123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648 |
- //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the VirtRegMap class.
- //
- // It also contains implementations of the Spiller interface, which, given a
- // virtual register map and a machine function, eliminates all virtual
- // references by replacing them with physical register references - adding spill
- // code as necessary.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "LiveDebugVariables.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/CodeGen/LiveInterval.h"
- #include "llvm/CodeGen/LiveIntervals.h"
- #include "llvm/CodeGen/LiveStacks.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SlotIndexes.h"
- #include "llvm/CodeGen/TargetFrameLowering.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/MC/LaneBitmask.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <iterator>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "regalloc"
- STATISTIC(NumSpillSlots, "Number of spill slots allocated");
- STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
- //===----------------------------------------------------------------------===//
- // VirtRegMap implementation
- //===----------------------------------------------------------------------===//
- char VirtRegMap::ID = 0;
- INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
- bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
- MRI = &mf.getRegInfo();
- TII = mf.getSubtarget().getInstrInfo();
- TRI = mf.getSubtarget().getRegisterInfo();
- MF = &mf;
- Virt2PhysMap.clear();
- Virt2StackSlotMap.clear();
- Virt2SplitMap.clear();
- Virt2ShapeMap.clear();
- grow();
- return false;
- }
- void VirtRegMap::grow() {
- unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
- Virt2PhysMap.resize(NumRegs);
- Virt2StackSlotMap.resize(NumRegs);
- Virt2SplitMap.resize(NumRegs);
- }
- void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
- assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
- assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
- "attempt to assign physical register to already mapped "
- "virtual register");
- assert(!getRegInfo().isReserved(physReg) &&
- "Attempt to map virtReg to a reserved physReg");
- Virt2PhysMap[virtReg.id()] = physReg;
- }
- unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
- unsigned Size = TRI->getSpillSize(*RC);
- Align Alignment = TRI->getSpillAlign(*RC);
- // Set preferred alignment if we are still able to realign the stack
- auto &ST = MF->getSubtarget();
- Align CurrentAlign = ST.getFrameLowering()->getStackAlign();
- if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) {
- Alignment = CurrentAlign;
- }
- int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
- ++NumSpillSlots;
- return SS;
- }
- bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
- Register Hint = MRI->getSimpleHint(VirtReg);
- if (!Hint.isValid())
- return false;
- if (Hint.isVirtual())
- Hint = getPhys(Hint);
- return Register(getPhys(VirtReg)) == Hint;
- }
- bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
- std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
- if (Register::isPhysicalRegister(Hint.second))
- return true;
- if (Register::isVirtualRegister(Hint.second))
- return hasPhys(Hint.second);
- return false;
- }
- int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
- assert(virtReg.isVirtual());
- assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
- "attempt to assign stack slot to already spilled register");
- const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
- return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
- }
- void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
- assert(virtReg.isVirtual());
- assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
- "attempt to assign stack slot to already spilled register");
- assert((SS >= 0 ||
- (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
- "illegal fixed frame index");
- Virt2StackSlotMap[virtReg.id()] = SS;
- }
- void VirtRegMap::print(raw_ostream &OS, const Module*) const {
- OS << "********** REGISTER MAP **********\n";
- for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
- unsigned Reg = Register::index2VirtReg(i);
- if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
- OS << '[' << printReg(Reg, TRI) << " -> "
- << printReg(Virt2PhysMap[Reg], TRI) << "] "
- << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
- }
- }
- for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
- unsigned Reg = Register::index2VirtReg(i);
- if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
- OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
- << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
- }
- }
- OS << '\n';
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void VirtRegMap::dump() const {
- print(dbgs());
- }
- #endif
- //===----------------------------------------------------------------------===//
- // VirtRegRewriter
- //===----------------------------------------------------------------------===//
- //
- // The VirtRegRewriter is the last of the register allocator passes.
- // It rewrites virtual registers to physical registers as specified in the
- // VirtRegMap analysis. It also updates live-in information on basic blocks
- // according to LiveIntervals.
- //
- namespace {
- class VirtRegRewriter : public MachineFunctionPass {
- MachineFunction *MF;
- const TargetRegisterInfo *TRI;
- const TargetInstrInfo *TII;
- MachineRegisterInfo *MRI;
- SlotIndexes *Indexes;
- LiveIntervals *LIS;
- VirtRegMap *VRM;
- LiveDebugVariables *DebugVars;
- DenseSet<Register> RewriteRegs;
- bool ClearVirtRegs;
- void rewrite();
- void addMBBLiveIns();
- bool readsUndefSubreg(const MachineOperand &MO) const;
- void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
- void handleIdentityCopy(MachineInstr &MI);
- void expandCopyBundle(MachineInstr &MI) const;
- bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
- public:
- static char ID;
- VirtRegRewriter(bool ClearVirtRegs_ = true) :
- MachineFunctionPass(ID),
- ClearVirtRegs(ClearVirtRegs_) {}
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnMachineFunction(MachineFunction&) override;
- MachineFunctionProperties getSetProperties() const override {
- if (ClearVirtRegs) {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoVRegs);
- }
- return MachineFunctionProperties();
- }
- };
- } // end anonymous namespace
- char VirtRegRewriter::ID = 0;
- char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
- INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
- "Virtual Register Rewriter", false, false)
- INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
- INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
- INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
- INITIALIZE_PASS_DEPENDENCY(LiveStacks)
- INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
- INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
- "Virtual Register Rewriter", false, false)
- void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addRequired<SlotIndexes>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<LiveDebugVariables>();
- AU.addRequired<LiveStacks>();
- AU.addPreserved<LiveStacks>();
- AU.addRequired<VirtRegMap>();
- if (!ClearVirtRegs)
- AU.addPreserved<LiveDebugVariables>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
- MF = &fn;
- TRI = MF->getSubtarget().getRegisterInfo();
- TII = MF->getSubtarget().getInstrInfo();
- MRI = &MF->getRegInfo();
- Indexes = &getAnalysis<SlotIndexes>();
- LIS = &getAnalysis<LiveIntervals>();
- VRM = &getAnalysis<VirtRegMap>();
- DebugVars = getAnalysisIfAvailable<LiveDebugVariables>();
- LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
- << "********** Function: " << MF->getName() << '\n');
- LLVM_DEBUG(VRM->dump());
- // Add kill flags while we still have virtual registers.
- LIS->addKillFlags(VRM);
- // Live-in lists on basic blocks are required for physregs.
- addMBBLiveIns();
- // Rewrite virtual registers.
- rewrite();
- if (DebugVars && ClearVirtRegs) {
- // Write out new DBG_VALUE instructions.
- // We only do this if ClearVirtRegs is specified since this should be the
- // final run of the pass and we don't want to emit them multiple times.
- DebugVars->emitDebugValues(VRM);
- // All machine operands and other references to virtual registers have been
- // replaced. Remove the virtual registers and release all the transient data.
- VRM->clearAllVirt();
- MRI->clearVirtRegs();
- }
- return true;
- }
- void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
- MCRegister PhysReg) const {
- assert(!LI.empty());
- assert(LI.hasSubRanges());
- using SubRangeIteratorPair =
- std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
- SmallVector<SubRangeIteratorPair, 4> SubRanges;
- SlotIndex First;
- SlotIndex Last;
- for (const LiveInterval::SubRange &SR : LI.subranges()) {
- SubRanges.push_back(std::make_pair(&SR, SR.begin()));
- if (!First.isValid() || SR.segments.front().start < First)
- First = SR.segments.front().start;
- if (!Last.isValid() || SR.segments.back().end > Last)
- Last = SR.segments.back().end;
- }
- // Check all mbb start positions between First and Last while
- // simulatenously advancing an iterator for each subrange.
- for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
- MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
- SlotIndex MBBBegin = MBBI->first;
- // Advance all subrange iterators so that their end position is just
- // behind MBBBegin (or the iterator is at the end).
- LaneBitmask LaneMask;
- for (auto &RangeIterPair : SubRanges) {
- const LiveInterval::SubRange *SR = RangeIterPair.first;
- LiveInterval::const_iterator &SRI = RangeIterPair.second;
- while (SRI != SR->end() && SRI->end <= MBBBegin)
- ++SRI;
- if (SRI == SR->end())
- continue;
- if (SRI->start <= MBBBegin)
- LaneMask |= SR->LaneMask;
- }
- if (LaneMask.none())
- continue;
- MachineBasicBlock *MBB = MBBI->second;
- MBB->addLiveIn(PhysReg, LaneMask);
- }
- }
- // Compute MBB live-in lists from virtual register live ranges and their
- // assignments.
- void VirtRegRewriter::addMBBLiveIns() {
- for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
- Register VirtReg = Register::index2VirtReg(Idx);
- if (MRI->reg_nodbg_empty(VirtReg))
- continue;
- LiveInterval &LI = LIS->getInterval(VirtReg);
- if (LI.empty() || LIS->intervalIsInOneMBB(LI))
- continue;
- // This is a virtual register that is live across basic blocks. Its
- // assigned PhysReg must be marked as live-in to those blocks.
- Register PhysReg = VRM->getPhys(VirtReg);
- if (PhysReg == VirtRegMap::NO_PHYS_REG) {
- // There may be no physical register assigned if only some register
- // classes were already allocated.
- assert(!ClearVirtRegs && "Unmapped virtual register");
- continue;
- }
- if (LI.hasSubRanges()) {
- addLiveInsForSubRanges(LI, PhysReg);
- } else {
- // Go over MBB begin positions and see if we have segments covering them.
- // The following works because segments and the MBBIndex list are both
- // sorted by slot indexes.
- SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
- for (const auto &Seg : LI) {
- I = Indexes->advanceMBBIndex(I, Seg.start);
- for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
- MachineBasicBlock *MBB = I->second;
- MBB->addLiveIn(PhysReg);
- }
- }
- }
- }
- // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
- // each MBB's LiveIns set before calling addLiveIn on them.
- for (MachineBasicBlock &MBB : *MF)
- MBB.sortUniqueLiveIns();
- }
- /// Returns true if the given machine operand \p MO only reads undefined lanes.
- /// The function only works for use operands with a subregister set.
- bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
- // Shortcut if the operand is already marked undef.
- if (MO.isUndef())
- return true;
- Register Reg = MO.getReg();
- const LiveInterval &LI = LIS->getInterval(Reg);
- const MachineInstr &MI = *MO.getParent();
- SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
- // This code is only meant to handle reading undefined subregisters which
- // we couldn't properly detect before.
- assert(LI.liveAt(BaseIndex) &&
- "Reads of completely dead register should be marked undef already");
- unsigned SubRegIdx = MO.getSubReg();
- assert(SubRegIdx != 0 && LI.hasSubRanges());
- LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
- // See if any of the relevant subregister liveranges is defined at this point.
- for (const LiveInterval::SubRange &SR : LI.subranges()) {
- if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
- return false;
- }
- return true;
- }
- void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
- if (!MI.isIdentityCopy())
- return;
- LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
- ++NumIdCopies;
- Register DstReg = MI.getOperand(0).getReg();
- // We may have deferred allocation of the virtual register, and the rewrite
- // regs code doesn't handle the liveness update.
- if (DstReg.isVirtual())
- return;
- RewriteRegs.insert(DstReg);
- // Copies like:
- // %r0 = COPY undef %r0
- // %al = COPY %al, implicit-def %eax
- // give us additional liveness information: The target (super-)register
- // must not be valid before this point. Replace the COPY with a KILL
- // instruction to maintain this information.
- if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
- MI.setDesc(TII->get(TargetOpcode::KILL));
- LLVM_DEBUG(dbgs() << " replace by: " << MI);
- return;
- }
- if (Indexes)
- Indexes->removeSingleMachineInstrFromMaps(MI);
- MI.eraseFromBundle();
- LLVM_DEBUG(dbgs() << " deleted.\n");
- }
- /// The liverange splitting logic sometimes produces bundles of copies when
- /// subregisters are involved. Expand these into a sequence of copy instructions
- /// after processing the last in the bundle. Does not update LiveIntervals
- /// which we shouldn't need for this instruction anymore.
- void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
- if (!MI.isCopy() && !MI.isKill())
- return;
- if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
- SmallVector<MachineInstr *, 2> MIs({&MI});
- // Only do this when the complete bundle is made out of COPYs and KILLs.
- MachineBasicBlock &MBB = *MI.getParent();
- for (MachineBasicBlock::reverse_instr_iterator I =
- std::next(MI.getReverseIterator()), E = MBB.instr_rend();
- I != E && I->isBundledWithSucc(); ++I) {
- if (!I->isCopy() && !I->isKill())
- return;
- MIs.push_back(&*I);
- }
- MachineInstr *FirstMI = MIs.back();
- auto anyRegsAlias = [](const MachineInstr *Dst,
- ArrayRef<MachineInstr *> Srcs,
- const TargetRegisterInfo *TRI) {
- for (const MachineInstr *Src : Srcs)
- if (Src != Dst)
- if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
- Src->getOperand(1).getReg()))
- return true;
- return false;
- };
- // If any of the destination registers in the bundle of copies alias any of
- // the source registers, try to schedule the instructions to avoid any
- // clobbering.
- for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
- for (int I = E; I--; )
- if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
- if (I + 1 != E)
- std::swap(MIs[I], MIs[E - 1]);
- --E;
- }
- if (PrevE == E) {
- MF->getFunction().getContext().emitError(
- "register rewriting failed: cycle in copy bundle");
- break;
- }
- }
- MachineInstr *BundleStart = FirstMI;
- for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
- // If instruction is in the middle of the bundle, move it before the
- // bundle starts, otherwise, just unbundle it. When we get to the last
- // instruction, the bundle will have been completely undone.
- if (BundledMI != BundleStart) {
- BundledMI->removeFromBundle();
- MBB.insert(BundleStart, BundledMI);
- } else if (BundledMI->isBundledWithSucc()) {
- BundledMI->unbundleFromSucc();
- BundleStart = &*std::next(BundledMI->getIterator());
- }
- if (Indexes && BundledMI != FirstMI)
- Indexes->insertMachineInstrInMaps(*BundledMI);
- }
- }
- }
- /// Check whether (part of) \p SuperPhysReg is live through \p MI.
- /// \pre \p MI defines a subregister of a virtual register that
- /// has been assigned to \p SuperPhysReg.
- bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
- MCRegister SuperPhysReg) const {
- SlotIndex MIIndex = LIS->getInstructionIndex(MI);
- SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
- SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
- for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
- const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
- // If the regunit is live both before and after MI,
- // we assume it is live through.
- // Generally speaking, this is not true, because something like
- // "RU = op RU" would match that description.
- // However, we know that we are trying to assess whether
- // a def of a virtual reg, vreg, is live at the same time of RU.
- // If we are in the "RU = op RU" situation, that means that vreg
- // is defined at the same time as RU (i.e., "vreg, RU = op RU").
- // Thus, vreg and RU interferes and vreg cannot be assigned to
- // SuperPhysReg. Therefore, this situation cannot happen.
- if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
- return true;
- }
- return false;
- }
- void VirtRegRewriter::rewrite() {
- bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
- SmallVector<Register, 8> SuperDeads;
- SmallVector<Register, 8> SuperDefs;
- SmallVector<Register, 8> SuperKills;
- for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
- MBBI != MBBE; ++MBBI) {
- LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
- for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) {
- for (MachineOperand &MO : MI.operands()) {
- // Make sure MRI knows about registers clobbered by regmasks.
- if (MO.isRegMask())
- MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
- if (!MO.isReg() || !MO.getReg().isVirtual())
- continue;
- Register VirtReg = MO.getReg();
- MCRegister PhysReg = VRM->getPhys(VirtReg);
- if (PhysReg == VirtRegMap::NO_PHYS_REG)
- continue;
- assert(Register(PhysReg).isPhysical());
- RewriteRegs.insert(PhysReg);
- assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
- // Preserve semantics of sub-register operands.
- unsigned SubReg = MO.getSubReg();
- if (SubReg != 0) {
- if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
- // A virtual register kill refers to the whole register, so we may
- // have to add implicit killed operands for the super-register. A
- // partial redef always kills and redefines the super-register.
- if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
- (MO.isDef() && subRegLiveThrough(MI, PhysReg)))
- SuperKills.push_back(PhysReg);
- if (MO.isDef()) {
- // Also add implicit defs for the super-register.
- if (MO.isDead())
- SuperDeads.push_back(PhysReg);
- else
- SuperDefs.push_back(PhysReg);
- }
- } else {
- if (MO.isUse()) {
- if (readsUndefSubreg(MO))
- // We need to add an <undef> flag if the subregister is
- // completely undefined (and we are not adding super-register
- // defs).
- MO.setIsUndef(true);
- } else if (!MO.isDead()) {
- assert(MO.isDef());
- }
- }
- // The def undef and def internal flags only make sense for
- // sub-register defs, and we are substituting a full physreg. An
- // implicit killed operand from the SuperKills list will represent the
- // partial read of the super-register.
- if (MO.isDef()) {
- MO.setIsUndef(false);
- MO.setIsInternalRead(false);
- }
- // PhysReg operands cannot have subregister indexes.
- PhysReg = TRI->getSubReg(PhysReg, SubReg);
- assert(PhysReg.isValid() && "Invalid SubReg for physical register");
- MO.setSubReg(0);
- }
- // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
- // we need the inlining here.
- MO.setReg(PhysReg);
- MO.setIsRenamable(true);
- }
- // Add any missing super-register kills after rewriting the whole
- // instruction.
- while (!SuperKills.empty())
- MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
- while (!SuperDeads.empty())
- MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
- while (!SuperDefs.empty())
- MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI);
- LLVM_DEBUG(dbgs() << "> " << MI);
- expandCopyBundle(MI);
- // We can remove identity copies right now.
- handleIdentityCopy(MI);
- }
- }
- if (LIS) {
- // Don't bother maintaining accurate LiveIntervals for registers which were
- // already allocated.
- for (Register PhysReg : RewriteRegs) {
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid();
- ++Units) {
- LIS->removeRegUnit(*Units);
- }
- }
- }
- RewriteRegs.clear();
- }
- FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
- return new VirtRegRewriter(ClearVirtRegs);
- }
|