123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806 |
- //===- RewriteRope.cpp - Rope specialized for rewriter --------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the RewriteRope class, which is a powerful string.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Rewrite/Core/RewriteRope.h"
- #include "clang/Basic/LLVM.h"
- #include "llvm/Support/Casting.h"
- #include <algorithm>
- #include <cassert>
- #include <cstring>
- using namespace clang;
- /// RewriteRope is a "strong" string class, designed to make insertions and
- /// deletions in the middle of the string nearly constant time (really, they are
- /// O(log N), but with a very low constant factor).
- ///
- /// The implementation of this datastructure is a conceptual linear sequence of
- /// RopePiece elements. Each RopePiece represents a view on a separately
- /// allocated and reference counted string. This means that splitting a very
- /// long string can be done in constant time by splitting a RopePiece that
- /// references the whole string into two rope pieces that reference each half.
- /// Once split, another string can be inserted in between the two halves by
- /// inserting a RopePiece in between the two others. All of this is very
- /// inexpensive: it takes time proportional to the number of RopePieces, not the
- /// length of the strings they represent.
- ///
- /// While a linear sequences of RopePieces is the conceptual model, the actual
- /// implementation captures them in an adapted B+ Tree. Using a B+ tree (which
- /// is a tree that keeps the values in the leaves and has where each node
- /// contains a reasonable number of pointers to children/values) allows us to
- /// maintain efficient operation when the RewriteRope contains a *huge* number
- /// of RopePieces. The basic idea of the B+ Tree is that it allows us to find
- /// the RopePiece corresponding to some offset very efficiently, and it
- /// automatically balances itself on insertions of RopePieces (which can happen
- /// for both insertions and erases of string ranges).
- ///
- /// The one wrinkle on the theory is that we don't attempt to keep the tree
- /// properly balanced when erases happen. Erases of string data can both insert
- /// new RopePieces (e.g. when the middle of some other rope piece is deleted,
- /// which results in two rope pieces, which is just like an insert) or it can
- /// reduce the number of RopePieces maintained by the B+Tree. In the case when
- /// the number of RopePieces is reduced, we don't attempt to maintain the
- /// standard 'invariant' that each node in the tree contains at least
- /// 'WidthFactor' children/values. For our use cases, this doesn't seem to
- /// matter.
- ///
- /// The implementation below is primarily implemented in terms of three classes:
- /// RopePieceBTreeNode - Common base class for:
- ///
- /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
- /// nodes. This directly represents a chunk of the string with those
- /// RopePieces concatenated.
- /// RopePieceBTreeInterior - An interior node in the B+ Tree, which manages
- /// up to '2*WidthFactor' other nodes in the tree.
- namespace {
- //===----------------------------------------------------------------------===//
- // RopePieceBTreeNode Class
- //===----------------------------------------------------------------------===//
- /// RopePieceBTreeNode - Common base class of RopePieceBTreeLeaf and
- /// RopePieceBTreeInterior. This provides some 'virtual' dispatching methods
- /// and a flag that determines which subclass the instance is. Also
- /// important, this node knows the full extend of the node, including any
- /// children that it has. This allows efficient skipping over entire subtrees
- /// when looking for an offset in the BTree.
- class RopePieceBTreeNode {
- protected:
- /// WidthFactor - This controls the number of K/V slots held in the BTree:
- /// how wide it is. Each level of the BTree is guaranteed to have at least
- /// 'WidthFactor' elements in it (either ropepieces or children), (except
- /// the root, which may have less) and may have at most 2*WidthFactor
- /// elements.
- enum { WidthFactor = 8 };
- /// Size - This is the number of bytes of file this node (including any
- /// potential children) covers.
- unsigned Size = 0;
- /// IsLeaf - True if this is an instance of RopePieceBTreeLeaf, false if it
- /// is an instance of RopePieceBTreeInterior.
- bool IsLeaf;
- RopePieceBTreeNode(bool isLeaf) : IsLeaf(isLeaf) {}
- ~RopePieceBTreeNode() = default;
- public:
- bool isLeaf() const { return IsLeaf; }
- unsigned size() const { return Size; }
- void Destroy();
- /// split - Split the range containing the specified offset so that we are
- /// guaranteed that there is a place to do an insertion at the specified
- /// offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *split(unsigned Offset);
- /// insert - Insert the specified ropepiece into this tree node at the
- /// specified offset. The offset is relative, so "0" is the start of the
- /// node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
- /// erase - Remove NumBytes from this node at the specified offset. We are
- /// guaranteed that there is a split at Offset.
- void erase(unsigned Offset, unsigned NumBytes);
- };
- //===----------------------------------------------------------------------===//
- // RopePieceBTreeLeaf Class
- //===----------------------------------------------------------------------===//
- /// RopePieceBTreeLeaf - Directly manages up to '2*WidthFactor' RopePiece
- /// nodes. This directly represents a chunk of the string with those
- /// RopePieces concatenated. Since this is a B+Tree, all values (in this case
- /// instances of RopePiece) are stored in leaves like this. To make iteration
- /// over the leaves efficient, they maintain a singly linked list through the
- /// NextLeaf field. This allows the B+Tree forward iterator to be constant
- /// time for all increments.
- class RopePieceBTreeLeaf : public RopePieceBTreeNode {
- /// NumPieces - This holds the number of rope pieces currently active in the
- /// Pieces array.
- unsigned char NumPieces = 0;
- /// Pieces - This tracks the file chunks currently in this leaf.
- RopePiece Pieces[2*WidthFactor];
- /// NextLeaf - This is a pointer to the next leaf in the tree, allowing
- /// efficient in-order forward iteration of the tree without traversal.
- RopePieceBTreeLeaf **PrevLeaf = nullptr;
- RopePieceBTreeLeaf *NextLeaf = nullptr;
- public:
- RopePieceBTreeLeaf() : RopePieceBTreeNode(true) {}
- ~RopePieceBTreeLeaf() {
- if (PrevLeaf || NextLeaf)
- removeFromLeafInOrder();
- clear();
- }
- bool isFull() const { return NumPieces == 2*WidthFactor; }
- /// clear - Remove all rope pieces from this leaf.
- void clear() {
- while (NumPieces)
- Pieces[--NumPieces] = RopePiece();
- Size = 0;
- }
- unsigned getNumPieces() const { return NumPieces; }
- const RopePiece &getPiece(unsigned i) const {
- assert(i < getNumPieces() && "Invalid piece ID");
- return Pieces[i];
- }
- const RopePieceBTreeLeaf *getNextLeafInOrder() const { return NextLeaf; }
- void insertAfterLeafInOrder(RopePieceBTreeLeaf *Node) {
- assert(!PrevLeaf && !NextLeaf && "Already in ordering");
- NextLeaf = Node->NextLeaf;
- if (NextLeaf)
- NextLeaf->PrevLeaf = &NextLeaf;
- PrevLeaf = &Node->NextLeaf;
- Node->NextLeaf = this;
- }
- void removeFromLeafInOrder() {
- if (PrevLeaf) {
- *PrevLeaf = NextLeaf;
- if (NextLeaf)
- NextLeaf->PrevLeaf = PrevLeaf;
- } else if (NextLeaf) {
- NextLeaf->PrevLeaf = nullptr;
- }
- }
- /// FullRecomputeSizeLocally - This method recomputes the 'Size' field by
- /// summing the size of all RopePieces.
- void FullRecomputeSizeLocally() {
- Size = 0;
- for (unsigned i = 0, e = getNumPieces(); i != e; ++i)
- Size += getPiece(i).size();
- }
- /// split - Split the range containing the specified offset so that we are
- /// guaranteed that there is a place to do an insertion at the specified
- /// offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *split(unsigned Offset);
- /// insert - Insert the specified ropepiece into this tree node at the
- /// specified offset. The offset is relative, so "0" is the start of the
- /// node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
- /// erase - Remove NumBytes from this node at the specified offset. We are
- /// guaranteed that there is a split at Offset.
- void erase(unsigned Offset, unsigned NumBytes);
- static bool classof(const RopePieceBTreeNode *N) {
- return N->isLeaf();
- }
- };
- } // namespace
- /// split - Split the range containing the specified offset so that we are
- /// guaranteed that there is a place to do an insertion at the specified
- /// offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *RopePieceBTreeLeaf::split(unsigned Offset) {
- // Find the insertion point. We are guaranteed that there is a split at the
- // specified offset so find it.
- if (Offset == 0 || Offset == size()) {
- // Fastpath for a common case. There is already a splitpoint at the end.
- return nullptr;
- }
- // Find the piece that this offset lands in.
- unsigned PieceOffs = 0;
- unsigned i = 0;
- while (Offset >= PieceOffs+Pieces[i].size()) {
- PieceOffs += Pieces[i].size();
- ++i;
- }
- // If there is already a split point at the specified offset, just return
- // success.
- if (PieceOffs == Offset)
- return nullptr;
- // Otherwise, we need to split piece 'i' at Offset-PieceOffs. Convert Offset
- // to being Piece relative.
- unsigned IntraPieceOffset = Offset-PieceOffs;
- // We do this by shrinking the RopePiece and then doing an insert of the tail.
- RopePiece Tail(Pieces[i].StrData, Pieces[i].StartOffs+IntraPieceOffset,
- Pieces[i].EndOffs);
- Size -= Pieces[i].size();
- Pieces[i].EndOffs = Pieces[i].StartOffs+IntraPieceOffset;
- Size += Pieces[i].size();
- return insert(Offset, Tail);
- }
- /// insert - Insert the specified RopePiece into this tree node at the
- /// specified offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *RopePieceBTreeLeaf::insert(unsigned Offset,
- const RopePiece &R) {
- // If this node is not full, insert the piece.
- if (!isFull()) {
- // Find the insertion point. We are guaranteed that there is a split at the
- // specified offset so find it.
- unsigned i = 0, e = getNumPieces();
- if (Offset == size()) {
- // Fastpath for a common case.
- i = e;
- } else {
- unsigned SlotOffs = 0;
- for (; Offset > SlotOffs; ++i)
- SlotOffs += getPiece(i).size();
- assert(SlotOffs == Offset && "Split didn't occur before insertion!");
- }
- // For an insertion into a non-full leaf node, just insert the value in
- // its sorted position. This requires moving later values over.
- for (; i != e; --e)
- Pieces[e] = Pieces[e-1];
- Pieces[i] = R;
- ++NumPieces;
- Size += R.size();
- return nullptr;
- }
- // Otherwise, if this is leaf is full, split it in two halves. Since this
- // node is full, it contains 2*WidthFactor values. We move the first
- // 'WidthFactor' values to the LHS child (which we leave in this node) and
- // move the last 'WidthFactor' values into the RHS child.
- // Create the new node.
- RopePieceBTreeLeaf *NewNode = new RopePieceBTreeLeaf();
- // Move over the last 'WidthFactor' values from here to NewNode.
- std::copy(&Pieces[WidthFactor], &Pieces[2*WidthFactor],
- &NewNode->Pieces[0]);
- // Replace old pieces with null RopePieces to drop refcounts.
- std::fill(&Pieces[WidthFactor], &Pieces[2*WidthFactor], RopePiece());
- // Decrease the number of values in the two nodes.
- NewNode->NumPieces = NumPieces = WidthFactor;
- // Recompute the two nodes' size.
- NewNode->FullRecomputeSizeLocally();
- FullRecomputeSizeLocally();
- // Update the list of leaves.
- NewNode->insertAfterLeafInOrder(this);
- // These insertions can't fail.
- if (this->size() >= Offset)
- this->insert(Offset, R);
- else
- NewNode->insert(Offset - this->size(), R);
- return NewNode;
- }
- /// erase - Remove NumBytes from this node at the specified offset. We are
- /// guaranteed that there is a split at Offset.
- void RopePieceBTreeLeaf::erase(unsigned Offset, unsigned NumBytes) {
- // Since we are guaranteed that there is a split at Offset, we start by
- // finding the Piece that starts there.
- unsigned PieceOffs = 0;
- unsigned i = 0;
- for (; Offset > PieceOffs; ++i)
- PieceOffs += getPiece(i).size();
- assert(PieceOffs == Offset && "Split didn't occur before erase!");
- unsigned StartPiece = i;
- // Figure out how many pieces completely cover 'NumBytes'. We want to remove
- // all of them.
- for (; Offset+NumBytes > PieceOffs+getPiece(i).size(); ++i)
- PieceOffs += getPiece(i).size();
- // If we exactly include the last one, include it in the region to delete.
- if (Offset+NumBytes == PieceOffs+getPiece(i).size()) {
- PieceOffs += getPiece(i).size();
- ++i;
- }
- // If we completely cover some RopePieces, erase them now.
- if (i != StartPiece) {
- unsigned NumDeleted = i-StartPiece;
- for (; i != getNumPieces(); ++i)
- Pieces[i-NumDeleted] = Pieces[i];
- // Drop references to dead rope pieces.
- std::fill(&Pieces[getNumPieces()-NumDeleted], &Pieces[getNumPieces()],
- RopePiece());
- NumPieces -= NumDeleted;
- unsigned CoverBytes = PieceOffs-Offset;
- NumBytes -= CoverBytes;
- Size -= CoverBytes;
- }
- // If we completely removed some stuff, we could be done.
- if (NumBytes == 0) return;
- // Okay, now might be erasing part of some Piece. If this is the case, then
- // move the start point of the piece.
- assert(getPiece(StartPiece).size() > NumBytes);
- Pieces[StartPiece].StartOffs += NumBytes;
- // The size of this node just shrunk by NumBytes.
- Size -= NumBytes;
- }
- //===----------------------------------------------------------------------===//
- // RopePieceBTreeInterior Class
- //===----------------------------------------------------------------------===//
- namespace {
- /// RopePieceBTreeInterior - This represents an interior node in the B+Tree,
- /// which holds up to 2*WidthFactor pointers to child nodes.
- class RopePieceBTreeInterior : public RopePieceBTreeNode {
- /// NumChildren - This holds the number of children currently active in the
- /// Children array.
- unsigned char NumChildren = 0;
- RopePieceBTreeNode *Children[2*WidthFactor];
- public:
- RopePieceBTreeInterior() : RopePieceBTreeNode(false) {}
- RopePieceBTreeInterior(RopePieceBTreeNode *LHS, RopePieceBTreeNode *RHS)
- : RopePieceBTreeNode(false) {
- Children[0] = LHS;
- Children[1] = RHS;
- NumChildren = 2;
- Size = LHS->size() + RHS->size();
- }
- ~RopePieceBTreeInterior() {
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- Children[i]->Destroy();
- }
- bool isFull() const { return NumChildren == 2*WidthFactor; }
- unsigned getNumChildren() const { return NumChildren; }
- const RopePieceBTreeNode *getChild(unsigned i) const {
- assert(i < NumChildren && "invalid child #");
- return Children[i];
- }
- RopePieceBTreeNode *getChild(unsigned i) {
- assert(i < NumChildren && "invalid child #");
- return Children[i];
- }
- /// FullRecomputeSizeLocally - Recompute the Size field of this node by
- /// summing up the sizes of the child nodes.
- void FullRecomputeSizeLocally() {
- Size = 0;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- Size += getChild(i)->size();
- }
- /// split - Split the range containing the specified offset so that we are
- /// guaranteed that there is a place to do an insertion at the specified
- /// offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *split(unsigned Offset);
- /// insert - Insert the specified ropepiece into this tree node at the
- /// specified offset. The offset is relative, so "0" is the start of the
- /// node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *insert(unsigned Offset, const RopePiece &R);
- /// HandleChildPiece - A child propagated an insertion result up to us.
- /// Insert the new child, and/or propagate the result further up the tree.
- RopePieceBTreeNode *HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS);
- /// erase - Remove NumBytes from this node at the specified offset. We are
- /// guaranteed that there is a split at Offset.
- void erase(unsigned Offset, unsigned NumBytes);
- static bool classof(const RopePieceBTreeNode *N) {
- return !N->isLeaf();
- }
- };
- } // namespace
- /// split - Split the range containing the specified offset so that we are
- /// guaranteed that there is a place to do an insertion at the specified
- /// offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *RopePieceBTreeInterior::split(unsigned Offset) {
- // Figure out which child to split.
- if (Offset == 0 || Offset == size())
- return nullptr; // If we have an exact offset, we're already split.
- unsigned ChildOffset = 0;
- unsigned i = 0;
- for (; Offset >= ChildOffset+getChild(i)->size(); ++i)
- ChildOffset += getChild(i)->size();
- // If already split there, we're done.
- if (ChildOffset == Offset)
- return nullptr;
- // Otherwise, recursively split the child.
- if (RopePieceBTreeNode *RHS = getChild(i)->split(Offset-ChildOffset))
- return HandleChildPiece(i, RHS);
- return nullptr; // Done!
- }
- /// insert - Insert the specified ropepiece into this tree node at the
- /// specified offset. The offset is relative, so "0" is the start of the
- /// node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *RopePieceBTreeInterior::insert(unsigned Offset,
- const RopePiece &R) {
- // Find the insertion point. We are guaranteed that there is a split at the
- // specified offset so find it.
- unsigned i = 0, e = getNumChildren();
- unsigned ChildOffs = 0;
- if (Offset == size()) {
- // Fastpath for a common case. Insert at end of last child.
- i = e-1;
- ChildOffs = size()-getChild(i)->size();
- } else {
- for (; Offset > ChildOffs+getChild(i)->size(); ++i)
- ChildOffs += getChild(i)->size();
- }
- Size += R.size();
- // Insert at the end of this child.
- if (RopePieceBTreeNode *RHS = getChild(i)->insert(Offset-ChildOffs, R))
- return HandleChildPiece(i, RHS);
- return nullptr;
- }
- /// HandleChildPiece - A child propagated an insertion result up to us.
- /// Insert the new child, and/or propagate the result further up the tree.
- RopePieceBTreeNode *
- RopePieceBTreeInterior::HandleChildPiece(unsigned i, RopePieceBTreeNode *RHS) {
- // Otherwise the child propagated a subtree up to us as a new child. See if
- // we have space for it here.
- if (!isFull()) {
- // Insert RHS after child 'i'.
- if (i + 1 != getNumChildren())
- memmove(&Children[i+2], &Children[i+1],
- (getNumChildren()-i-1)*sizeof(Children[0]));
- Children[i+1] = RHS;
- ++NumChildren;
- return nullptr;
- }
- // Okay, this node is full. Split it in half, moving WidthFactor children to
- // a newly allocated interior node.
- // Create the new node.
- RopePieceBTreeInterior *NewNode = new RopePieceBTreeInterior();
- // Move over the last 'WidthFactor' values from here to NewNode.
- memcpy(&NewNode->Children[0], &Children[WidthFactor],
- WidthFactor*sizeof(Children[0]));
- // Decrease the number of values in the two nodes.
- NewNode->NumChildren = NumChildren = WidthFactor;
- // Finally, insert the two new children in the side the can (now) hold them.
- // These insertions can't fail.
- if (i < WidthFactor)
- this->HandleChildPiece(i, RHS);
- else
- NewNode->HandleChildPiece(i-WidthFactor, RHS);
- // Recompute the two nodes' size.
- NewNode->FullRecomputeSizeLocally();
- FullRecomputeSizeLocally();
- return NewNode;
- }
- /// erase - Remove NumBytes from this node at the specified offset. We are
- /// guaranteed that there is a split at Offset.
- void RopePieceBTreeInterior::erase(unsigned Offset, unsigned NumBytes) {
- // This will shrink this node by NumBytes.
- Size -= NumBytes;
- // Find the first child that overlaps with Offset.
- unsigned i = 0;
- for (; Offset >= getChild(i)->size(); ++i)
- Offset -= getChild(i)->size();
- // Propagate the delete request into overlapping children, or completely
- // delete the children as appropriate.
- while (NumBytes) {
- RopePieceBTreeNode *CurChild = getChild(i);
- // If we are deleting something contained entirely in the child, pass on the
- // request.
- if (Offset+NumBytes < CurChild->size()) {
- CurChild->erase(Offset, NumBytes);
- return;
- }
- // If this deletion request starts somewhere in the middle of the child, it
- // must be deleting to the end of the child.
- if (Offset) {
- unsigned BytesFromChild = CurChild->size()-Offset;
- CurChild->erase(Offset, BytesFromChild);
- NumBytes -= BytesFromChild;
- // Start at the beginning of the next child.
- Offset = 0;
- ++i;
- continue;
- }
- // If the deletion request completely covers the child, delete it and move
- // the rest down.
- NumBytes -= CurChild->size();
- CurChild->Destroy();
- --NumChildren;
- if (i != getNumChildren())
- memmove(&Children[i], &Children[i+1],
- (getNumChildren()-i)*sizeof(Children[0]));
- }
- }
- //===----------------------------------------------------------------------===//
- // RopePieceBTreeNode Implementation
- //===----------------------------------------------------------------------===//
- void RopePieceBTreeNode::Destroy() {
- if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
- delete Leaf;
- else
- delete cast<RopePieceBTreeInterior>(this);
- }
- /// split - Split the range containing the specified offset so that we are
- /// guaranteed that there is a place to do an insertion at the specified
- /// offset. The offset is relative, so "0" is the start of the node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *RopePieceBTreeNode::split(unsigned Offset) {
- assert(Offset <= size() && "Invalid offset to split!");
- if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
- return Leaf->split(Offset);
- return cast<RopePieceBTreeInterior>(this)->split(Offset);
- }
- /// insert - Insert the specified ropepiece into this tree node at the
- /// specified offset. The offset is relative, so "0" is the start of the
- /// node.
- ///
- /// If there is no space in this subtree for the extra piece, the extra tree
- /// node is returned and must be inserted into a parent.
- RopePieceBTreeNode *RopePieceBTreeNode::insert(unsigned Offset,
- const RopePiece &R) {
- assert(Offset <= size() && "Invalid offset to insert!");
- if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
- return Leaf->insert(Offset, R);
- return cast<RopePieceBTreeInterior>(this)->insert(Offset, R);
- }
- /// erase - Remove NumBytes from this node at the specified offset. We are
- /// guaranteed that there is a split at Offset.
- void RopePieceBTreeNode::erase(unsigned Offset, unsigned NumBytes) {
- assert(Offset+NumBytes <= size() && "Invalid offset to erase!");
- if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(this))
- return Leaf->erase(Offset, NumBytes);
- return cast<RopePieceBTreeInterior>(this)->erase(Offset, NumBytes);
- }
- //===----------------------------------------------------------------------===//
- // RopePieceBTreeIterator Implementation
- //===----------------------------------------------------------------------===//
- static const RopePieceBTreeLeaf *getCN(const void *P) {
- return static_cast<const RopePieceBTreeLeaf*>(P);
- }
- // begin iterator.
- RopePieceBTreeIterator::RopePieceBTreeIterator(const void *n) {
- const auto *N = static_cast<const RopePieceBTreeNode *>(n);
- // Walk down the left side of the tree until we get to a leaf.
- while (const auto *IN = dyn_cast<RopePieceBTreeInterior>(N))
- N = IN->getChild(0);
- // We must have at least one leaf.
- CurNode = cast<RopePieceBTreeLeaf>(N);
- // If we found a leaf that happens to be empty, skip over it until we get
- // to something full.
- while (CurNode && getCN(CurNode)->getNumPieces() == 0)
- CurNode = getCN(CurNode)->getNextLeafInOrder();
- if (CurNode)
- CurPiece = &getCN(CurNode)->getPiece(0);
- else // Empty tree, this is an end() iterator.
- CurPiece = nullptr;
- CurChar = 0;
- }
- void RopePieceBTreeIterator::MoveToNextPiece() {
- if (CurPiece != &getCN(CurNode)->getPiece(getCN(CurNode)->getNumPieces()-1)) {
- CurChar = 0;
- ++CurPiece;
- return;
- }
- // Find the next non-empty leaf node.
- do
- CurNode = getCN(CurNode)->getNextLeafInOrder();
- while (CurNode && getCN(CurNode)->getNumPieces() == 0);
- if (CurNode)
- CurPiece = &getCN(CurNode)->getPiece(0);
- else // Hit end().
- CurPiece = nullptr;
- CurChar = 0;
- }
- //===----------------------------------------------------------------------===//
- // RopePieceBTree Implementation
- //===----------------------------------------------------------------------===//
- static RopePieceBTreeNode *getRoot(void *P) {
- return static_cast<RopePieceBTreeNode*>(P);
- }
- RopePieceBTree::RopePieceBTree() {
- Root = new RopePieceBTreeLeaf();
- }
- RopePieceBTree::RopePieceBTree(const RopePieceBTree &RHS) {
- assert(RHS.empty() && "Can't copy non-empty tree yet");
- Root = new RopePieceBTreeLeaf();
- }
- RopePieceBTree::~RopePieceBTree() {
- getRoot(Root)->Destroy();
- }
- unsigned RopePieceBTree::size() const {
- return getRoot(Root)->size();
- }
- void RopePieceBTree::clear() {
- if (auto *Leaf = dyn_cast<RopePieceBTreeLeaf>(getRoot(Root)))
- Leaf->clear();
- else {
- getRoot(Root)->Destroy();
- Root = new RopePieceBTreeLeaf();
- }
- }
- void RopePieceBTree::insert(unsigned Offset, const RopePiece &R) {
- // #1. Split at Offset.
- if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
- Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
- // #2. Do the insertion.
- if (RopePieceBTreeNode *RHS = getRoot(Root)->insert(Offset, R))
- Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
- }
- void RopePieceBTree::erase(unsigned Offset, unsigned NumBytes) {
- // #1. Split at Offset.
- if (RopePieceBTreeNode *RHS = getRoot(Root)->split(Offset))
- Root = new RopePieceBTreeInterior(getRoot(Root), RHS);
- // #2. Do the erasing.
- getRoot(Root)->erase(Offset, NumBytes);
- }
- //===----------------------------------------------------------------------===//
- // RewriteRope Implementation
- //===----------------------------------------------------------------------===//
- /// MakeRopeString - This copies the specified byte range into some instance of
- /// RopeRefCountString, and return a RopePiece that represents it. This uses
- /// the AllocBuffer object to aggregate requests for small strings into one
- /// allocation instead of doing tons of tiny allocations.
- RopePiece RewriteRope::MakeRopeString(const char *Start, const char *End) {
- unsigned Len = End-Start;
- assert(Len && "Zero length RopePiece is invalid!");
- // If we have space for this string in the current alloc buffer, use it.
- if (AllocOffs+Len <= AllocChunkSize) {
- memcpy(AllocBuffer->Data+AllocOffs, Start, Len);
- AllocOffs += Len;
- return RopePiece(AllocBuffer, AllocOffs-Len, AllocOffs);
- }
- // If we don't have enough room because this specific allocation is huge,
- // just allocate a new rope piece for it alone.
- if (Len > AllocChunkSize) {
- unsigned Size = End-Start+sizeof(RopeRefCountString)-1;
- auto *Res = reinterpret_cast<RopeRefCountString *>(new char[Size]);
- Res->RefCount = 0;
- memcpy(Res->Data, Start, End-Start);
- return RopePiece(Res, 0, End-Start);
- }
- // Otherwise, this was a small request but we just don't have space for it
- // Make a new chunk and share it with later allocations.
- unsigned AllocSize = offsetof(RopeRefCountString, Data) + AllocChunkSize;
- auto *Res = reinterpret_cast<RopeRefCountString *>(new char[AllocSize]);
- Res->RefCount = 0;
- memcpy(Res->Data, Start, Len);
- AllocBuffer = Res;
- AllocOffs = Len;
- return RopePiece(AllocBuffer, 0, Len);
- }
|