123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113 |
- /* Complex object implementation */
- /* Borrows heavily from floatobject.c */
- /* Submitted by Jim Hugunin */
- #include "Python.h"
- #include "pycore_call.h" // _PyObject_CallNoArgs()
- #include "pycore_long.h" // _PyLong_GetZero()
- #include "pycore_object.h" // _PyObject_Init()
- #include "pycore_pymath.h" // _Py_ADJUST_ERANGE2()
- #include "structmember.h" // PyMemberDef
- /*[clinic input]
- class complex "PyComplexObject *" "&PyComplex_Type"
- [clinic start generated code]*/
- /*[clinic end generated code: output=da39a3ee5e6b4b0d input=819e057d2d10f5ec]*/
- #include "clinic/complexobject.c.h"
- /* elementary operations on complex numbers */
- static Py_complex c_1 = {1., 0.};
- Py_complex
- _Py_c_sum(Py_complex a, Py_complex b)
- {
- Py_complex r;
- r.real = a.real + b.real;
- r.imag = a.imag + b.imag;
- return r;
- }
- Py_complex
- _Py_c_diff(Py_complex a, Py_complex b)
- {
- Py_complex r;
- r.real = a.real - b.real;
- r.imag = a.imag - b.imag;
- return r;
- }
- Py_complex
- _Py_c_neg(Py_complex a)
- {
- Py_complex r;
- r.real = -a.real;
- r.imag = -a.imag;
- return r;
- }
- Py_complex
- _Py_c_prod(Py_complex a, Py_complex b)
- {
- Py_complex r;
- r.real = a.real*b.real - a.imag*b.imag;
- r.imag = a.real*b.imag + a.imag*b.real;
- return r;
- }
- /* Avoid bad optimization on Windows ARM64 until the compiler is fixed */
- #ifdef _M_ARM64
- #pragma optimize("", off)
- #endif
- Py_complex
- _Py_c_quot(Py_complex a, Py_complex b)
- {
- /******************************************************************
- This was the original algorithm. It's grossly prone to spurious
- overflow and underflow errors. It also merrily divides by 0 despite
- checking for that(!). The code still serves a doc purpose here, as
- the algorithm following is a simple by-cases transformation of this
- one:
- Py_complex r;
- double d = b.real*b.real + b.imag*b.imag;
- if (d == 0.)
- errno = EDOM;
- r.real = (a.real*b.real + a.imag*b.imag)/d;
- r.imag = (a.imag*b.real - a.real*b.imag)/d;
- return r;
- ******************************************************************/
- /* This algorithm is better, and is pretty obvious: first divide the
- * numerators and denominator by whichever of {b.real, b.imag} has
- * larger magnitude. The earliest reference I found was to CACM
- * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
- * University). As usual, though, we're still ignoring all IEEE
- * endcases.
- */
- Py_complex r; /* the result */
- const double abs_breal = b.real < 0 ? -b.real : b.real;
- const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
- if (abs_breal >= abs_bimag) {
- /* divide tops and bottom by b.real */
- if (abs_breal == 0.0) {
- errno = EDOM;
- r.real = r.imag = 0.0;
- }
- else {
- const double ratio = b.imag / b.real;
- const double denom = b.real + b.imag * ratio;
- r.real = (a.real + a.imag * ratio) / denom;
- r.imag = (a.imag - a.real * ratio) / denom;
- }
- }
- else if (abs_bimag >= abs_breal) {
- /* divide tops and bottom by b.imag */
- const double ratio = b.real / b.imag;
- const double denom = b.real * ratio + b.imag;
- assert(b.imag != 0.0);
- r.real = (a.real * ratio + a.imag) / denom;
- r.imag = (a.imag * ratio - a.real) / denom;
- }
- else {
- /* At least one of b.real or b.imag is a NaN */
- r.real = r.imag = Py_NAN;
- }
- return r;
- }
- #ifdef _M_ARM64
- #pragma optimize("", on)
- #endif
- Py_complex
- _Py_c_pow(Py_complex a, Py_complex b)
- {
- Py_complex r;
- double vabs,len,at,phase;
- if (b.real == 0. && b.imag == 0.) {
- r.real = 1.;
- r.imag = 0.;
- }
- else if (a.real == 0. && a.imag == 0.) {
- if (b.imag != 0. || b.real < 0.)
- errno = EDOM;
- r.real = 0.;
- r.imag = 0.;
- }
- else {
- vabs = hypot(a.real,a.imag);
- len = pow(vabs,b.real);
- at = atan2(a.imag, a.real);
- phase = at*b.real;
- if (b.imag != 0.0) {
- len /= exp(at*b.imag);
- phase += b.imag*log(vabs);
- }
- r.real = len*cos(phase);
- r.imag = len*sin(phase);
- }
- return r;
- }
- static Py_complex
- c_powu(Py_complex x, long n)
- {
- Py_complex r, p;
- long mask = 1;
- r = c_1;
- p = x;
- while (mask > 0 && n >= mask) {
- if (n & mask)
- r = _Py_c_prod(r,p);
- mask <<= 1;
- p = _Py_c_prod(p,p);
- }
- return r;
- }
- static Py_complex
- c_powi(Py_complex x, long n)
- {
- if (n > 0)
- return c_powu(x,n);
- else
- return _Py_c_quot(c_1, c_powu(x,-n));
- }
- double
- _Py_c_abs(Py_complex z)
- {
- /* sets errno = ERANGE on overflow; otherwise errno = 0 */
- double result;
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- /* C99 rules: if either the real or the imaginary part is an
- infinity, return infinity, even if the other part is a
- NaN. */
- if (Py_IS_INFINITY(z.real)) {
- result = fabs(z.real);
- errno = 0;
- return result;
- }
- if (Py_IS_INFINITY(z.imag)) {
- result = fabs(z.imag);
- errno = 0;
- return result;
- }
- /* either the real or imaginary part is a NaN,
- and neither is infinite. Result should be NaN. */
- return Py_NAN;
- }
- result = hypot(z.real, z.imag);
- if (!Py_IS_FINITE(result))
- errno = ERANGE;
- else
- errno = 0;
- return result;
- }
- static PyObject *
- complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
- {
- PyObject *op;
- op = type->tp_alloc(type, 0);
- if (op != NULL)
- ((PyComplexObject *)op)->cval = cval;
- return op;
- }
- PyObject *
- PyComplex_FromCComplex(Py_complex cval)
- {
- /* Inline PyObject_New */
- PyComplexObject *op = PyObject_Malloc(sizeof(PyComplexObject));
- if (op == NULL) {
- return PyErr_NoMemory();
- }
- _PyObject_Init((PyObject*)op, &PyComplex_Type);
- op->cval = cval;
- return (PyObject *) op;
- }
- static PyObject *
- complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
- {
- Py_complex c;
- c.real = real;
- c.imag = imag;
- return complex_subtype_from_c_complex(type, c);
- }
- PyObject *
- PyComplex_FromDoubles(double real, double imag)
- {
- Py_complex c;
- c.real = real;
- c.imag = imag;
- return PyComplex_FromCComplex(c);
- }
- double
- PyComplex_RealAsDouble(PyObject *op)
- {
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval.real;
- }
- else {
- return PyFloat_AsDouble(op);
- }
- }
- double
- PyComplex_ImagAsDouble(PyObject *op)
- {
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval.imag;
- }
- else {
- return 0.0;
- }
- }
- static PyObject *
- try_complex_special_method(PyObject *op)
- {
- PyObject *f;
- f = _PyObject_LookupSpecial(op, &_Py_ID(__complex__));
- if (f) {
- PyObject *res = _PyObject_CallNoArgs(f);
- Py_DECREF(f);
- if (!res || PyComplex_CheckExact(res)) {
- return res;
- }
- if (!PyComplex_Check(res)) {
- PyErr_Format(PyExc_TypeError,
- "__complex__ returned non-complex (type %.200s)",
- Py_TYPE(res)->tp_name);
- Py_DECREF(res);
- return NULL;
- }
- /* Issue #29894: warn if 'res' not of exact type complex. */
- if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
- "__complex__ returned non-complex (type %.200s). "
- "The ability to return an instance of a strict subclass of complex "
- "is deprecated, and may be removed in a future version of Python.",
- Py_TYPE(res)->tp_name)) {
- Py_DECREF(res);
- return NULL;
- }
- return res;
- }
- return NULL;
- }
- Py_complex
- PyComplex_AsCComplex(PyObject *op)
- {
- Py_complex cv;
- PyObject *newop = NULL;
- assert(op);
- /* If op is already of type PyComplex_Type, return its value */
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval;
- }
- /* If not, use op's __complex__ method, if it exists */
- /* return -1 on failure */
- cv.real = -1.;
- cv.imag = 0.;
- newop = try_complex_special_method(op);
- if (newop) {
- cv = ((PyComplexObject *)newop)->cval;
- Py_DECREF(newop);
- return cv;
- }
- else if (PyErr_Occurred()) {
- return cv;
- }
- /* If neither of the above works, interpret op as a float giving the
- real part of the result, and fill in the imaginary part as 0. */
- else {
- /* PyFloat_AsDouble will return -1 on failure */
- cv.real = PyFloat_AsDouble(op);
- return cv;
- }
- }
- static PyObject *
- complex_repr(PyComplexObject *v)
- {
- int precision = 0;
- char format_code = 'r';
- PyObject *result = NULL;
- /* If these are non-NULL, they'll need to be freed. */
- char *pre = NULL;
- char *im = NULL;
- /* These do not need to be freed. re is either an alias
- for pre or a pointer to a constant. lead and tail
- are pointers to constants. */
- const char *re = NULL;
- const char *lead = "";
- const char *tail = "";
- if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
- /* Real part is +0: just output the imaginary part and do not
- include parens. */
- re = "";
- im = PyOS_double_to_string(v->cval.imag, format_code,
- precision, 0, NULL);
- if (!im) {
- PyErr_NoMemory();
- goto done;
- }
- } else {
- /* Format imaginary part with sign, real part without. Include
- parens in the result. */
- pre = PyOS_double_to_string(v->cval.real, format_code,
- precision, 0, NULL);
- if (!pre) {
- PyErr_NoMemory();
- goto done;
- }
- re = pre;
- im = PyOS_double_to_string(v->cval.imag, format_code,
- precision, Py_DTSF_SIGN, NULL);
- if (!im) {
- PyErr_NoMemory();
- goto done;
- }
- lead = "(";
- tail = ")";
- }
- result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
- done:
- PyMem_Free(im);
- PyMem_Free(pre);
- return result;
- }
- static Py_hash_t
- complex_hash(PyComplexObject *v)
- {
- Py_uhash_t hashreal, hashimag, combined;
- hashreal = (Py_uhash_t)_Py_HashDouble((PyObject *) v, v->cval.real);
- if (hashreal == (Py_uhash_t)-1)
- return -1;
- hashimag = (Py_uhash_t)_Py_HashDouble((PyObject *)v, v->cval.imag);
- if (hashimag == (Py_uhash_t)-1)
- return -1;
- /* Note: if the imaginary part is 0, hashimag is 0 now,
- * so the following returns hashreal unchanged. This is
- * important because numbers of different types that
- * compare equal must have the same hash value, so that
- * hash(x + 0*j) must equal hash(x).
- */
- combined = hashreal + _PyHASH_IMAG * hashimag;
- if (combined == (Py_uhash_t)-1)
- combined = (Py_uhash_t)-2;
- return (Py_hash_t)combined;
- }
- /* This macro may return! */
- #define TO_COMPLEX(obj, c) \
- if (PyComplex_Check(obj)) \
- c = ((PyComplexObject *)(obj))->cval; \
- else if (to_complex(&(obj), &(c)) < 0) \
- return (obj)
- static int
- to_complex(PyObject **pobj, Py_complex *pc)
- {
- PyObject *obj = *pobj;
- pc->real = pc->imag = 0.0;
- if (PyLong_Check(obj)) {
- pc->real = PyLong_AsDouble(obj);
- if (pc->real == -1.0 && PyErr_Occurred()) {
- *pobj = NULL;
- return -1;
- }
- return 0;
- }
- if (PyFloat_Check(obj)) {
- pc->real = PyFloat_AsDouble(obj);
- return 0;
- }
- *pobj = Py_NewRef(Py_NotImplemented);
- return -1;
- }
- static PyObject *
- complex_add(PyObject *v, PyObject *w)
- {
- Py_complex result;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- result = _Py_c_sum(a, b);
- return PyComplex_FromCComplex(result);
- }
- static PyObject *
- complex_sub(PyObject *v, PyObject *w)
- {
- Py_complex result;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- result = _Py_c_diff(a, b);
- return PyComplex_FromCComplex(result);
- }
- static PyObject *
- complex_mul(PyObject *v, PyObject *w)
- {
- Py_complex result;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- result = _Py_c_prod(a, b);
- return PyComplex_FromCComplex(result);
- }
- static PyObject *
- complex_div(PyObject *v, PyObject *w)
- {
- Py_complex quot;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- errno = 0;
- quot = _Py_c_quot(a, b);
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
- return NULL;
- }
- return PyComplex_FromCComplex(quot);
- }
- static PyObject *
- complex_pow(PyObject *v, PyObject *w, PyObject *z)
- {
- Py_complex p;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- if (z != Py_None) {
- PyErr_SetString(PyExc_ValueError, "complex modulo");
- return NULL;
- }
- errno = 0;
- // Check whether the exponent has a small integer value, and if so use
- // a faster and more accurate algorithm.
- if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
- p = c_powi(a, (long)b.real);
- }
- else {
- p = _Py_c_pow(a, b);
- }
- _Py_ADJUST_ERANGE2(p.real, p.imag);
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 to a negative or complex power");
- return NULL;
- }
- else if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError,
- "complex exponentiation");
- return NULL;
- }
- return PyComplex_FromCComplex(p);
- }
- static PyObject *
- complex_neg(PyComplexObject *v)
- {
- Py_complex neg;
- neg.real = -v->cval.real;
- neg.imag = -v->cval.imag;
- return PyComplex_FromCComplex(neg);
- }
- static PyObject *
- complex_pos(PyComplexObject *v)
- {
- if (PyComplex_CheckExact(v)) {
- return Py_NewRef(v);
- }
- else
- return PyComplex_FromCComplex(v->cval);
- }
- static PyObject *
- complex_abs(PyComplexObject *v)
- {
- double result;
- result = _Py_c_abs(v->cval);
- if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError,
- "absolute value too large");
- return NULL;
- }
- return PyFloat_FromDouble(result);
- }
- static int
- complex_bool(PyComplexObject *v)
- {
- return v->cval.real != 0.0 || v->cval.imag != 0.0;
- }
- static PyObject *
- complex_richcompare(PyObject *v, PyObject *w, int op)
- {
- PyObject *res;
- Py_complex i;
- int equal;
- if (op != Py_EQ && op != Py_NE) {
- goto Unimplemented;
- }
- assert(PyComplex_Check(v));
- TO_COMPLEX(v, i);
- if (PyLong_Check(w)) {
- /* Check for 0.0 imaginary part first to avoid the rich
- * comparison when possible.
- */
- if (i.imag == 0.0) {
- PyObject *j, *sub_res;
- j = PyFloat_FromDouble(i.real);
- if (j == NULL)
- return NULL;
- sub_res = PyObject_RichCompare(j, w, op);
- Py_DECREF(j);
- return sub_res;
- }
- else {
- equal = 0;
- }
- }
- else if (PyFloat_Check(w)) {
- equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
- }
- else if (PyComplex_Check(w)) {
- Py_complex j;
- TO_COMPLEX(w, j);
- equal = (i.real == j.real && i.imag == j.imag);
- }
- else {
- goto Unimplemented;
- }
- if (equal == (op == Py_EQ))
- res = Py_True;
- else
- res = Py_False;
- return Py_NewRef(res);
- Unimplemented:
- Py_RETURN_NOTIMPLEMENTED;
- }
- /*[clinic input]
- complex.conjugate
- Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.
- [clinic start generated code]*/
- static PyObject *
- complex_conjugate_impl(PyComplexObject *self)
- /*[clinic end generated code: output=5059ef162edfc68e input=5fea33e9747ec2c4]*/
- {
- Py_complex c = self->cval;
- c.imag = -c.imag;
- return PyComplex_FromCComplex(c);
- }
- /*[clinic input]
- complex.__getnewargs__
- [clinic start generated code]*/
- static PyObject *
- complex___getnewargs___impl(PyComplexObject *self)
- /*[clinic end generated code: output=689b8206e8728934 input=539543e0a50533d7]*/
- {
- Py_complex c = self->cval;
- return Py_BuildValue("(dd)", c.real, c.imag);
- }
- /*[clinic input]
- complex.__format__
- format_spec: unicode
- /
- Convert to a string according to format_spec.
- [clinic start generated code]*/
- static PyObject *
- complex___format___impl(PyComplexObject *self, PyObject *format_spec)
- /*[clinic end generated code: output=bfcb60df24cafea0 input=014ef5488acbe1d5]*/
- {
- _PyUnicodeWriter writer;
- int ret;
- _PyUnicodeWriter_Init(&writer);
- ret = _PyComplex_FormatAdvancedWriter(
- &writer,
- (PyObject *)self,
- format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
- if (ret == -1) {
- _PyUnicodeWriter_Dealloc(&writer);
- return NULL;
- }
- return _PyUnicodeWriter_Finish(&writer);
- }
- /*[clinic input]
- complex.__complex__
- Convert this value to exact type complex.
- [clinic start generated code]*/
- static PyObject *
- complex___complex___impl(PyComplexObject *self)
- /*[clinic end generated code: output=e6b35ba3d275dc9c input=3589ada9d27db854]*/
- {
- if (PyComplex_CheckExact(self)) {
- return Py_NewRef(self);
- }
- else {
- return PyComplex_FromCComplex(self->cval);
- }
- }
- static PyMethodDef complex_methods[] = {
- COMPLEX_CONJUGATE_METHODDEF
- COMPLEX___COMPLEX___METHODDEF
- COMPLEX___GETNEWARGS___METHODDEF
- COMPLEX___FORMAT___METHODDEF
- {NULL, NULL} /* sentinel */
- };
- static PyMemberDef complex_members[] = {
- {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
- "the real part of a complex number"},
- {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
- "the imaginary part of a complex number"},
- {0},
- };
- static PyObject *
- complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
- {
- double x=0.0, y=0.0, z;
- int got_bracket=0;
- const char *start;
- char *end;
- /* position on first nonblank */
- start = s;
- while (Py_ISSPACE(*s))
- s++;
- if (*s == '(') {
- /* Skip over possible bracket from repr(). */
- got_bracket = 1;
- s++;
- while (Py_ISSPACE(*s))
- s++;
- }
- /* a valid complex string usually takes one of the three forms:
- <float> - real part only
- <float>j - imaginary part only
- <float><signed-float>j - real and imaginary parts
- where <float> represents any numeric string that's accepted by the
- float constructor (including 'nan', 'inf', 'infinity', etc.), and
- <signed-float> is any string of the form <float> whose first
- character is '+' or '-'.
- For backwards compatibility, the extra forms
- <float><sign>j
- <sign>j
- j
- are also accepted, though support for these forms may be removed from
- a future version of Python.
- */
- /* first look for forms starting with <float> */
- z = PyOS_string_to_double(s, &end, NULL);
- if (z == -1.0 && PyErr_Occurred()) {
- if (PyErr_ExceptionMatches(PyExc_ValueError))
- PyErr_Clear();
- else
- return NULL;
- }
- if (end != s) {
- /* all 4 forms starting with <float> land here */
- s = end;
- if (*s == '+' || *s == '-') {
- /* <float><signed-float>j | <float><sign>j */
- x = z;
- y = PyOS_string_to_double(s, &end, NULL);
- if (y == -1.0 && PyErr_Occurred()) {
- if (PyErr_ExceptionMatches(PyExc_ValueError))
- PyErr_Clear();
- else
- return NULL;
- }
- if (end != s)
- /* <float><signed-float>j */
- s = end;
- else {
- /* <float><sign>j */
- y = *s == '+' ? 1.0 : -1.0;
- s++;
- }
- if (!(*s == 'j' || *s == 'J'))
- goto parse_error;
- s++;
- }
- else if (*s == 'j' || *s == 'J') {
- /* <float>j */
- s++;
- y = z;
- }
- else
- /* <float> */
- x = z;
- }
- else {
- /* not starting with <float>; must be <sign>j or j */
- if (*s == '+' || *s == '-') {
- /* <sign>j */
- y = *s == '+' ? 1.0 : -1.0;
- s++;
- }
- else
- /* j */
- y = 1.0;
- if (!(*s == 'j' || *s == 'J'))
- goto parse_error;
- s++;
- }
- /* trailing whitespace and closing bracket */
- while (Py_ISSPACE(*s))
- s++;
- if (got_bracket) {
- /* if there was an opening parenthesis, then the corresponding
- closing parenthesis should be right here */
- if (*s != ')')
- goto parse_error;
- s++;
- while (Py_ISSPACE(*s))
- s++;
- }
- /* we should now be at the end of the string */
- if (s-start != len)
- goto parse_error;
- return complex_subtype_from_doubles(_PyType_CAST(type), x, y);
- parse_error:
- PyErr_SetString(PyExc_ValueError,
- "complex() arg is a malformed string");
- return NULL;
- }
- static PyObject *
- complex_subtype_from_string(PyTypeObject *type, PyObject *v)
- {
- const char *s;
- PyObject *s_buffer = NULL, *result = NULL;
- Py_ssize_t len;
- if (PyUnicode_Check(v)) {
- s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
- if (s_buffer == NULL) {
- return NULL;
- }
- assert(PyUnicode_IS_ASCII(s_buffer));
- /* Simply get a pointer to existing ASCII characters. */
- s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
- assert(s != NULL);
- }
- else {
- PyErr_Format(PyExc_TypeError,
- "complex() argument must be a string or a number, not '%.200s'",
- Py_TYPE(v)->tp_name);
- return NULL;
- }
- result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
- complex_from_string_inner);
- Py_DECREF(s_buffer);
- return result;
- }
- /*[clinic input]
- @classmethod
- complex.__new__ as complex_new
- real as r: object(c_default="NULL") = 0
- imag as i: object(c_default="NULL") = 0
- Create a complex number from a string or numbers.
- If a string is given, parse it as a complex number.
- If a single number is given, convert it to a complex number.
- If the 'real' or 'imag' arguments are given, create a complex number
- with the specified real and imaginary components.
- [clinic start generated code]*/
- static PyObject *
- complex_new_impl(PyTypeObject *type, PyObject *r, PyObject *i)
- /*[clinic end generated code: output=b6c7dd577b537dc1 input=ff4268dc540958a4]*/
- {
- PyObject *tmp;
- PyNumberMethods *nbr, *nbi = NULL;
- Py_complex cr, ci;
- int own_r = 0;
- int cr_is_complex = 0;
- int ci_is_complex = 0;
- if (r == NULL) {
- r = _PyLong_GetZero();
- }
- /* Special-case for a single argument when type(arg) is complex. */
- if (PyComplex_CheckExact(r) && i == NULL &&
- type == &PyComplex_Type) {
- /* Note that we can't know whether it's safe to return
- a complex *subclass* instance as-is, hence the restriction
- to exact complexes here. If either the input or the
- output is a complex subclass, it will be handled below
- as a non-orthogonal vector. */
- return Py_NewRef(r);
- }
- if (PyUnicode_Check(r)) {
- if (i != NULL) {
- PyErr_SetString(PyExc_TypeError,
- "complex() can't take second arg"
- " if first is a string");
- return NULL;
- }
- return complex_subtype_from_string(type, r);
- }
- if (i != NULL && PyUnicode_Check(i)) {
- PyErr_SetString(PyExc_TypeError,
- "complex() second arg can't be a string");
- return NULL;
- }
- tmp = try_complex_special_method(r);
- if (tmp) {
- r = tmp;
- own_r = 1;
- }
- else if (PyErr_Occurred()) {
- return NULL;
- }
- nbr = Py_TYPE(r)->tp_as_number;
- if (nbr == NULL ||
- (nbr->nb_float == NULL && nbr->nb_index == NULL && !PyComplex_Check(r)))
- {
- PyErr_Format(PyExc_TypeError,
- "complex() first argument must be a string or a number, "
- "not '%.200s'",
- Py_TYPE(r)->tp_name);
- if (own_r) {
- Py_DECREF(r);
- }
- return NULL;
- }
- if (i != NULL) {
- nbi = Py_TYPE(i)->tp_as_number;
- if (nbi == NULL ||
- (nbi->nb_float == NULL && nbi->nb_index == NULL && !PyComplex_Check(i)))
- {
- PyErr_Format(PyExc_TypeError,
- "complex() second argument must be a number, "
- "not '%.200s'",
- Py_TYPE(i)->tp_name);
- if (own_r) {
- Py_DECREF(r);
- }
- return NULL;
- }
- }
- /* If we get this far, then the "real" and "imag" parts should
- both be treated as numbers, and the constructor should return a
- complex number equal to (real + imag*1j).
- Note that we do NOT assume the input to already be in canonical
- form; the "real" and "imag" parts might themselves be complex
- numbers, which slightly complicates the code below. */
- if (PyComplex_Check(r)) {
- /* Note that if r is of a complex subtype, we're only
- retaining its real & imag parts here, and the return
- value is (properly) of the builtin complex type. */
- cr = ((PyComplexObject*)r)->cval;
- cr_is_complex = 1;
- if (own_r) {
- Py_DECREF(r);
- }
- }
- else {
- /* The "real" part really is entirely real, and contributes
- nothing in the imaginary direction.
- Just treat it as a double. */
- tmp = PyNumber_Float(r);
- if (own_r) {
- /* r was a newly created complex number, rather
- than the original "real" argument. */
- Py_DECREF(r);
- }
- if (tmp == NULL)
- return NULL;
- assert(PyFloat_Check(tmp));
- cr.real = PyFloat_AsDouble(tmp);
- cr.imag = 0.0;
- Py_DECREF(tmp);
- }
- if (i == NULL) {
- ci.real = cr.imag;
- }
- else if (PyComplex_Check(i)) {
- ci = ((PyComplexObject*)i)->cval;
- ci_is_complex = 1;
- } else {
- /* The "imag" part really is entirely imaginary, and
- contributes nothing in the real direction.
- Just treat it as a double. */
- tmp = PyNumber_Float(i);
- if (tmp == NULL)
- return NULL;
- ci.real = PyFloat_AsDouble(tmp);
- Py_DECREF(tmp);
- }
- /* If the input was in canonical form, then the "real" and "imag"
- parts are real numbers, so that ci.imag and cr.imag are zero.
- We need this correction in case they were not real numbers. */
- if (ci_is_complex) {
- cr.real -= ci.imag;
- }
- if (cr_is_complex && i != NULL) {
- ci.real += cr.imag;
- }
- return complex_subtype_from_doubles(type, cr.real, ci.real);
- }
- static PyNumberMethods complex_as_number = {
- (binaryfunc)complex_add, /* nb_add */
- (binaryfunc)complex_sub, /* nb_subtract */
- (binaryfunc)complex_mul, /* nb_multiply */
- 0, /* nb_remainder */
- 0, /* nb_divmod */
- (ternaryfunc)complex_pow, /* nb_power */
- (unaryfunc)complex_neg, /* nb_negative */
- (unaryfunc)complex_pos, /* nb_positive */
- (unaryfunc)complex_abs, /* nb_absolute */
- (inquiry)complex_bool, /* nb_bool */
- 0, /* nb_invert */
- 0, /* nb_lshift */
- 0, /* nb_rshift */
- 0, /* nb_and */
- 0, /* nb_xor */
- 0, /* nb_or */
- 0, /* nb_int */
- 0, /* nb_reserved */
- 0, /* nb_float */
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply*/
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- 0, /* nb_floor_divide */
- (binaryfunc)complex_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
- };
- PyTypeObject PyComplex_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "complex",
- sizeof(PyComplexObject),
- 0,
- 0, /* tp_dealloc */
- 0, /* tp_vectorcall_offset */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_as_async */
- (reprfunc)complex_repr, /* tp_repr */
- &complex_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)complex_hash, /* tp_hash */
- 0, /* tp_call */
- 0, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
- complex_new__doc__, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- complex_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- complex_methods, /* tp_methods */
- complex_members, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- PyType_GenericAlloc, /* tp_alloc */
- complex_new, /* tp_new */
- PyObject_Del, /* tp_free */
- };
|