123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- //=- ARMScheduleM7.td - ARM Cortex-M7 Scheduling Definitions -*- tablegen -*-=//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the SchedRead/Write data for the ARM Cortex-M7 processor.
- //
- //===----------------------------------------------------------------------===//
- def CortexM7Model : SchedMachineModel {
- let IssueWidth = 2; // Dual issue for most instructions.
- let MicroOpBufferSize = 0; // The Cortex-M7 is in-order.
- let LoadLatency = 2; // Best case for load-use case.
- let MispredictPenalty = 4; // Mispredict cost for forward branches is 6,
- // but 4 works better
- let CompleteModel = 0;
- }
- let SchedModel = CortexM7Model in {
- //===--------------------------------------------------------------------===//
- // The Cortex-M7 has two ALU, two LOAD, a STORE, a MAC, a BRANCH and a VFP
- // pipe. The stages relevant to scheduling are as follows:
- //
- // EX1: address generation shifts
- // EX2: fast load data ALUs FP operation
- // EX3: slow load data integer writeback FP operation
- // EX4: store data FP writeback
- //
- // There are shifters in both EX1 and EX2, and some instructions can be
- // flexibly allocated between them. EX2 is used as the "zero" point
- // for scheduling, so simple ALU operations executing in EX2 will have
- // ReadAdvance<0> (the default) for their source operands and Latency = 1.
- def M7UnitLoadL : ProcResource<1> { let BufferSize = 0; }
- def M7UnitLoadH : ProcResource<1> { let BufferSize = 0; }
- def M7UnitLoad : ProcResGroup<[M7UnitLoadL,M7UnitLoadH]> { let BufferSize = 0; }
- def M7UnitStore : ProcResource<1> { let BufferSize = 0; }
- def M7UnitALU : ProcResource<2>;
- def M7UnitShift1 : ProcResource<1> { let BufferSize = 0; }
- def M7UnitShift2 : ProcResource<1> { let BufferSize = 0; }
- def M7UnitMAC : ProcResource<1> { let BufferSize = 0; }
- def M7UnitBranch : ProcResource<1> { let BufferSize = 0; }
- def M7UnitVFP : ProcResource<1> { let BufferSize = 0; }
- def M7UnitVPortL : ProcResource<1> { let BufferSize = 0; }
- def M7UnitVPortH : ProcResource<1> { let BufferSize = 0; }
- def M7UnitVPort : ProcResGroup<[M7UnitVPortL,M7UnitVPortH]> { let BufferSize = 0; }
- def M7UnitSIMD : ProcResource<1> { let BufferSize = 0; }
- //===---------------------------------------------------------------------===//
- // Subtarget-specific SchedWrite types with map ProcResources and set latency.
- def : WriteRes<WriteALU, [M7UnitALU]> { let Latency = 1; }
- // Basic ALU with shifts.
- let Latency = 1 in {
- def : WriteRes<WriteALUsi, [M7UnitALU, M7UnitShift1]>;
- def : WriteRes<WriteALUsr, [M7UnitALU, M7UnitShift1]>;
- def : WriteRes<WriteALUSsr, [M7UnitALU, M7UnitShift1]>;
- }
- // Compares.
- def : WriteRes<WriteCMP, [M7UnitALU]> { let Latency = 1; }
- def : WriteRes<WriteCMPsi, [M7UnitALU, M7UnitShift1]> { let Latency = 2; }
- def : WriteRes<WriteCMPsr, [M7UnitALU, M7UnitShift1]> { let Latency = 2; }
- // Multiplies.
- let Latency = 2 in {
- def : WriteRes<WriteMUL16, [M7UnitMAC]>;
- def : WriteRes<WriteMUL32, [M7UnitMAC]>;
- def : WriteRes<WriteMUL64Lo, [M7UnitMAC]>;
- def : WriteRes<WriteMUL64Hi, []> { let NumMicroOps = 0; }
- }
- // Multiply-accumulates.
- let Latency = 2 in {
- def : WriteRes<WriteMAC16, [M7UnitMAC]>;
- def : WriteRes<WriteMAC32, [M7UnitMAC]>;
- def : WriteRes<WriteMAC64Lo, [M7UnitMAC]> { let Latency = 2; }
- def : WriteRes<WriteMAC64Hi, []> { let NumMicroOps = 0; }
- }
- // Divisions.
- // These cannot be dual-issued with any instructions.
- def : WriteRes<WriteDIV, [M7UnitALU]> {
- let Latency = 7;
- let SingleIssue = 1;
- }
- // Loads/Stores.
- def : WriteRes<WriteLd, [M7UnitLoad]> { let Latency = 1; }
- def : WriteRes<WritePreLd, [M7UnitLoad]> { let Latency = 2; }
- def : WriteRes<WriteST, [M7UnitStore]> { let Latency = 2; }
- // Branches.
- def : WriteRes<WriteBr, [M7UnitBranch]> { let Latency = 2; }
- def : WriteRes<WriteBrL, [M7UnitBranch]> { let Latency = 2; }
- def : WriteRes<WriteBrTbl, [M7UnitBranch]> { let Latency = 2; }
- // Noop.
- def : WriteRes<WriteNoop, []> { let Latency = 0; }
- //===---------------------------------------------------------------------===//
- // Sched definitions for floating-point instructions
- //
- // Floating point conversions.
- def : WriteRes<WriteFPCVT, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; }
- def : WriteRes<WriteFPMOV, [M7UnitVPort]> { let Latency = 3; }
- def M7WriteFPMOV64 : SchedWriteRes<[M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 3;
- }
- // The FP pipeline has a latency of 3 cycles.
- // ALU operations (32/64-bit). These go down the FP pipeline.
- def : WriteRes<WriteFPALU32, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; }
- def : WriteRes<WriteFPALU64, [M7UnitVFP, M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 4;
- let BeginGroup = 1;
- }
- // Multiplication
- def : WriteRes<WriteFPMUL32, [M7UnitVFP, M7UnitVPort]> { let Latency = 3; }
- def : WriteRes<WriteFPMUL64, [M7UnitVFP, M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 7;
- let BeginGroup = 1;
- }
- // Multiply-accumulate. FPMAC goes down the FP Pipeline.
- def : WriteRes<WriteFPMAC32, [M7UnitVFP, M7UnitVPort]> { let Latency = 6; }
- def : WriteRes<WriteFPMAC64, [M7UnitVFP, M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 11;
- let BeginGroup = 1;
- }
- // Division. Effective scheduling latency is 3, though real latency is larger
- def : WriteRes<WriteFPDIV32, [M7UnitVFP, M7UnitVPort]> { let Latency = 16; }
- def : WriteRes<WriteFPDIV64, [M7UnitVFP, M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 30;
- let BeginGroup = 1;
- }
- // Square-root. Effective scheduling latency is 3; real latency is larger
- def : WriteRes<WriteFPSQRT32, [M7UnitVFP, M7UnitVPort]> { let Latency = 16; }
- def : WriteRes<WriteFPSQRT64, [M7UnitVFP, M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 30;
- let BeginGroup = 1;
- }
- def M7WriteShift2 : SchedWriteRes<[M7UnitALU, M7UnitShift2]> {}
- // Not used for M7, but needing definitions anyway
- def : WriteRes<WriteVLD1, []>;
- def : WriteRes<WriteVLD2, []>;
- def : WriteRes<WriteVLD3, []>;
- def : WriteRes<WriteVLD4, []>;
- def : WriteRes<WriteVST1, []>;
- def : WriteRes<WriteVST2, []>;
- def : WriteRes<WriteVST3, []>;
- def : WriteRes<WriteVST4, []>;
- def M7SingleIssue : SchedWriteRes<[]> {
- let SingleIssue = 1;
- let NumMicroOps = 0;
- }
- def M7Slot0Only : SchedWriteRes<[]> {
- let BeginGroup = 1;
- let NumMicroOps = 0;
- }
- // What pipeline stage operands need to be ready for depending on
- // where they come from.
- def : ReadAdvance<ReadALUsr, 0>;
- def : ReadAdvance<ReadMUL, 0>;
- def : ReadAdvance<ReadMAC, 1>;
- def : ReadAdvance<ReadALU, 0>;
- def : ReadAdvance<ReadFPMUL, 0>;
- def : ReadAdvance<ReadFPMAC, 3>;
- def M7Read_ISS : SchedReadAdvance<-1>; // operands needed at EX1
- def M7Read_EX2 : SchedReadAdvance<1>; // operands needed at EX3
- def M7Read_EX3 : SchedReadAdvance<2>; // operands needed at EX4
- // Non general purpose instructions may not be dual issued. These
- // use both issue units.
- def M7NonGeneralPurpose : SchedWriteRes<[]> {
- // Assume that these will go down the main ALU pipeline.
- // In reality, many look likely to stall the whole pipeline.
- let Latency = 3;
- let SingleIssue = 1;
- }
- // List the non general purpose instructions.
- def : InstRW<[M7NonGeneralPurpose], (instregex "t2MRS", "tSVC", "tBKPT",
- "t2MSR", "t2DMB", "t2DSB", "t2ISB",
- "t2HVC", "t2SMC", "t2UDF", "ERET",
- "tHINT", "t2HINT", "t2CLREX", "BUNDLE")>;
- //===---------------------------------------------------------------------===//
- // Sched definitions for load/store
- //
- // Mark whether the loads/stores must be single-issue
- // Address operands are needed earlier
- // Data operands are needed later
- def M7BaseUpdate : SchedWriteRes<[]> {
- let Latency = 0; // Update is bypassable out of EX1
- let NumMicroOps = 0;
- }
- def M7LoadLatency1 : SchedWriteRes<[]> {
- let Latency = 1;
- let NumMicroOps = 0;
- }
- def M7SlowLoad : SchedWriteRes<[M7UnitLoad]> { let Latency = 2; }
- // Byte and half-word loads should have greater latency than other loads.
- // So should load exclusive.
- def : InstRW<[M7SlowLoad],
- (instregex "t2LDR(B|H|SB|SH)pc")>;
- def : InstRW<[M7SlowLoad, M7Read_ISS],
- (instregex "t2LDR(B|H|SB|SH)T", "t2LDR(B|H|SB|SH)i",
- "tLDR(B|H)i")>;
- def : InstRW<[M7SlowLoad, M7Read_ISS, M7Read_ISS],
- (instregex "t2LDR(B|H|SB|SH)s", "tLDR(B|H)r", "tLDR(SB|SH)")>;
- def : InstRW<[M7SlowLoad, M7BaseUpdate, M7Read_ISS],
- (instregex "t2LDR(B|H|SB|SH)_(POST|PRE)")>;
- // Exclusive loads/stores cannot be dual-issued
- def : InstRW<[WriteLd, M7Slot0Only, M7Read_ISS],
- (instregex "t2LDREX$")>;
- def : InstRW<[M7SlowLoad, M7Slot0Only, M7Read_ISS],
- (instregex "t2LDREX(B|H)")>;
- def : InstRW<[WriteST, M7SingleIssue, M7Read_EX2, M7Read_ISS],
- (instregex "t2STREX(B|H)?$")>;
- // Load/store multiples cannot be dual-issued. Note that default scheduling
- // occurs around read/write times of individual registers in the list; read
- // time for STM cannot be overridden because it is a variadic source operand.
- def : InstRW<[WriteLd, M7SingleIssue, M7Read_ISS],
- (instregex "(t|t2)LDM(DB|IA)$")>;
- def : InstRW<[WriteST, M7SingleIssue, M7Read_ISS],
- (instregex "(t|t2)STM(DB|IA)$")>;
- def : InstRW<[M7BaseUpdate, WriteLd, M7SingleIssue, M7Read_ISS],
- (instregex "(t|t2)LDM(DB|IA)_UPD$", "tPOP")>;
- def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, M7Read_ISS],
- (instregex "(t|t2)STM(DB|IA)_UPD$", "tPUSH")>;
- // Load/store doubles cannot be dual-issued.
- def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue,
- M7Read_EX2, M7Read_EX2, M7Read_ISS],
- (instregex "t2STRD_(PRE|POST)")>;
- def : InstRW<[WriteST, M7SingleIssue, M7Read_EX2, M7Read_EX2, M7Read_ISS],
- (instregex "t2STRDi")>;
- def : InstRW<[WriteLd, M7LoadLatency1, M7SingleIssue, M7BaseUpdate, M7Read_ISS],
- (instregex "t2LDRD_(PRE|POST)")>;
- def : InstRW<[WriteLd, M7LoadLatency1, M7SingleIssue, M7Read_ISS],
- (instregex "t2LDRDi")>;
- // Word load / preload
- def : InstRW<[WriteLd],
- (instregex "t2LDRpc", "t2PL[DI]pci", "tLDRpci")>;
- def : InstRW<[WriteLd, M7Read_ISS],
- (instregex "t2LDR(i|T)", "t2PL[DI](W)?i", "tLDRi", "tLDRspi")>;
- def : InstRW<[WriteLd, M7Read_ISS, M7Read_ISS],
- (instregex "t2LDRs", "t2PL[DI](w)?s", "tLDRr")>;
- def : InstRW<[WriteLd, M7BaseUpdate, M7Read_ISS],
- (instregex "t2LDR_(POST|PRE)")>;
- // Stores
- def : InstRW<[M7BaseUpdate, WriteST, M7Read_EX2, M7Read_ISS],
- (instregex "t2STR(B|H)?_(POST|PRE)")>;
- def : InstRW<[WriteST, M7Read_EX2, M7Read_ISS, M7Read_ISS],
- (instregex "t2STR(B|H)?s$", "tSTR(B|H)?r$")>;
- def : InstRW<[WriteST, M7Read_EX2, M7Read_ISS],
- (instregex "t2STR(B|H)?(i|T)", "tSTR(B|H)?i$", "tSTRspi")>;
- // TBB/TBH - single-issue only; takes two cycles to issue
- def M7TableLoad : SchedWriteRes<[M7UnitLoad]> {
- let NumMicroOps = 2;
- let SingleIssue = 1;
- }
- def : InstRW<[M7TableLoad, M7Read_ISS, M7Read_ISS], (instregex "t2TB")>;
- // VFP loads and stores
- def M7LoadSP : SchedWriteRes<[M7UnitLoad, M7UnitVPort]> { let Latency = 1; }
- def M7LoadDP : SchedWriteRes<[M7UnitLoadL, M7UnitLoadH, M7UnitVPortL, M7UnitVPortH]> {
- let Latency = 2;
- let SingleIssue = 1;
- }
- def M7StoreSP : SchedWriteRes<[M7UnitStore, M7UnitVPort]>;
- def M7StoreDP : SchedWriteRes<[M7UnitStore, M7UnitVPortL, M7UnitVPortH]> {
- let SingleIssue = 1;
- }
- def : InstRW<[M7LoadSP, M7Read_ISS], (instregex "VLDR(S|H)$")>;
- def : InstRW<[M7LoadDP, M7Read_ISS], (instregex "VLDRD$")>;
- def : InstRW<[M7StoreSP, M7Read_EX3, M7Read_ISS], (instregex "VSTR(S|H)$")>;
- def : InstRW<[M7StoreDP, M7Read_EX3, M7Read_ISS], (instregex "VSTRD$")>;
- // Load/store multiples cannot be dual-issued.
- def : InstRW<[WriteLd, M7SingleIssue, M7Read_ISS],
- (instregex "VLDM(S|D|Q)(DB|IA)$")>;
- def : InstRW<[WriteST, M7SingleIssue, M7Read_ISS],
- (instregex "VSTM(S|D|Q)(DB|IA)$")>;
- def : InstRW<[M7BaseUpdate, WriteLd, M7SingleIssue, M7Read_ISS],
- (instregex "VLDM(S|D|Q)(DB|IA)_UPD$")>;
- def : InstRW<[M7BaseUpdate, WriteST, M7SingleIssue, M7Read_ISS],
- (instregex "VSTM(S|D|Q)(DB|IA)_UPD$")>;
- //===---------------------------------------------------------------------===//
- // Sched definitions for ALU
- //
- // Shifted ALU operands are read a cycle early.
- def M7Ex1ReadNoFastBypass : SchedReadAdvance<-1, [WriteLd, M7LoadLatency1]>;
- def : InstRW<[WriteALUsi, M7Ex1ReadNoFastBypass, M7Read_ISS],
- (instregex "t2(ADC|ADDS|ADD|BIC|EOR|ORN|ORR|RSBS|RSB|SBC|SUBS)rs$",
- "t2(SUB|CMP|CMNz|TEQ|TST)rs$",
- "t2MOVsr(a|l)")>;
- def : InstRW<[WriteALUsi, M7Read_ISS],
- (instregex "t2MVNs")>;
- // Treat pure shift operations (except for RRX) as if they used the EX1
- // shifter but have timing as if they used the EX2 shifter as they usually
- // can choose the EX2 shifter when needed. Will miss a few dual-issue cases,
- // but the results prove to be better than trying to get them exact.
- def : InstRW<[M7WriteShift2, M7Read_ISS], (instregex "t2RRX$")>;
- def : InstRW<[WriteALUsi], (instregex "(t|t2)(LSL|LSR|ASR|ROR)")>;
- // Instructions that use the shifter, but have normal timing.
- def : InstRW<[WriteALUsi,M7Slot0Only], (instregex "t2(BFC|BFI)$")>;
- // Instructions which are slot zero only but otherwise normal.
- def : InstRW<[WriteALU, M7Slot0Only], (instregex "t2CLZ")>;
- // MAC operations that don't have SchedRW set.
- def : InstRW<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC], (instregex "t2SML[AS]D")>;
- // Divides are special because they stall for their latency, and so look like a
- // single-cycle as far as scheduling opportunities go. By putting WriteALU
- // first, we make the operand latency 1, but keep the instruction latency 7.
- def : InstRW<[WriteALU, WriteDIV], (instregex "t2(S|U)DIV")>;
- // DSP extension operations
- def M7WriteSIMD1 : SchedWriteRes<[M7UnitSIMD, M7UnitALU]> {
- let Latency = 1;
- let BeginGroup = 1;
- }
- def M7WriteSIMD2 : SchedWriteRes<[M7UnitSIMD, M7UnitALU]> {
- let Latency = 2;
- let BeginGroup = 1;
- }
- def M7WriteShSIMD1 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> {
- let Latency = 1;
- let BeginGroup = 1;
- }
- def M7WriteShSIMD0 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> {
- let Latency = 0; // Bypassable out of EX1
- let BeginGroup = 1;
- }
- def M7WriteShSIMD2 : SchedWriteRes<[M7UnitSIMD, M7UnitALU, M7UnitShift1]> {
- let Latency = 2;
- let BeginGroup = 1;
- }
- def : InstRW<[M7WriteShSIMD2, M7Read_ISS],
- (instregex "t2(S|U)SAT")>;
- def : InstRW<[M7WriteSIMD1, ReadALU],
- (instregex "(t|t2)(S|U)XT(B|H)")>;
- def : InstRW<[M7WriteSIMD1, ReadALU, ReadALU],
- (instregex "t2(S|SH|U|UH)(ADD16|ADD8|ASX|SAX|SUB16|SUB8)",
- "t2SEL")>;
- def : InstRW<[M7WriteSIMD2, ReadALU, ReadALU],
- (instregex "t2(Q|UQ)(ADD|ASX|SAX|SUB)", "t2USAD8")>;
- def : InstRW<[M7WriteShSIMD2, M7Read_ISS, M7Read_ISS],
- (instregex "t2QD(ADD|SUB)")>;
- def : InstRW<[M7WriteShSIMD0, M7Read_ISS],
- (instregex "t2(RBIT|REV)", "tREV")>;
- def : InstRW<[M7WriteShSIMD1, M7Read_ISS],
- (instregex "t2(SBFX|UBFX)")>;
- def : InstRW<[M7WriteShSIMD1, ReadALU, M7Read_ISS],
- (instregex "t2PKH(BT|TB)", "t2(S|U)XTA")>;
- def : InstRW<[M7WriteSIMD2, ReadALU, ReadALU, M7Read_EX2],
- (instregex "t2USADA8")>;
- // MSR/MRS
- def : InstRW<[M7NonGeneralPurpose], (instregex "MSR", "MRS")>;
- //===---------------------------------------------------------------------===//
- // Sched definitions for FP operations
- //
- // Effective scheduling latency is really 3 for nearly all FP operations,
- // even if their true latency is higher.
- def M7WriteVFPLatOverride : SchedWriteRes<[]> {
- let Latency = 3;
- let NumMicroOps = 0;
- }
- def M7WriteVFPExtraVPort : SchedWriteRes<[M7UnitVPort]> {
- let Latency = 3;
- let NumMicroOps = 0;
- }
- // Instructions which are missing default schedules.
- def : InstRW<[WriteFPALU32],
- (instregex "V(ABS|CVT.*|NEG|FP_VMAX.*|FP_VMIN.*|RINT.*)S$")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64],
- (instregex "V(ABS|CVT.*|NEG|FP_VMAX.*|FP_VMIN.*|RINT.*)D$")>;
- // VCMP
- def M7WriteVCMPS : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let Latency = 0; }
- def M7WriteVCMPD : SchedWriteRes<[M7UnitVFP, M7UnitVPort, M7UnitVPort]> {
- let Latency = 0;
- let BeginGroup = 1;
- }
- def : InstRW<[M7WriteVCMPS], (instregex "VCMPS$")>;
- def : InstRW<[M7WriteVCMPD], (instregex "VCMPD$")>;
- // VMRS/VMSR
- def M7VMRS : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let SingleIssue = 1; }
- def M7VMSR : SchedWriteRes<[M7UnitVFP, M7UnitVPort]> { let SingleIssue = 1; }
- def : InstRW<[M7VMRS], (instregex "FMSTAT")>;
- def : InstRW<[M7VMSR], (instregex "VMSR")>;
- // VSEL cannot bypass in its implied $cpsr operand; model as earlier read
- def : InstRW<[WriteFPALU32, M7Slot0Only, ReadALU, ReadALU, M7Read_ISS],
- (instregex "VSEL.*S$")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64, M7Slot0Only,
- ReadALU, ReadALU, M7Read_ISS],
- (instregex "VSEL.*D$")>;
- // VMOV
- def : InstRW<[WriteFPMOV],
- (instregex "VMOV(H|S)$", "FCONST(H|S)")>;
- def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7Slot0Only],
- (instregex "VMOVD$")>;
- def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7Slot0Only],
- (instregex "FCONSTD")>;
- def : InstRW<[WriteFPMOV, M7WriteVFPExtraVPort, M7SingleIssue],
- (instregex "VMOV(DRR|RRD|RRS|SRR)")>;
- // Larger-latency overrides.
- def : InstRW<[M7WriteVFPLatOverride, WriteFPDIV32], (instregex "VDIVS")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPDIV64], (instregex "VDIVD")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPSQRT32], (instregex "VSQRTS")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPSQRT64], (instregex "VSQRTD")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPMUL64],
- (instregex "V(MUL|NMUL)D")>;
- def : InstRW<[M7WriteVFPLatOverride, WriteFPALU64],
- (instregex "V(ADD|SUB)D")>;
- // Multiply-accumulate. Chained SP timing is correct; rest need overrides
- // Double-precision chained MAC stalls the pipeline behind it for 3 cycles,
- // making it appear to have 3 cycle latency for scheduling.
- def : InstRW<[M7WriteVFPLatOverride, WriteFPMAC64,
- ReadFPMAC, ReadFPMUL, ReadFPMUL],
- (instregex "V(N)?ML(A|S)D$")>;
- // Single-precision fused MACs look like latency 5 with advance of 2.
- def M7WriteVFPLatOverride5 : SchedWriteRes<[]> {
- let Latency = 5;
- let NumMicroOps = 0;
- }
- def M7ReadFPMAC2 : SchedReadAdvance<2>;
- def : InstRW<[M7WriteVFPLatOverride5, WriteFPMAC32,
- M7ReadFPMAC2, ReadFPMUL, ReadFPMUL],
- (instregex "VF(N)?M(A|S)S$")>;
- // Double-precision fused MAC stalls the pipeline behind it for 2 cycles, making
- // it appear to have 3 cycle latency for scheduling.
- def : InstRW<[M7WriteVFPLatOverride, WriteFPMAC64,
- ReadFPMAC, ReadFPMUL, ReadFPMUL],
- (instregex "VF(N)?M(A|S)D$")>;
- } // SchedModel = CortexM7Model
|