abs(a)
- si_int __negvsi2(si_int a); // -a
- di_int __negvdi2(di_int a); // -a
- ti_int __negvti2(ti_int a); // -a
- si_int __addvsi3(si_int a, si_int b); // a + b
- di_int __addvdi3(di_int a, di_int b); // a + b
- ti_int __addvti3(ti_int a, ti_int b); // a + b
- si_int __subvsi3(si_int a, si_int b); // a - b
- di_int __subvdi3(di_int a, di_int b); // a - b
- ti_int __subvti3(ti_int a, ti_int b); // a - b
- si_int __mulvsi3(si_int a, si_int b); // a * b
- di_int __mulvdi3(di_int a, di_int b); // a * b
- ti_int __mulvti3(ti_int a, ti_int b); // a * b
- // Integral arithmetic which returns if overflow
- si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
- di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
- ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
- one if result not in signed range
- // Integral comparison: a < b -> 0
- // a == b -> 1
- // a > b -> 2
- si_int __cmpdi2 (di_int a, di_int b);
- si_int __cmpti2 (ti_int a, ti_int b);
- si_int __ucmpdi2(du_int a, du_int b);
- si_int __ucmpti2(tu_int a, tu_int b);
- // Integral / floating point conversion
- di_int __fixsfdi( float a);
- di_int __fixdfdi( double a);
- di_int __fixxfdi(long double a);
- ti_int __fixsfti( float a);
- ti_int __fixdfti( double a);
- ti_int __fixxfti(long double a);
- uint64_t __fixtfdi(long double input); // ppc only, doesn't match documentation
- su_int __fixunssfsi( float a);
- su_int __fixunsdfsi( double a);
- su_int __fixunsxfsi(long double a);
- du_int __fixunssfdi( float a);
- du_int __fixunsdfdi( double a);
- du_int __fixunsxfdi(long double a);
- tu_int __fixunssfti( float a);
- tu_int __fixunsdfti( double a);
- tu_int __fixunsxfti(long double a);
- uint64_t __fixunstfdi(long double input); // ppc only
- float __floatdisf(di_int a);
- double __floatdidf(di_int a);
- long double __floatdixf(di_int a);
- long double __floatditf(int64_t a); // ppc only
- float __floattisf(ti_int a);
- double __floattidf(ti_int a);
- long double __floattixf(ti_int a);
- float __floatundisf(du_int a);
- double __floatundidf(du_int a);
- long double __floatundixf(du_int a);
- long double __floatunditf(uint64_t a); // ppc only
- float __floatuntisf(tu_int a);
- double __floatuntidf(tu_int a);
- long double __floatuntixf(tu_int a);
- // Floating point raised to integer power
- float __powisf2( float a, si_int b); // a ^ b
- double __powidf2( double a, si_int b); // a ^ b
- long double __powixf2(long double a, si_int b); // a ^ b
- long double __powitf2(long double a, si_int b); // ppc only, a ^ b
- // Complex arithmetic
- // (a + ib) * (c + id)
- float _Complex __mulsc3( float a, float b, float c, float d);
- double _Complex __muldc3(double a, double b, double c, double d);
- long double _Complex __mulxc3(long double a, long double b,
- long double c, long double d);
- long double _Complex __multc3(long double a, long double b,
- long double c, long double d); // ppc only
- // (a + ib) / (c + id)
- float _Complex __divsc3( float a, float b, float c, float d);
- double _Complex __divdc3(double a, double b, double c, double d);
- long double _Complex __divxc3(long double a, long double b,
- long double c, long double d);
- long double _Complex __divtc3(long double a, long double b,
- long double c, long double d); // ppc only
- // Runtime support
- // __clear_cache() is used to tell process that new instructions have been
- // written to an address range. Necessary on processors that do not have
- // a unified instruction and data cache.
- void __clear_cache(void* start, void* end);
- // __enable_execute_stack() is used with nested functions when a trampoline
- // function is written onto the stack and that page range needs to be made
- // executable.
- void __enable_execute_stack(void* addr);
- // __gcc_personality_v0() is normally only called by the system unwinder.
- // C code (as opposed to C++) normally does not need a personality function
- // because there are no catch clauses or destructors to be run. But there
- // is a C language extension __attribute__((cleanup(func))) which marks local
- // variables as needing the cleanup function "func" to be run when the
- // variable goes out of scope. That includes when an exception is thrown,
- // so a personality handler is needed.
- _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
- uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
- _Unwind_Context_t context);
- // for use with some implementations of assert() in <assert.h>
- void __eprintf(const char* format, const char* assertion_expression,
- const char* line, const char* file);
- // for systems with emulated thread local storage
- void* __emutls_get_address(struct __emutls_control*);
- // Power PC specific functions
- // There is no C interface to the saveFP/restFP functions. They are helper
- // functions called by the prolog and epilog of functions that need to save
- // a number of non-volatile float point registers.
- saveFP
- restFP
- // PowerPC has a standard template for trampoline functions. This function
- // generates a custom trampoline function with the specific realFunc
- // and localsPtr values.
- void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
- const void* realFunc, void* localsPtr);
- // adds two 128-bit double-double precision values ( x + y )
- long double __gcc_qadd(long double x, long double y);
- // subtracts two 128-bit double-double precision values ( x - y )
- long double __gcc_qsub(long double x, long double y);
- // multiples two 128-bit double-double precision values ( x * y )
- long double __gcc_qmul(long double x, long double y);
- // divides two 128-bit double-double precision values ( x / y )
- long double __gcc_qdiv(long double a, long double b);
- // ARM specific functions
- // There is no C interface to the switch* functions. These helper functions
- // are only needed by Thumb1 code for efficient switch table generation.
- switch16
- switch32
- switch8
- switchu8
- // There is no C interface to the *_vfp_d8_d15_regs functions. There are
- // called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
- // SJLJ for exceptions, each function with a catch clause or destuctors needs
- // to save and restore all registers in it prolog and epliog. But there is
- // no way to access vector and high float registers from thumb1 code, so the
- // compiler must add call outs to these helper functions in the prolog and
- // epilog.
- restore_vfp_d8_d15_regs
- save_vfp_d8_d15_regs
- // Note: long ago ARM processors did not have floating point hardware support.
- // Floating point was done in software and floating point parameters were
- // passed in integer registers. When hardware support was added for floating
- // point, new *vfp functions were added to do the same operations but with
- // floating point parameters in floating point registers.
- // Undocumented functions
- float __addsf3vfp(float a, float b); // Appears to return a + b
- double __adddf3vfp(double a, double b); // Appears to return a + b
- float __divsf3vfp(float a, float b); // Appears to return a / b
- double __divdf3vfp(double a, double b); // Appears to return a / b
- int __eqsf2vfp(float a, float b); // Appears to return one
- // iff a == b and neither is NaN.
- int __eqdf2vfp(double a, double b); // Appears to return one
- // iff a == b and neither is NaN.
- double __extendsfdf2vfp(float a); // Appears to convert from
- // float to double.
- int __fixdfsivfp(double a); // Appears to convert from
- // double to int.
- int __fixsfsivfp(float a); // Appears to convert from
- // float to int.
- unsigned int __fixunssfsivfp(float a); // Appears to convert from
- // float to unsigned int.
- unsigned int __fixunsdfsivfp(double a); // Appears to convert from
- // double to unsigned int.
- double __floatsidfvfp(int a); // Appears to convert from
- // int to double.
- float __floatsisfvfp(int a); // Appears to convert from
- // int to float.
- double __floatunssidfvfp(unsigned int a); // Appears to convert from
- // unisgned int to double.
- float __floatunssisfvfp(unsigned int a); // Appears to convert from
- // unisgned int to float.
- int __gedf2vfp(double a, double b); // Appears to return __gedf2
- // (a >= b)
- int __gesf2vfp(float a, float b); // Appears to return __gesf2
- // (a >= b)
- int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
- // (a > b)
- int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
- // (a > b)
- int __ledf2vfp(double a, double b); // Appears to return __ledf2
- // (a <= b)
- int __lesf2vfp(float a, float b); // Appears to return __lesf2
- // (a <= b)
- int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
- // (a < b)
- int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
- // (a < b)
- double __muldf3vfp(double a, double b); // Appears to return a * b
- float __mulsf3vfp(float a, float b); // Appears to return a * b
- int __nedf2vfp(double a, double b); // Appears to return __nedf2
- // (a != b)
- double __negdf2vfp(double a); // Appears to return -a
- float __negsf2vfp(float a); // Appears to return -a
- float __negsf2vfp(float a); // Appears to return -a
- double __subdf3vfp(double a, double b); // Appears to return a - b
- float __subsf3vfp(float a, float b); // Appears to return a - b
- float __truncdfsf2vfp(double a); // Appears to convert from
- // double to float.
- int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
- int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
- Preconditions are listed for each function at the definition when there are any.
- Any preconditions reflect the specification at
- http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
- Assumptions are listed in "int_lib.h", and in individual files. Where possible
- assumptions are checked at compile time.
|