123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes implement wrappers around llvm::Value in order to
- // fully represent the range of values for C L- and R- values.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
- #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/Type.h"
- #include "Address.h"
- #include "CodeGenTBAA.h"
- namespace llvm {
- class Constant;
- class MDNode;
- }
- namespace clang {
- namespace CodeGen {
- class AggValueSlot;
- class CodeGenFunction;
- struct CGBitFieldInfo;
- /// RValue - This trivial value class is used to represent the result of an
- /// expression that is evaluated. It can be one of three things: either a
- /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
- /// address of an aggregate value in memory.
- class RValue {
- enum Flavor { Scalar, Complex, Aggregate };
- // The shift to make to an aggregate's alignment to make it look
- // like a pointer.
- enum { AggAlignShift = 4 };
- // Stores first value and flavor.
- llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
- // Stores second value and volatility.
- llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
- // Stores element type for aggregate values.
- llvm::Type *ElementType;
- public:
- bool isScalar() const { return V1.getInt() == Scalar; }
- bool isComplex() const { return V1.getInt() == Complex; }
- bool isAggregate() const { return V1.getInt() == Aggregate; }
- bool isVolatileQualified() const { return V2.getInt(); }
- /// getScalarVal() - Return the Value* of this scalar value.
- llvm::Value *getScalarVal() const {
- assert(isScalar() && "Not a scalar!");
- return V1.getPointer();
- }
- /// getComplexVal - Return the real/imag components of this complex value.
- ///
- std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
- return std::make_pair(V1.getPointer(), V2.getPointer());
- }
- /// getAggregateAddr() - Return the Value* of the address of the aggregate.
- Address getAggregateAddress() const {
- assert(isAggregate() && "Not an aggregate!");
- auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
- return Address(
- V1.getPointer(), ElementType, CharUnits::fromQuantity(align));
- }
- llvm::Value *getAggregatePointer() const {
- assert(isAggregate() && "Not an aggregate!");
- return V1.getPointer();
- }
- static RValue getIgnored() {
- // FIXME: should we make this a more explicit state?
- return get(nullptr);
- }
- static RValue get(llvm::Value *V) {
- RValue ER;
- ER.V1.setPointer(V);
- ER.V1.setInt(Scalar);
- ER.V2.setInt(false);
- return ER;
- }
- static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
- RValue ER;
- ER.V1.setPointer(V1);
- ER.V2.setPointer(V2);
- ER.V1.setInt(Complex);
- ER.V2.setInt(false);
- return ER;
- }
- static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
- return getComplex(C.first, C.second);
- }
- // FIXME: Aggregate rvalues need to retain information about whether they are
- // volatile or not. Remove default to find all places that probably get this
- // wrong.
- static RValue getAggregate(Address addr, bool isVolatile = false) {
- RValue ER;
- ER.V1.setPointer(addr.getPointer());
- ER.V1.setInt(Aggregate);
- ER.ElementType = addr.getElementType();
- auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
- ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
- ER.V2.setInt(isVolatile);
- return ER;
- }
- };
- /// Does an ARC strong l-value have precise lifetime?
- enum ARCPreciseLifetime_t {
- ARCImpreciseLifetime, ARCPreciseLifetime
- };
- /// The source of the alignment of an l-value; an expression of
- /// confidence in the alignment actually matching the estimate.
- enum class AlignmentSource {
- /// The l-value was an access to a declared entity or something
- /// equivalently strong, like the address of an array allocated by a
- /// language runtime.
- Decl,
- /// The l-value was considered opaque, so the alignment was
- /// determined from a type, but that type was an explicitly-aligned
- /// typedef.
- AttributedType,
- /// The l-value was considered opaque, so the alignment was
- /// determined from a type.
- Type
- };
- /// Given that the base address has the given alignment source, what's
- /// our confidence in the alignment of the field?
- static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
- // For now, we don't distinguish fields of opaque pointers from
- // top-level declarations, but maybe we should.
- return AlignmentSource::Decl;
- }
- class LValueBaseInfo {
- AlignmentSource AlignSource;
- public:
- explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
- : AlignSource(Source) {}
- AlignmentSource getAlignmentSource() const { return AlignSource; }
- void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
- void mergeForCast(const LValueBaseInfo &Info) {
- setAlignmentSource(Info.getAlignmentSource());
- }
- };
- /// LValue - This represents an lvalue references. Because C/C++ allow
- /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
- /// bitrange.
- class LValue {
- enum {
- Simple, // This is a normal l-value, use getAddress().
- VectorElt, // This is a vector element l-value (V[i]), use getVector*
- BitField, // This is a bitfield l-value, use getBitfield*.
- ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
- GlobalReg, // This is a register l-value, use getGlobalReg()
- MatrixElt // This is a matrix element, use getVector*
- } LVType;
- llvm::Value *V;
- llvm::Type *ElementType;
- union {
- // Index into a vector subscript: V[i]
- llvm::Value *VectorIdx;
- // ExtVector element subset: V.xyx
- llvm::Constant *VectorElts;
- // BitField start bit and size
- const CGBitFieldInfo *BitFieldInfo;
- };
- QualType Type;
- // 'const' is unused here
- Qualifiers Quals;
- // The alignment to use when accessing this lvalue. (For vector elements,
- // this is the alignment of the whole vector.)
- unsigned Alignment;
- // objective-c's ivar
- bool Ivar:1;
- // objective-c's ivar is an array
- bool ObjIsArray:1;
- // LValue is non-gc'able for any reason, including being a parameter or local
- // variable.
- bool NonGC: 1;
- // Lvalue is a global reference of an objective-c object
- bool GlobalObjCRef : 1;
- // Lvalue is a thread local reference
- bool ThreadLocalRef : 1;
- // Lvalue has ARC imprecise lifetime. We store this inverted to try
- // to make the default bitfield pattern all-zeroes.
- bool ImpreciseLifetime : 1;
- // This flag shows if a nontemporal load/stores should be used when accessing
- // this lvalue.
- bool Nontemporal : 1;
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- Expr *BaseIvarExp;
- private:
- void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
- LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
- assert((!Alignment.isZero() || Type->isIncompleteType()) &&
- "initializing l-value with zero alignment!");
- if (isGlobalReg())
- assert(ElementType == nullptr && "Global reg does not store elem type");
- else
- assert(llvm::cast<llvm::PointerType>(V->getType())
- ->isOpaqueOrPointeeTypeMatches(ElementType) &&
- "Pointer element type mismatch");
- this->Type = Type;
- this->Quals = Quals;
- const unsigned MaxAlign = 1U << 31;
- this->Alignment = Alignment.getQuantity() <= MaxAlign
- ? Alignment.getQuantity()
- : MaxAlign;
- assert(this->Alignment == Alignment.getQuantity() &&
- "Alignment exceeds allowed max!");
- this->BaseInfo = BaseInfo;
- this->TBAAInfo = TBAAInfo;
- // Initialize Objective-C flags.
- this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
- this->ImpreciseLifetime = false;
- this->Nontemporal = false;
- this->ThreadLocalRef = false;
- this->BaseIvarExp = nullptr;
- }
- public:
- bool isSimple() const { return LVType == Simple; }
- bool isVectorElt() const { return LVType == VectorElt; }
- bool isBitField() const { return LVType == BitField; }
- bool isExtVectorElt() const { return LVType == ExtVectorElt; }
- bool isGlobalReg() const { return LVType == GlobalReg; }
- bool isMatrixElt() const { return LVType == MatrixElt; }
- bool isVolatileQualified() const { return Quals.hasVolatile(); }
- bool isRestrictQualified() const { return Quals.hasRestrict(); }
- unsigned getVRQualifiers() const {
- return Quals.getCVRQualifiers() & ~Qualifiers::Const;
- }
- QualType getType() const { return Type; }
- Qualifiers::ObjCLifetime getObjCLifetime() const {
- return Quals.getObjCLifetime();
- }
- bool isObjCIvar() const { return Ivar; }
- void setObjCIvar(bool Value) { Ivar = Value; }
- bool isObjCArray() const { return ObjIsArray; }
- void setObjCArray(bool Value) { ObjIsArray = Value; }
- bool isNonGC () const { return NonGC; }
- void setNonGC(bool Value) { NonGC = Value; }
- bool isGlobalObjCRef() const { return GlobalObjCRef; }
- void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
- bool isThreadLocalRef() const { return ThreadLocalRef; }
- void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
- ARCPreciseLifetime_t isARCPreciseLifetime() const {
- return ARCPreciseLifetime_t(!ImpreciseLifetime);
- }
- void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
- ImpreciseLifetime = (value == ARCImpreciseLifetime);
- }
- bool isNontemporal() const { return Nontemporal; }
- void setNontemporal(bool Value) { Nontemporal = Value; }
- bool isObjCWeak() const {
- return Quals.getObjCGCAttr() == Qualifiers::Weak;
- }
- bool isObjCStrong() const {
- return Quals.getObjCGCAttr() == Qualifiers::Strong;
- }
- bool isVolatile() const {
- return Quals.hasVolatile();
- }
- Expr *getBaseIvarExp() const { return BaseIvarExp; }
- void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
- TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
- void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
- const Qualifiers &getQuals() const { return Quals; }
- Qualifiers &getQuals() { return Quals; }
- LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
- CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
- void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
- LValueBaseInfo getBaseInfo() const { return BaseInfo; }
- void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
- // simple lvalue
- llvm::Value *getPointer(CodeGenFunction &CGF) const {
- assert(isSimple());
- return V;
- }
- Address getAddress(CodeGenFunction &CGF) const {
- return Address(getPointer(CGF), ElementType, getAlignment());
- }
- void setAddress(Address address) {
- assert(isSimple());
- V = address.getPointer();
- ElementType = address.getElementType();
- Alignment = address.getAlignment().getQuantity();
- }
- // vector elt lvalue
- Address getVectorAddress() const {
- return Address(getVectorPointer(), ElementType, getAlignment());
- }
- llvm::Value *getVectorPointer() const {
- assert(isVectorElt());
- return V;
- }
- llvm::Value *getVectorIdx() const {
- assert(isVectorElt());
- return VectorIdx;
- }
- Address getMatrixAddress() const {
- return Address(getMatrixPointer(), ElementType, getAlignment());
- }
- llvm::Value *getMatrixPointer() const {
- assert(isMatrixElt());
- return V;
- }
- llvm::Value *getMatrixIdx() const {
- assert(isMatrixElt());
- return VectorIdx;
- }
- // extended vector elements.
- Address getExtVectorAddress() const {
- return Address(getExtVectorPointer(), ElementType, getAlignment());
- }
- llvm::Value *getExtVectorPointer() const {
- assert(isExtVectorElt());
- return V;
- }
- llvm::Constant *getExtVectorElts() const {
- assert(isExtVectorElt());
- return VectorElts;
- }
- // bitfield lvalue
- Address getBitFieldAddress() const {
- return Address(getBitFieldPointer(), ElementType, getAlignment());
- }
- llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
- const CGBitFieldInfo &getBitFieldInfo() const {
- assert(isBitField());
- return *BitFieldInfo;
- }
- // global register lvalue
- llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
- static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
- LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
- Qualifiers qs = type.getQualifiers();
- qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
- LValue R;
- R.LVType = Simple;
- assert(address.getPointer()->getType()->isPointerTy());
- R.V = address.getPointer();
- R.ElementType = address.getElementType();
- R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
- return R;
- }
- static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = VectorElt;
- R.V = vecAddress.getPointer();
- R.ElementType = vecAddress.getElementType();
- R.VectorIdx = Idx;
- R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
- BaseInfo, TBAAInfo);
- return R;
- }
- static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = ExtVectorElt;
- R.V = vecAddress.getPointer();
- R.ElementType = vecAddress.getElementType();
- R.VectorElts = Elts;
- R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
- BaseInfo, TBAAInfo);
- return R;
- }
- /// Create a new object to represent a bit-field access.
- ///
- /// \param Addr - The base address of the bit-field sequence this
- /// bit-field refers to.
- /// \param Info - The information describing how to perform the bit-field
- /// access.
- static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = BitField;
- R.V = Addr.getPointer();
- R.ElementType = Addr.getElementType();
- R.BitFieldInfo = &Info;
- R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
- TBAAInfo);
- return R;
- }
- static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment,
- QualType type) {
- LValue R;
- R.LVType = GlobalReg;
- R.V = V;
- R.ElementType = nullptr;
- R.Initialize(type, type.getQualifiers(), alignment,
- LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
- return R;
- }
- static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx,
- QualType type, LValueBaseInfo BaseInfo,
- TBAAAccessInfo TBAAInfo) {
- LValue R;
- R.LVType = MatrixElt;
- R.V = matAddress.getPointer();
- R.ElementType = matAddress.getElementType();
- R.VectorIdx = Idx;
- R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(),
- BaseInfo, TBAAInfo);
- return R;
- }
- RValue asAggregateRValue(CodeGenFunction &CGF) const {
- return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
- }
- };
- /// An aggregate value slot.
- class AggValueSlot {
- /// The address.
- Address Addr;
- // Qualifiers
- Qualifiers Quals;
- /// DestructedFlag - This is set to true if some external code is
- /// responsible for setting up a destructor for the slot. Otherwise
- /// the code which constructs it should push the appropriate cleanup.
- bool DestructedFlag : 1;
- /// ObjCGCFlag - This is set to true if writing to the memory in the
- /// slot might require calling an appropriate Objective-C GC
- /// barrier. The exact interaction here is unnecessarily mysterious.
- bool ObjCGCFlag : 1;
- /// ZeroedFlag - This is set to true if the memory in the slot is
- /// known to be zero before the assignment into it. This means that
- /// zero fields don't need to be set.
- bool ZeroedFlag : 1;
- /// AliasedFlag - This is set to true if the slot might be aliased
- /// and it's not undefined behavior to access it through such an
- /// alias. Note that it's always undefined behavior to access a C++
- /// object that's under construction through an alias derived from
- /// outside the construction process.
- ///
- /// This flag controls whether calls that produce the aggregate
- /// value may be evaluated directly into the slot, or whether they
- /// must be evaluated into an unaliased temporary and then memcpy'ed
- /// over. Since it's invalid in general to memcpy a non-POD C++
- /// object, it's important that this flag never be set when
- /// evaluating an expression which constructs such an object.
- bool AliasedFlag : 1;
- /// This is set to true if the tail padding of this slot might overlap
- /// another object that may have already been initialized (and whose
- /// value must be preserved by this initialization). If so, we may only
- /// store up to the dsize of the type. Otherwise we can widen stores to
- /// the size of the type.
- bool OverlapFlag : 1;
- /// If is set to true, sanitizer checks are already generated for this address
- /// or not required. For instance, if this address represents an object
- /// created in 'new' expression, sanitizer checks for memory is made as a part
- /// of 'operator new' emission and object constructor should not generate
- /// them.
- bool SanitizerCheckedFlag : 1;
- AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag,
- bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag,
- bool OverlapFlag, bool SanitizerCheckedFlag)
- : Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag),
- ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag),
- AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag),
- SanitizerCheckedFlag(SanitizerCheckedFlag) {}
- public:
- enum IsAliased_t { IsNotAliased, IsAliased };
- enum IsDestructed_t { IsNotDestructed, IsDestructed };
- enum IsZeroed_t { IsNotZeroed, IsZeroed };
- enum Overlap_t { DoesNotOverlap, MayOverlap };
- enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
- enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
- /// ignored - Returns an aggregate value slot indicating that the
- /// aggregate value is being ignored.
- static AggValueSlot ignored() {
- return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
- DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
- }
- /// forAddr - Make a slot for an aggregate value.
- ///
- /// \param quals - The qualifiers that dictate how the slot should
- /// be initialied. Only 'volatile' and the Objective-C lifetime
- /// qualifiers matter.
- ///
- /// \param isDestructed - true if something else is responsible
- /// for calling destructors on this object
- /// \param needsGC - true if the slot is potentially located
- /// somewhere that ObjC GC calls should be emitted for
- static AggValueSlot forAddr(Address addr,
- Qualifiers quals,
- IsDestructed_t isDestructed,
- NeedsGCBarriers_t needsGC,
- IsAliased_t isAliased,
- Overlap_t mayOverlap,
- IsZeroed_t isZeroed = IsNotZeroed,
- IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
- return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased,
- mayOverlap, isChecked);
- }
- static AggValueSlot
- forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
- NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
- Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
- IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
- return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
- isAliased, mayOverlap, isZeroed, isChecked);
- }
- IsDestructed_t isExternallyDestructed() const {
- return IsDestructed_t(DestructedFlag);
- }
- void setExternallyDestructed(bool destructed = true) {
- DestructedFlag = destructed;
- }
- Qualifiers getQualifiers() const { return Quals; }
- bool isVolatile() const {
- return Quals.hasVolatile();
- }
- void setVolatile(bool flag) {
- if (flag)
- Quals.addVolatile();
- else
- Quals.removeVolatile();
- }
- Qualifiers::ObjCLifetime getObjCLifetime() const {
- return Quals.getObjCLifetime();
- }
- NeedsGCBarriers_t requiresGCollection() const {
- return NeedsGCBarriers_t(ObjCGCFlag);
- }
- llvm::Value *getPointer() const {
- return Addr.getPointer();
- }
- Address getAddress() const {
- return Addr;
- }
- bool isIgnored() const {
- return !Addr.isValid();
- }
- CharUnits getAlignment() const {
- return Addr.getAlignment();
- }
- IsAliased_t isPotentiallyAliased() const {
- return IsAliased_t(AliasedFlag);
- }
- Overlap_t mayOverlap() const {
- return Overlap_t(OverlapFlag);
- }
- bool isSanitizerChecked() const {
- return SanitizerCheckedFlag;
- }
- RValue asRValue() const {
- if (isIgnored()) {
- return RValue::getIgnored();
- } else {
- return RValue::getAggregate(getAddress(), isVolatile());
- }
- }
- void setZeroed(bool V = true) { ZeroedFlag = V; }
- IsZeroed_t isZeroed() const {
- return IsZeroed_t(ZeroedFlag);
- }
- /// Get the preferred size to use when storing a value to this slot. This
- /// is the type size unless that might overlap another object, in which
- /// case it's the dsize.
- CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
- return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
- : Ctx.getTypeSizeInChars(Type);
- }
- };
- } // end namespace CodeGen
- } // end namespace clang
- #endif
|