123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920 |
- //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs global common subexpression elimination on machine
- // instructions using a scoped hash table based value numbering scheme. It
- // must be run while the machine function is still in SSA form.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/ScopedHashTable.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/MC/MCRegister.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/RecyclingAllocator.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <iterator>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "machine-cse"
- STATISTIC(NumCoalesces, "Number of copies coalesced");
- STATISTIC(NumCSEs, "Number of common subexpression eliminated");
- STATISTIC(NumPREs, "Number of partial redundant expression"
- " transformed to fully redundant");
- STATISTIC(NumPhysCSEs,
- "Number of physreg referencing common subexpr eliminated");
- STATISTIC(NumCrossBBCSEs,
- "Number of cross-MBB physreg referencing CS eliminated");
- STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
- namespace {
- class MachineCSE : public MachineFunctionPass {
- const TargetInstrInfo *TII;
- const TargetRegisterInfo *TRI;
- AliasAnalysis *AA;
- MachineDominatorTree *DT;
- MachineRegisterInfo *MRI;
- MachineBlockFrequencyInfo *MBFI;
- public:
- static char ID; // Pass identification
- MachineCSE() : MachineFunctionPass(ID) {
- initializeMachineCSEPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &MF) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- MachineFunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreservedID(MachineLoopInfoID);
- AU.addRequired<MachineDominatorTree>();
- AU.addPreserved<MachineDominatorTree>();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addPreserved<MachineBlockFrequencyInfo>();
- }
- void releaseMemory() override {
- ScopeMap.clear();
- PREMap.clear();
- Exps.clear();
- }
- private:
- using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
- ScopedHashTableVal<MachineInstr *, unsigned>>;
- using ScopedHTType =
- ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
- AllocatorTy>;
- using ScopeType = ScopedHTType::ScopeTy;
- using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
- unsigned LookAheadLimit = 0;
- DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
- DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
- PREMap;
- ScopedHTType VNT;
- SmallVector<MachineInstr *, 64> Exps;
- unsigned CurrVN = 0;
- bool PerformTrivialCopyPropagation(MachineInstr *MI,
- MachineBasicBlock *MBB);
- bool isPhysDefTriviallyDead(MCRegister Reg,
- MachineBasicBlock::const_iterator I,
- MachineBasicBlock::const_iterator E) const;
- bool hasLivePhysRegDefUses(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- SmallSet<MCRegister, 8> &PhysRefs,
- PhysDefVector &PhysDefs, bool &PhysUseDef) const;
- bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
- SmallSet<MCRegister, 8> &PhysRefs,
- PhysDefVector &PhysDefs, bool &NonLocal) const;
- bool isCSECandidate(MachineInstr *MI);
- bool isProfitableToCSE(Register CSReg, Register Reg,
- MachineBasicBlock *CSBB, MachineInstr *MI);
- void EnterScope(MachineBasicBlock *MBB);
- void ExitScope(MachineBasicBlock *MBB);
- bool ProcessBlockCSE(MachineBasicBlock *MBB);
- void ExitScopeIfDone(MachineDomTreeNode *Node,
- DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
- bool PerformCSE(MachineDomTreeNode *Node);
- bool isPRECandidate(MachineInstr *MI);
- bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
- bool PerformSimplePRE(MachineDominatorTree *DT);
- /// Heuristics to see if it's profitable to move common computations of MBB
- /// and MBB1 to CandidateBB.
- bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
- MachineBasicBlock *MBB,
- MachineBasicBlock *MBB1);
- };
- } // end anonymous namespace
- char MachineCSE::ID = 0;
- char &llvm::MachineCSEID = MachineCSE::ID;
- INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
- "Machine Common Subexpression Elimination", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
- "Machine Common Subexpression Elimination", false, false)
- /// The source register of a COPY machine instruction can be propagated to all
- /// its users, and this propagation could increase the probability of finding
- /// common subexpressions. If the COPY has only one user, the COPY itself can
- /// be removed.
- bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
- MachineBasicBlock *MBB) {
- bool Changed = false;
- for (MachineOperand &MO : MI->operands()) {
- if (!MO.isReg() || !MO.isUse())
- continue;
- Register Reg = MO.getReg();
- if (!Register::isVirtualRegister(Reg))
- continue;
- bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
- MachineInstr *DefMI = MRI->getVRegDef(Reg);
- if (!DefMI->isCopy())
- continue;
- Register SrcReg = DefMI->getOperand(1).getReg();
- if (!Register::isVirtualRegister(SrcReg))
- continue;
- if (DefMI->getOperand(0).getSubReg())
- continue;
- // FIXME: We should trivially coalesce subregister copies to expose CSE
- // opportunities on instructions with truncated operands (see
- // cse-add-with-overflow.ll). This can be done here as follows:
- // if (SrcSubReg)
- // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
- // SrcSubReg);
- // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
- //
- // The 2-addr pass has been updated to handle coalesced subregs. However,
- // some machine-specific code still can't handle it.
- // To handle it properly we also need a way find a constrained subregister
- // class given a super-reg class and subreg index.
- if (DefMI->getOperand(1).getSubReg())
- continue;
- if (!MRI->constrainRegAttrs(SrcReg, Reg))
- continue;
- LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
- LLVM_DEBUG(dbgs() << "*** to: " << *MI);
- // Propagate SrcReg of copies to MI.
- MO.setReg(SrcReg);
- MRI->clearKillFlags(SrcReg);
- // Coalesce single use copies.
- if (OnlyOneUse) {
- // If (and only if) we've eliminated all uses of the copy, also
- // copy-propagate to any debug-users of MI, or they'll be left using
- // an undefined value.
- DefMI->changeDebugValuesDefReg(SrcReg);
- DefMI->eraseFromParent();
- ++NumCoalesces;
- }
- Changed = true;
- }
- return Changed;
- }
- bool MachineCSE::isPhysDefTriviallyDead(
- MCRegister Reg, MachineBasicBlock::const_iterator I,
- MachineBasicBlock::const_iterator E) const {
- unsigned LookAheadLeft = LookAheadLimit;
- while (LookAheadLeft) {
- // Skip over dbg_value's.
- I = skipDebugInstructionsForward(I, E);
- if (I == E)
- // Reached end of block, we don't know if register is dead or not.
- return false;
- bool SeenDef = false;
- for (const MachineOperand &MO : I->operands()) {
- if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
- SeenDef = true;
- if (!MO.isReg() || !MO.getReg())
- continue;
- if (!TRI->regsOverlap(MO.getReg(), Reg))
- continue;
- if (MO.isUse())
- // Found a use!
- return false;
- SeenDef = true;
- }
- if (SeenDef)
- // See a def of Reg (or an alias) before encountering any use, it's
- // trivially dead.
- return true;
- --LookAheadLeft;
- ++I;
- }
- return false;
- }
- static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
- const MachineFunction &MF,
- const TargetRegisterInfo &TRI) {
- // MachineRegisterInfo::isConstantPhysReg directly called by
- // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
- // reserved registers to be frozen. That doesn't cause a problem post-ISel as
- // most (if not all) targets freeze reserved registers right after ISel.
- //
- // It does cause issues mid-GlobalISel, however, hence the additional
- // reservedRegsFrozen check.
- const MachineRegisterInfo &MRI = MF.getRegInfo();
- return TRI.isCallerPreservedPhysReg(Reg, MF) ||
- (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
- }
- /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
- /// physical registers (except for dead defs of physical registers). It also
- /// returns the physical register def by reference if it's the only one and the
- /// instruction does not uses a physical register.
- bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- SmallSet<MCRegister, 8> &PhysRefs,
- PhysDefVector &PhysDefs,
- bool &PhysUseDef) const {
- // First, add all uses to PhysRefs.
- for (const MachineOperand &MO : MI->operands()) {
- if (!MO.isReg() || MO.isDef())
- continue;
- Register Reg = MO.getReg();
- if (!Reg)
- continue;
- if (Register::isVirtualRegister(Reg))
- continue;
- // Reading either caller preserved or constant physregs is ok.
- if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI))
- for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
- PhysRefs.insert(*AI);
- }
- // Next, collect all defs into PhysDefs. If any is already in PhysRefs
- // (which currently contains only uses), set the PhysUseDef flag.
- PhysUseDef = false;
- MachineBasicBlock::const_iterator I = MI; I = std::next(I);
- for (const auto &MOP : llvm::enumerate(MI->operands())) {
- const MachineOperand &MO = MOP.value();
- if (!MO.isReg() || !MO.isDef())
- continue;
- Register Reg = MO.getReg();
- if (!Reg)
- continue;
- if (Register::isVirtualRegister(Reg))
- continue;
- // Check against PhysRefs even if the def is "dead".
- if (PhysRefs.count(Reg.asMCReg()))
- PhysUseDef = true;
- // If the def is dead, it's ok. But the def may not marked "dead". That's
- // common since this pass is run before livevariables. We can scan
- // forward a few instructions and check if it is obviously dead.
- if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
- PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
- }
- // Finally, add all defs to PhysRefs as well.
- for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
- for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
- ++AI)
- PhysRefs.insert(*AI);
- return !PhysRefs.empty();
- }
- bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
- SmallSet<MCRegister, 8> &PhysRefs,
- PhysDefVector &PhysDefs,
- bool &NonLocal) const {
- // For now conservatively returns false if the common subexpression is
- // not in the same basic block as the given instruction. The only exception
- // is if the common subexpression is in the sole predecessor block.
- const MachineBasicBlock *MBB = MI->getParent();
- const MachineBasicBlock *CSMBB = CSMI->getParent();
- bool CrossMBB = false;
- if (CSMBB != MBB) {
- if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
- return false;
- for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
- if (MRI->isAllocatable(PhysDefs[i].second) ||
- MRI->isReserved(PhysDefs[i].second))
- // Avoid extending live range of physical registers if they are
- //allocatable or reserved.
- return false;
- }
- CrossMBB = true;
- }
- MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
- MachineBasicBlock::const_iterator E = MI;
- MachineBasicBlock::const_iterator EE = CSMBB->end();
- unsigned LookAheadLeft = LookAheadLimit;
- while (LookAheadLeft) {
- // Skip over dbg_value's.
- while (I != E && I != EE && I->isDebugInstr())
- ++I;
- if (I == EE) {
- assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
- (void)CrossMBB;
- CrossMBB = false;
- NonLocal = true;
- I = MBB->begin();
- EE = MBB->end();
- continue;
- }
- if (I == E)
- return true;
- for (const MachineOperand &MO : I->operands()) {
- // RegMasks go on instructions like calls that clobber lots of physregs.
- // Don't attempt to CSE across such an instruction.
- if (MO.isRegMask())
- return false;
- if (!MO.isReg() || !MO.isDef())
- continue;
- Register MOReg = MO.getReg();
- if (Register::isVirtualRegister(MOReg))
- continue;
- if (PhysRefs.count(MOReg.asMCReg()))
- return false;
- }
- --LookAheadLeft;
- ++I;
- }
- return false;
- }
- bool MachineCSE::isCSECandidate(MachineInstr *MI) {
- if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
- MI->isInlineAsm() || MI->isDebugInstr())
- return false;
- // Ignore copies.
- if (MI->isCopyLike())
- return false;
- // Ignore stuff that we obviously can't move.
- if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
- MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
- return false;
- if (MI->mayLoad()) {
- // Okay, this instruction does a load. As a refinement, we allow the target
- // to decide whether the loaded value is actually a constant. If so, we can
- // actually use it as a load.
- if (!MI->isDereferenceableInvariantLoad(AA))
- // FIXME: we should be able to hoist loads with no other side effects if
- // there are no other instructions which can change memory in this loop.
- // This is a trivial form of alias analysis.
- return false;
- }
- // Ignore stack guard loads, otherwise the register that holds CSEed value may
- // be spilled and get loaded back with corrupted data.
- if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
- return false;
- return true;
- }
- /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
- /// common expression that defines Reg. CSBB is basic block where CSReg is
- /// defined.
- bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg,
- MachineBasicBlock *CSBB, MachineInstr *MI) {
- // FIXME: Heuristics that works around the lack the live range splitting.
- // If CSReg is used at all uses of Reg, CSE should not increase register
- // pressure of CSReg.
- bool MayIncreasePressure = true;
- if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
- MayIncreasePressure = false;
- SmallPtrSet<MachineInstr*, 8> CSUses;
- for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
- CSUses.insert(&MI);
- }
- for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
- if (!CSUses.count(&MI)) {
- MayIncreasePressure = true;
- break;
- }
- }
- }
- if (!MayIncreasePressure) return true;
- // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
- // an immediate predecessor. We don't want to increase register pressure and
- // end up causing other computation to be spilled.
- if (TII->isAsCheapAsAMove(*MI)) {
- MachineBasicBlock *BB = MI->getParent();
- if (CSBB != BB && !CSBB->isSuccessor(BB))
- return false;
- }
- // Heuristics #2: If the expression doesn't not use a vr and the only use
- // of the redundant computation are copies, do not cse.
- bool HasVRegUse = false;
- for (const MachineOperand &MO : MI->operands()) {
- if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
- HasVRegUse = true;
- break;
- }
- }
- if (!HasVRegUse) {
- bool HasNonCopyUse = false;
- for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
- // Ignore copies.
- if (!MI.isCopyLike()) {
- HasNonCopyUse = true;
- break;
- }
- }
- if (!HasNonCopyUse)
- return false;
- }
- // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
- // it unless the defined value is already used in the BB of the new use.
- bool HasPHI = false;
- for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
- HasPHI |= UseMI.isPHI();
- if (UseMI.getParent() == MI->getParent())
- return true;
- }
- return !HasPHI;
- }
- void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
- LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
- ScopeType *Scope = new ScopeType(VNT);
- ScopeMap[MBB] = Scope;
- }
- void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
- LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
- DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
- assert(SI != ScopeMap.end());
- delete SI->second;
- ScopeMap.erase(SI);
- }
- bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
- bool Changed = false;
- SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
- SmallVector<unsigned, 2> ImplicitDefsToUpdate;
- SmallVector<unsigned, 2> ImplicitDefs;
- for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
- if (!isCSECandidate(&MI))
- continue;
- bool FoundCSE = VNT.count(&MI);
- if (!FoundCSE) {
- // Using trivial copy propagation to find more CSE opportunities.
- if (PerformTrivialCopyPropagation(&MI, MBB)) {
- Changed = true;
- // After coalescing MI itself may become a copy.
- if (MI.isCopyLike())
- continue;
- // Try again to see if CSE is possible.
- FoundCSE = VNT.count(&MI);
- }
- }
- // Commute commutable instructions.
- bool Commuted = false;
- if (!FoundCSE && MI.isCommutable()) {
- if (MachineInstr *NewMI = TII->commuteInstruction(MI)) {
- Commuted = true;
- FoundCSE = VNT.count(NewMI);
- if (NewMI != &MI) {
- // New instruction. It doesn't need to be kept.
- NewMI->eraseFromParent();
- Changed = true;
- } else if (!FoundCSE)
- // MI was changed but it didn't help, commute it back!
- (void)TII->commuteInstruction(MI);
- }
- }
- // If the instruction defines physical registers and the values *may* be
- // used, then it's not safe to replace it with a common subexpression.
- // It's also not safe if the instruction uses physical registers.
- bool CrossMBBPhysDef = false;
- SmallSet<MCRegister, 8> PhysRefs;
- PhysDefVector PhysDefs;
- bool PhysUseDef = false;
- if (FoundCSE &&
- hasLivePhysRegDefUses(&MI, MBB, PhysRefs, PhysDefs, PhysUseDef)) {
- FoundCSE = false;
- // ... Unless the CS is local or is in the sole predecessor block
- // and it also defines the physical register which is not clobbered
- // in between and the physical register uses were not clobbered.
- // This can never be the case if the instruction both uses and
- // defines the same physical register, which was detected above.
- if (!PhysUseDef) {
- unsigned CSVN = VNT.lookup(&MI);
- MachineInstr *CSMI = Exps[CSVN];
- if (PhysRegDefsReach(CSMI, &MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
- FoundCSE = true;
- }
- }
- if (!FoundCSE) {
- VNT.insert(&MI, CurrVN++);
- Exps.push_back(&MI);
- continue;
- }
- // Found a common subexpression, eliminate it.
- unsigned CSVN = VNT.lookup(&MI);
- MachineInstr *CSMI = Exps[CSVN];
- LLVM_DEBUG(dbgs() << "Examining: " << MI);
- LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
- // Prevent CSE-ing non-local convergent instructions.
- // LLVM's current definition of `isConvergent` does not necessarily prove
- // that non-local CSE is illegal. The following check extends the definition
- // of `isConvergent` to assume a convergent instruction is dependent not
- // only on additional conditions, but also on fewer conditions. LLVM does
- // not have a MachineInstr attribute which expresses this extended
- // definition, so it's necessary to use `isConvergent` to prevent illegally
- // CSE-ing the subset of `isConvergent` instructions which do fall into this
- // extended definition.
- if (MI.isConvergent() && MI.getParent() != CSMI->getParent()) {
- LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
- "different BBs, avoid CSE!\n");
- VNT.insert(&MI, CurrVN++);
- Exps.push_back(&MI);
- continue;
- }
- // Check if it's profitable to perform this CSE.
- bool DoCSE = true;
- unsigned NumDefs = MI.getNumDefs();
- for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
- MachineOperand &MO = MI.getOperand(i);
- if (!MO.isReg() || !MO.isDef())
- continue;
- Register OldReg = MO.getReg();
- Register NewReg = CSMI->getOperand(i).getReg();
- // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
- // we should make sure it is not dead at CSMI.
- if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
- ImplicitDefsToUpdate.push_back(i);
- // Keep track of implicit defs of CSMI and MI, to clear possibly
- // made-redundant kill flags.
- if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
- ImplicitDefs.push_back(OldReg);
- if (OldReg == NewReg) {
- --NumDefs;
- continue;
- }
- assert(Register::isVirtualRegister(OldReg) &&
- Register::isVirtualRegister(NewReg) &&
- "Do not CSE physical register defs!");
- if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), &MI)) {
- LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
- DoCSE = false;
- break;
- }
- // Don't perform CSE if the result of the new instruction cannot exist
- // within the constraints (register class, bank, or low-level type) of
- // the old instruction.
- if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
- LLVM_DEBUG(
- dbgs() << "*** Not the same register constraints, avoid CSE!\n");
- DoCSE = false;
- break;
- }
- CSEPairs.push_back(std::make_pair(OldReg, NewReg));
- --NumDefs;
- }
- // Actually perform the elimination.
- if (DoCSE) {
- for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
- unsigned OldReg = CSEPair.first;
- unsigned NewReg = CSEPair.second;
- // OldReg may have been unused but is used now, clear the Dead flag
- MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
- assert(Def != nullptr && "CSEd register has no unique definition?");
- Def->clearRegisterDeads(NewReg);
- // Replace with NewReg and clear kill flags which may be wrong now.
- MRI->replaceRegWith(OldReg, NewReg);
- MRI->clearKillFlags(NewReg);
- }
- // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
- // we should make sure it is not dead at CSMI.
- for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
- CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
- for (const auto &PhysDef : PhysDefs)
- if (!MI.getOperand(PhysDef.first).isDead())
- CSMI->getOperand(PhysDef.first).setIsDead(false);
- // Go through implicit defs of CSMI and MI, and clear the kill flags on
- // their uses in all the instructions between CSMI and MI.
- // We might have made some of the kill flags redundant, consider:
- // subs ... implicit-def %nzcv <- CSMI
- // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
- // subs ... implicit-def %nzcv <- MI, to be eliminated
- // csinc ... implicit killed %nzcv
- // Since we eliminated MI, and reused a register imp-def'd by CSMI
- // (here %nzcv), that register, if it was killed before MI, should have
- // that kill flag removed, because it's lifetime was extended.
- if (CSMI->getParent() == MI.getParent()) {
- for (MachineBasicBlock::iterator II = CSMI, IE = &MI; II != IE; ++II)
- for (auto ImplicitDef : ImplicitDefs)
- if (MachineOperand *MO = II->findRegisterUseOperand(
- ImplicitDef, /*isKill=*/true, TRI))
- MO->setIsKill(false);
- } else {
- // If the instructions aren't in the same BB, bail out and clear the
- // kill flag on all uses of the imp-def'd register.
- for (auto ImplicitDef : ImplicitDefs)
- MRI->clearKillFlags(ImplicitDef);
- }
- if (CrossMBBPhysDef) {
- // Add physical register defs now coming in from a predecessor to MBB
- // livein list.
- while (!PhysDefs.empty()) {
- auto LiveIn = PhysDefs.pop_back_val();
- if (!MBB->isLiveIn(LiveIn.second))
- MBB->addLiveIn(LiveIn.second);
- }
- ++NumCrossBBCSEs;
- }
- MI.eraseFromParent();
- ++NumCSEs;
- if (!PhysRefs.empty())
- ++NumPhysCSEs;
- if (Commuted)
- ++NumCommutes;
- Changed = true;
- } else {
- VNT.insert(&MI, CurrVN++);
- Exps.push_back(&MI);
- }
- CSEPairs.clear();
- ImplicitDefsToUpdate.clear();
- ImplicitDefs.clear();
- }
- return Changed;
- }
- /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
- /// dominator tree node if its a leaf or all of its children are done. Walk
- /// up the dominator tree to destroy ancestors which are now done.
- void
- MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
- DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
- if (OpenChildren[Node])
- return;
- // Pop scope.
- ExitScope(Node->getBlock());
- // Now traverse upwards to pop ancestors whose offsprings are all done.
- while (MachineDomTreeNode *Parent = Node->getIDom()) {
- unsigned Left = --OpenChildren[Parent];
- if (Left != 0)
- break;
- ExitScope(Parent->getBlock());
- Node = Parent;
- }
- }
- bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
- SmallVector<MachineDomTreeNode*, 32> Scopes;
- SmallVector<MachineDomTreeNode*, 8> WorkList;
- DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
- CurrVN = 0;
- // Perform a DFS walk to determine the order of visit.
- WorkList.push_back(Node);
- do {
- Node = WorkList.pop_back_val();
- Scopes.push_back(Node);
- OpenChildren[Node] = Node->getNumChildren();
- append_range(WorkList, Node->children());
- } while (!WorkList.empty());
- // Now perform CSE.
- bool Changed = false;
- for (MachineDomTreeNode *Node : Scopes) {
- MachineBasicBlock *MBB = Node->getBlock();
- EnterScope(MBB);
- Changed |= ProcessBlockCSE(MBB);
- // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
- ExitScopeIfDone(Node, OpenChildren);
- }
- return Changed;
- }
- // We use stronger checks for PRE candidate rather than for CSE ones to embrace
- // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
- // to exclude instrs created by PRE that won't be CSEed later.
- bool MachineCSE::isPRECandidate(MachineInstr *MI) {
- if (!isCSECandidate(MI) ||
- MI->isNotDuplicable() ||
- MI->mayLoad() ||
- MI->isAsCheapAsAMove() ||
- MI->getNumDefs() != 1 ||
- MI->getNumExplicitDefs() != 1)
- return false;
- for (const auto &def : MI->defs())
- if (!Register::isVirtualRegister(def.getReg()))
- return false;
- for (const auto &use : MI->uses())
- if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
- return false;
- return true;
- }
- bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
- MachineBasicBlock *MBB) {
- bool Changed = false;
- for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
- if (!isPRECandidate(&MI))
- continue;
- if (!PREMap.count(&MI)) {
- PREMap[&MI] = MBB;
- continue;
- }
- auto MBB1 = PREMap[&MI];
- assert(
- !DT->properlyDominates(MBB, MBB1) &&
- "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
- auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
- if (!CMBB->isLegalToHoistInto())
- continue;
- if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
- continue;
- // Two instrs are partial redundant if their basic blocks are reachable
- // from one to another but one doesn't dominate another.
- if (CMBB != MBB1) {
- auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
- if (BB != nullptr && BB1 != nullptr &&
- (isPotentiallyReachable(BB1, BB) ||
- isPotentiallyReachable(BB, BB1))) {
- // The following check extends the definition of `isConvergent` to
- // assume a convergent instruction is dependent not only on additional
- // conditions, but also on fewer conditions. LLVM does not have a
- // MachineInstr attribute which expresses this extended definition, so
- // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
- // subset of `isConvergent` instructions which do fall into this
- // extended definition.
- if (MI.isConvergent() && CMBB != MBB)
- continue;
- assert(MI.getOperand(0).isDef() &&
- "First operand of instr with one explicit def must be this def");
- Register VReg = MI.getOperand(0).getReg();
- Register NewReg = MRI->cloneVirtualRegister(VReg);
- if (!isProfitableToCSE(NewReg, VReg, CMBB, &MI))
- continue;
- MachineInstr &NewMI =
- TII->duplicate(*CMBB, CMBB->getFirstTerminator(), MI);
- // When hoisting, make sure we don't carry the debug location of
- // the original instruction, as that's not correct and can cause
- // unexpected jumps when debugging optimized code.
- auto EmptyDL = DebugLoc();
- NewMI.setDebugLoc(EmptyDL);
- NewMI.getOperand(0).setReg(NewReg);
- PREMap[&MI] = CMBB;
- ++NumPREs;
- Changed = true;
- }
- }
- }
- return Changed;
- }
- // This simple PRE (partial redundancy elimination) pass doesn't actually
- // eliminate partial redundancy but transforms it to full redundancy,
- // anticipating that the next CSE step will eliminate this created redundancy.
- // If CSE doesn't eliminate this, than created instruction will remain dead
- // and eliminated later by Remove Dead Machine Instructions pass.
- bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
- SmallVector<MachineDomTreeNode *, 32> BBs;
- PREMap.clear();
- bool Changed = false;
- BBs.push_back(DT->getRootNode());
- do {
- auto Node = BBs.pop_back_val();
- append_range(BBs, Node->children());
- MachineBasicBlock *MBB = Node->getBlock();
- Changed |= ProcessBlockPRE(DT, MBB);
- } while (!BBs.empty());
- return Changed;
- }
- bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
- MachineBasicBlock *MBB,
- MachineBasicBlock *MBB1) {
- if (CandidateBB->getParent()->getFunction().hasMinSize())
- return true;
- assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
- assert(DT->dominates(CandidateBB, MBB1) &&
- "CandidateBB should dominate MBB1");
- return MBFI->getBlockFreq(CandidateBB) <=
- MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
- }
- bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
- if (skipFunction(MF.getFunction()))
- return false;
- TII = MF.getSubtarget().getInstrInfo();
- TRI = MF.getSubtarget().getRegisterInfo();
- MRI = &MF.getRegInfo();
- AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- DT = &getAnalysis<MachineDominatorTree>();
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- LookAheadLimit = TII->getMachineCSELookAheadLimit();
- bool ChangedPRE, ChangedCSE;
- ChangedPRE = PerformSimplePRE(DT);
- ChangedCSE = PerformCSE(DT->getRootNode());
- return ChangedPRE || ChangedCSE;
- }
|