123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897 |
- //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Implementation of the ML eviction advisor and reward injection pass
- //
- //===----------------------------------------------------------------------===//
- #include "RegAllocEvictionAdvisor.h"
- #include "RegAllocGreedy.h"
- #include "RegAllocScore.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/MLModelRunner.h"
- #include "llvm/Analysis/ModelUnderTrainingRunner.h"
- #include "llvm/Analysis/NoInferenceModelRunner.h"
- #include "llvm/Analysis/ReleaseModeModelRunner.h"
- #include "llvm/Analysis/Utils/TFUtils.h"
- #include "llvm/CodeGen/CalcSpillWeights.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/Config/config.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/PassRegistry.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Target/TargetMachine.h"
- #include <array>
- #include <memory>
- using namespace llvm;
- #define DEBUG_TYPE "ml-regalloc"
- // Generated header in release (AOT) mode
- #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
- #error #include "RegallocEvictModel.h"
- #endif
- // Options that only make sense in development mode
- #ifdef LLVM_HAVE_TF_API
- static cl::opt<std::string> TrainingLog(
- "regalloc-training-log", cl::Hidden,
- cl::desc("Training log for the register allocator eviction model"));
- static cl::opt<std::string> ModelUnderTraining(
- "regalloc-model", cl::Hidden,
- cl::desc("The model being trained for register allocation eviction"));
- #endif // #ifdef LLVM_HAVE_TF_API
- /// The score injection pass.
- /// This pass calculates the score for a function and inserts it in the log, but
- /// this happens only in development mode. It's a no-op otherwise.
- namespace llvm {
- class RegAllocScoring : public MachineFunctionPass {
- public:
- static char ID;
- RegAllocScoring() : MachineFunctionPass(ID) {
- initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
- }
- ~RegAllocScoring() override = default;
- StringRef getPassName() const override {
- return "Register Allocation Pass Scoring";
- }
- /// RegAllocReward analysis usage.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<AAResultsWrapperPass>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- /// Performs this pass
- bool runOnMachineFunction(MachineFunction &) override;
- };
- char RegAllocScoring::ID = 0;
- FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
- } // namespace llvm
- INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
- "Register Allocation Scoring Pass", false, false)
- // ===================================
- // Common ML Advisor declarations
- // ===================================
- namespace {
- // This is the maximum number of interfererring ranges. That's the number of
- // distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
- // For X86, that's 32.
- // TODO: find a way to get this, statically, in a programmatic way.
- static const int64_t MaxInterferences = 32;
- // Logically, we can think of the feature set given to the evaluator as a 2D
- // matrix. The rows are the features (see next). The columns correspond to the
- // interferences. We treat the candidate virt reg as an 'interference', too, as
- // its feature set is the same as that of the interferring ranges. So we'll have
- // MaxInterferences + 1 columns and by convention, we will use the last column
- // for the virt reg seeking allocation.
- static const int64_t CandidateVirtRegPos = MaxInterferences;
- static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
- // Most features are as described above, so we'll reuse this vector in defining
- // them.
- static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
- // --------------
- // Features table
- // --------------
- // For each interfering live range (incl. the candidate) we collect a number of
- // features. However, because the features are of different types (and because
- // of ML best practices), we organize the tensors per feature, not per
- // candidate. Each such tensor has a scalar value corresponding to the
- // interferring live range at that position, in the order in AllocationOrder.
- // The last position corresponds to the virt reg seeking allocation.
- // Exception to all that is the progression feature, which is just a scalar (see
- // its documentation for details).
- // Note on naming: the "_by_max" are normalized using the largest value of that
- // tensor, as observed in the current decision making stage (i.e. for the
- // current call to the advisor's tryFindEvictionCandidate)
- //
- // The feature list format: type, name, shape, documentation.
- // Note: we can really just use int64 and float, hence the modeling of some
- // bools as int64 values.
- #define RA_EVICT_FEATURES_LIST(M) \
- M(int64_t, mask, PerLiveRangeShape, \
- "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
- "it " \
- "can't be evicted)") \
- M(int64_t, is_free, PerLiveRangeShape, \
- "boolean values, 1 if this phys reg is actually free (no interferences)") \
- M(float, nr_urgent, PerLiveRangeShape, \
- "number of 'urgent' intervals, normalized. Urgent are those that are OK " \
- "to break cascades") \
- M(float, nr_broken_hints, PerLiveRangeShape, \
- "if this position were evicted, how many broken hints would there be") \
- M(int64_t, is_hint, PerLiveRangeShape, \
- "is this a preferred phys reg for the candidate") \
- M(int64_t, is_local, PerLiveRangeShape, \
- "is this live range local to a basic block") \
- M(float, nr_rematerializable, PerLiveRangeShape, \
- "nr rematerializable ranges") \
- M(float, nr_defs_and_uses, PerLiveRangeShape, \
- "bb freq - weighed nr defs and uses") \
- M(float, weighed_reads_by_max, PerLiveRangeShape, \
- "bb freq - weighed nr of reads, normalized") \
- M(float, weighed_writes_by_max, PerLiveRangeShape, \
- "bb feq - weighed nr of writes, normalized") \
- M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
- "bb freq - weighed nr of uses that are both read and writes, normalized") \
- M(float, weighed_indvars_by_max, PerLiveRangeShape, \
- "bb freq - weighed nr of uses that are indvars, normalized") \
- M(float, hint_weights_by_max, PerLiveRangeShape, \
- "bb freq - weighed nr of uses that are hints, normalized") \
- M(float, start_bb_freq_by_max, PerLiveRangeShape, \
- "the freq in the start block, normalized") \
- M(float, end_bb_freq_by_max, PerLiveRangeShape, \
- "freq of end block, normalized") \
- M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
- "hottest BB freq, normalized") \
- M(float, liverange_size, PerLiveRangeShape, \
- "size (instr index diff) of the LR") \
- M(float, use_def_density, PerLiveRangeShape, \
- "the max weight, as computed by the manual heuristic") \
- M(int64_t, max_stage, PerLiveRangeShape, \
- "largest stage of an interval in this LR") \
- M(int64_t, min_stage, PerLiveRangeShape, \
- "lowest stage of an interval in this LR") \
- M(float, progress, {1}, "ratio of current queue size to initial size")
- // The model learns to pick one of the mask == 1 interferences. This is the name
- // of the output tensor.
- // The contract with the model is that the output will be guaranteed to be to a
- // mask == 1 position.
- // Using a macro here to avoid 'not used' warnings (and keep cond compilation to
- // a minimum)
- #define DecisionName "index_to_evict"
- // Named features index.
- enum FeatureIDs {
- #define _FEATURE_IDX(_, name, __, ___) name,
- RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
- #undef _FEATURE_IDX
- FeatureCount
- };
- // The ML advisor will typically have a sparse input to the evaluator, because
- // various phys regs won't be available. It's easier (maintenance-wise) to
- // bulk-reset the state of the evaluator each time we are about to use it again.
- template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
- size_t Ret = sizeof(T);
- for (const auto V : Shape)
- Ret *= V;
- return Ret;
- }
- void resetInputs(MLModelRunner &Runner) {
- #define _RESET(TYPE, NAME, SHAPE, __) \
- std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
- getTotalSize<TYPE>(SHAPE));
- RA_EVICT_FEATURES_LIST(_RESET)
- #undef _RESET
- }
- // Per-live interval components that get aggregated into the feature values that
- // will be passed to the evaluator.
- struct LIFeatureComponents {
- double R = 0;
- double W = 0;
- double RW = 0;
- double IndVarUpdates = 0;
- double HintWeights = 0.0;
- int64_t NrDefsAndUses = 0;
- float HottestBlockFreq = 0.0;
- bool IsRemat = false;
- };
- using CandidateRegList =
- std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
- using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>;
- /// The ML evictor (commonalities between release and development mode)
- class MLEvictAdvisor : public RegAllocEvictionAdvisor {
- public:
- MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA, MLModelRunner *Runner,
- const MachineBlockFrequencyInfo &MBFI,
- const MachineLoopInfo &Loops);
- protected:
- const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
- return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
- }
- // The assumption is that if the Runner could not be constructed, we emit-ed
- // error, and we shouldn't be asking for it here.
- const MLModelRunner &getRunner() const { return *Runner; }
- /// This just calls Evaluate on the Runner, but in the development mode case,
- /// if we're just capturing the log of the default advisor, it needs to call
- /// the latter instead, so we need to pass all the necessary parameters for
- /// it. In the development case, it will also log.
- virtual int64_t tryFindEvictionCandidatePosition(
- LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit,
- uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const;
- /// Load the features of the given VirtReg (allocated or not) at column Pos,
- /// but if that can't be evicted, return false instead.
- bool
- loadInterferenceFeatures(LiveInterval &VirtReg, MCRegister PhysReg,
- bool IsHint, const SmallVirtRegSet &FixedRegisters,
- std::array<float, FeatureIDs::FeatureCount> &Largest,
- size_t Pos) const;
- private:
- static float getInitialQueueSize(const MachineFunction &MF);
- MCRegister tryFindEvictionCandidate(
- LiveInterval &VirtReg, const AllocationOrder &Order,
- uint8_t CostPerUseLimit,
- const SmallVirtRegSet &FixedRegisters) const override;
- void extractFeatures(const SmallVectorImpl<LiveInterval *> &Intervals,
- std::array<float, FeatureIDs::FeatureCount> &Largest,
- size_t Pos, int64_t IsHint, int64_t LocalIntfsCount,
- float NrUrgent) const;
- // Point-in-time: we didn't learn this, so we always delegate to the default.
- bool canEvictHintInterference(
- LiveInterval &VirtReg, MCRegister PhysReg,
- const SmallVirtRegSet &FixedRegisters) const override {
- return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
- FixedRegisters);
- }
- const LIFeatureComponents
- getLIFeatureComponents(const LiveInterval &LI) const;
- // Hold on to a default advisor for:
- // 1) the implementation of canEvictHintInterference, because we didn't learn
- // that nuance yet;
- // 2) for bootstrapping (logging) in the development mode case.
- const DefaultEvictionAdvisor DefaultAdvisor;
- MLModelRunner *const Runner;
- const MachineBlockFrequencyInfo &MBFI;
- const MachineLoopInfo &Loops;
- // Indices of those features we don't want to normalize.
- // This could be static and shared, but its initialization is non-trivial.
- std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
- const float InitialQSize;
- };
- // ===================================
- // Release (AOT) - specifics
- // ===================================
- #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
- const std::array<std::string, FeatureIDs::FeatureCount> FeatureNames{
- #define _GETNAME(_, NAME, __, ___) #NAME,
- RA_EVICT_FEATURES_LIST(_GETNAME)
- #undef _GETNAME
- };
- class ReleaseModeEvictionAdvisorAnalysis final
- : public RegAllocEvictionAdvisorAnalysis {
- public:
- ReleaseModeEvictionAdvisorAnalysis()
- : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {}
- // support for isa<> and dyn_cast.
- static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
- return R->getAdvisorMode() == AdvisorMode::Release;
- }
- private:
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<MachineLoopInfo>();
- RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
- }
- std::unique_ptr<RegAllocEvictionAdvisor>
- getAdvisor(MachineFunction &MF, const RAGreedy &RA) override {
- if (!Runner)
- Runner = std::make_unique<ReleaseModeModelRunner<RegallocEvictModel>>(
- MF.getFunction().getContext(), FeatureNames, DecisionName);
- return std::make_unique<MLEvictAdvisor>(
- MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
- getAnalysis<MachineLoopInfo>());
- }
- std::unique_ptr<ReleaseModeModelRunner<RegallocEvictModel>> Runner;
- };
- #endif
- // ===================================
- // Development mode-specifics
- // ===================================
- //
- // Features we log
- #ifdef LLVM_HAVE_TF_API
- #define _DECL_FEATURES(type, name, shape, _) \
- TensorSpec::createSpec<type>(#name, shape),
- static const std::vector<TensorSpec> InputFeatures{
- {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)},
- };
- #undef _DECL_FEATURES
- static const TensorSpec Output =
- TensorSpec::createSpec<int64_t>(DecisionName, {1});
- static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
- // Features we bind on the model. The tensor names have a prefix, and we also
- // need to include some tensors that are expected to be present by the training
- // algo.
- // TODO: can we just get rid of these?
- #define _DECL_TRAIN_FEATURES(type, name, shape, _) \
- TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
- static const std::vector<TensorSpec> TrainingInputFeatures{
- {RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
- TensorSpec::createSpec<float>("action_discount", {1}),
- TensorSpec::createSpec<int32_t>("action_step_type", {1}),
- TensorSpec::createSpec<float>("action_reward", {1})}};
- #undef _DECL_TRAIN_FEATURES
- class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
- public:
- DevelopmentModeEvictAdvisor(MachineFunction &MF, const RAGreedy &RA,
- MLModelRunner *Runner,
- const MachineBlockFrequencyInfo &MBFI,
- const MachineLoopInfo &Loops, Logger *Log)
- : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
- private:
- int64_t tryFindEvictionCandidatePosition(
- LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit,
- uint8_t CostPerUseLimit,
- const SmallVirtRegSet &FixedRegisters) const override;
- Logger *const Log;
- };
- class DevelopmentModeEvictionAdvisorAnalysis final
- : public RegAllocEvictionAdvisorAnalysis {
- public:
- DevelopmentModeEvictionAdvisorAnalysis()
- : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {}
- // support for isa<> and dyn_cast.
- static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
- return R->getAdvisorMode() == AdvisorMode::Development;
- }
- /// get the logger for the given function, or nullptr if we didn't collect
- /// one. This is used to inject the score by the RegAllocScoring pass.
- Logger *getLogger(const MachineFunction &MF) const {
- auto I = LogMap.find(MF.getName());
- if (I == LogMap.end())
- return nullptr;
- return I->second.get();
- }
- private:
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<MachineLoopInfo>();
- RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
- }
- // Save all the logs (when requested).
- bool doFinalization(Module &M) override {
- if (TrainingLog.empty())
- return false;
- std::error_code EC;
- auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
- if (EC) {
- M.getContext().emitError(EC.message() + ":" + TrainingLog);
- return false;
- }
- Logger::flushLogs(*OS, LogMap);
- return false;
- }
- std::unique_ptr<RegAllocEvictionAdvisor>
- getAdvisor(MachineFunction &MF, const RAGreedy &RA) override {
- LLVMContext &Ctx = MF.getFunction().getContext();
- if (ModelUnderTraining.empty() && TrainingLog.empty()) {
- Ctx.emitError("Regalloc development mode should be requested with at "
- "least logging enabled and/or a training model");
- return nullptr;
- }
- if (!Runner) {
- if (ModelUnderTraining.empty())
- Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
- else
- Runner = ModelUnderTrainingRunner::createAndEnsureValid(
- Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
- if (!Runner) {
- Ctx.emitError("Regalloc: could not set up the model runner");
- return nullptr;
- }
- }
- Logger *Log = nullptr;
- if (!TrainingLog.empty()) {
- std::vector<LoggedFeatureSpec> LFS;
- for (const auto &FS : InputFeatures)
- LFS.push_back({FS, None});
- if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
- if (MUTR->outputLoggedFeatureSpecs().size() > 1)
- append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs()));
- // We always log the output; in particular, if we're not evaluating, we
- // don't have an output spec json file. That's why we handle the
- // 'normal' output separately.
- LFS.push_back({Output, None});
- auto I = LogMap.insert(std::make_pair(
- MF.getFunction().getName(),
- std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true)));
- assert(I.second);
- Log = I.first->second.get();
- }
- return std::make_unique<DevelopmentModeEvictAdvisor>(
- MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
- getAnalysis<MachineLoopInfo>(), Log);
- }
- std::unique_ptr<MLModelRunner> Runner;
- StringMap<std::unique_ptr<Logger>> LogMap;
- };
- #endif //#ifdef LLVM_HAVE_TF_API
- } // namespace
- float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
- auto &MRI = MF.getRegInfo();
- float Ret = 0.0;
- for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
- Register Reg = Register::index2VirtReg(I);
- if (MRI.reg_nodbg_empty(Reg))
- continue;
- ++Ret;
- }
- return Ret;
- }
- MLEvictAdvisor::MLEvictAdvisor(MachineFunction &MF, const RAGreedy &RA,
- MLModelRunner *Runner,
- const MachineBlockFrequencyInfo &MBFI,
- const MachineLoopInfo &Loops)
- : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
- Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
- InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
- assert(this->Runner);
- DoNotNormalize.set(FeatureIDs::mask);
- DoNotNormalize.set(FeatureIDs::is_free);
- DoNotNormalize.set(FeatureIDs::is_hint);
- DoNotNormalize.set(FeatureIDs::is_local);
- DoNotNormalize.set(FeatureIDs::min_stage);
- DoNotNormalize.set(FeatureIDs::max_stage);
- DoNotNormalize.set(FeatureIDs::progress);
- }
- int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
- LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
- const SmallVirtRegSet &) const {
- int64_t Ret = Runner->evaluate<int64_t>();
- assert(Ret >= 0);
- assert(Ret <= CandidateVirtRegPos);
- return Ret;
- }
- bool MLEvictAdvisor::loadInterferenceFeatures(
- LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
- const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest,
- size_t Pos) const {
- // It is only possible to evict virtual register interference.
- if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
- // leave unavailable
- return false;
- }
- const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
- int64_t LocalIntfs = 0;
- float NrUrgent = 0.0f;
- // The cascade tracking is the same as in the default advisor
- unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
- SmallVector<LiveInterval *, MaxInterferences> InterferingIntervals;
- for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
- LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
- // Different from the default heuristic, we don't make any assumptions about
- // what having more than 10 results in the query may mean.
- const auto &IFIntervals = Q.interferingVRegs();
- if (IFIntervals.empty() && InterferingIntervals.empty())
- continue;
- InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
- for (LiveInterval *Intf : reverse(IFIntervals)) {
- assert(Register::isVirtualRegister(Intf->reg()) &&
- "Only expecting virtual register interference from query");
- // This is the same set of legality checks as in the default case: don't
- // try to evict fixed regs or 'done' ones. Also don't break cascades,
- // except in the urgent case, with the same nuances used in the default
- // heuristic.
- // We could try sharing this between the advisors, but it may end up
- // more complex than it is right now.
- if (FixedRegisters.count(Intf->reg()))
- return false;
- if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
- return false;
- bool Urgent =
- !VirtReg.isSpillable() &&
- (Intf->isSpillable() ||
- RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
- RegClassInfo.getNumAllocatableRegs(
- MRI->getRegClass(Intf->reg())));
- // Only evict older cascades or live ranges without a cascade.
- unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
- if (Cascade <= IntfCascade) {
- if (!Urgent)
- return false;
- ++NrUrgent;
- }
- LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
- (!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
- }
- }
- // OK, so if we made it this far, this LR is an eviction candidate, load its
- // features.
- extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
- NrUrgent);
- return true;
- }
- MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
- LiveInterval &VirtReg, const AllocationOrder &Order,
- uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
- auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
- if (!MaybeOrderLimit)
- return MCRegister::NoRegister;
- unsigned OrderLimit = *MaybeOrderLimit;
- // The heuristic sets initial costs such as, if CostPerUseLimit is
- // max<uint8_t>, then any of the costs of the legally-evictable intervals
- // would be lower. When that happens, one of those will be selected.
- // Therefore, we allow the candidate be selected, unless the candidate is
- // unspillable, in which case it would be incorrect to not find a register for
- // it.
- const bool MustFindEviction =
- (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
- // Number of available candidates - if 0, no need to continue.
- size_t Available = 0;
- // Make sure we don't have leftover partial state from an attempt where we had
- // no available candidates and bailed out early.
- resetInputs(*Runner);
- // Track the index->register mapping because AllocationOrder doesn't do that
- // and we'd have to scan it.
- // Also track their mask, to write asserts/debug.
- CandidateRegList Regs;
- Regs.fill({0, false});
- // Track the largest value of features seen during this eviction session. We
- // only normalize (some of) the float features, but it's just simpler to
- // dimension 'Largest' to all the features, especially since we have the
- // 'DoNotNormalize' list.
- FeaturesListNormalizer Largest;
- Largest.fill(0.0);
- // Same overal idea as in the default eviction policy - we visit the values of
- // AllocationOrder one at a time. If it's not legally available, we mask off
- // the corresponding feature column (==do nothing because we already reset all
- // the features to 0)
- // Use Pos to capture the column we load features at - in AllocationOrder
- // order.
- size_t Pos = 0;
- for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
- ++I, ++Pos) {
- MCRegister PhysReg = *I;
- assert(!Regs[Pos].second);
- assert(PhysReg);
- if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
- continue;
- }
- if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
- Largest, Pos)) {
- ++Available;
- Regs[Pos] = std::make_pair(PhysReg, true);
- }
- }
- if (Available == 0) {
- // Nothing to decide, nothing to learn.
- assert(!MustFindEviction);
- return MCRegister::NoRegister;
- }
- const size_t ValidPosLimit = Pos;
- // If we must find eviction, the candidate should be masked out of the
- // decision making process.
- Regs[CandidateVirtRegPos].second = !MustFindEviction;
- if (!MustFindEviction)
- extractFeatures(SmallVector<LiveInterval *, 1>(1, &VirtReg), Largest,
- CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0,
- /*NrUrgent*/ 0.0);
- assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
- "nothing to allocate initially.");
- // Normalize the features.
- for (auto &V : Largest)
- V = V ? V : 1.0;
- for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
- ++FeatureIndex) {
- if (DoNotNormalize.test(FeatureIndex))
- continue;
- for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
- Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
- }
- }
- *Runner->getTensor<float>(FeatureIDs::progress) =
- static_cast<float>(RA.getQueueSize()) / InitialQSize;
- // Get a decision.
- size_t CandidatePos = tryFindEvictionCandidatePosition(
- VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
- // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
- // Regs[CandidatePos].second)
- assert(Regs[CandidatePos].second);
- if (CandidatePos == CandidateVirtRegPos) {
- assert(!MustFindEviction);
- return MCRegister::NoRegister;
- }
- assert(CandidatePos < ValidPosLimit);
- (void)ValidPosLimit;
- return Regs[CandidatePos].first;
- }
- const LIFeatureComponents
- MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
- LIFeatureComponents Ret;
- SmallPtrSet<MachineInstr *, 8> Visited;
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- for (MachineRegisterInfo::reg_instr_nodbg_iterator
- I = MRI->reg_instr_nodbg_begin(LI.reg()),
- E = MRI->reg_instr_nodbg_end();
- I != E;) {
- MachineInstr *MI = &*(I++);
- ++Ret.NrDefsAndUses;
- if (!Visited.insert(MI).second)
- continue;
- if (MI->isIdentityCopy() || MI->isImplicitDef())
- continue;
- bool Reads, Writes;
- std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
- float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
- Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
- Ret.R += (Reads && !Writes) * Freq;
- Ret.W += (!Reads && Writes) * Freq;
- Ret.RW += (Reads && Writes) * Freq;
- auto *MBB = MI->getParent();
- auto *Loop = Loops.getLoopFor(MBB);
- bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
- if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
- Ret.IndVarUpdates += Freq;
- if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
- Ret.HintWeights += Freq;
- }
- Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
- LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
- return Ret;
- }
- // Overall, this currently mimics what we do for weight calculation, but instead
- // of accummulating the various features, we keep them separate.
- void MLEvictAdvisor::extractFeatures(
- const SmallVectorImpl<LiveInterval *> &Intervals,
- std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos,
- int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const {
- int64_t NrDefsAndUses = 0;
- int64_t NrBrokenHints = 0;
- double R = 0.0;
- double W = 0.0;
- double RW = 0.0;
- double IndVarUpdates = 0.0;
- double HintWeights = 0.0;
- float StartBBFreq = 0.0;
- float EndBBFreq = 0.0;
- float HottestBlockFreq = 0.0;
- int32_t NrRematerializable = 0;
- float TotalWeight = 0.0;
- SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
- SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
- int64_t MaxStage = 0;
- int64_t MinStage =
- Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
- for (const auto *L : Intervals) {
- const LiveInterval &LI = *L;
- MaxStage = std::max<int64_t>(
- MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
- MinStage = std::min<int64_t>(
- MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
- TotalWeight = std::max(TotalWeight, LI.weight());
- if (LI.beginIndex() < StartSI)
- StartSI = LI.beginIndex();
- if (LI.endIndex() > EndSI)
- EndSI = LI.endIndex();
- const LIFeatureComponents LIFC = getLIFeatureComponents(LI);
- NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
- NrDefsAndUses += LIFC.NrDefsAndUses;
- HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
- R += LIFC.R;
- W += LIFC.W;
- RW += LIFC.RW;
- IndVarUpdates += LIFC.IndVarUpdates;
- HintWeights += LIFC.HintWeights;
- NrRematerializable += LIFC.IsRemat;
- }
- size_t Size = 0;
- if (!Intervals.empty()) {
- StartBBFreq =
- MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
- if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
- EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
- EndBBFreq =
- MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
- Size = StartSI.distance(EndSI);
- }
- // Set the features at the column 'Pos'.
- #define SET(ID, TYPE, VAL) \
- do { \
- Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
- if (!DoNotNormalize.test(FeatureIDs::ID)) \
- Largest[FeatureIDs::ID] = \
- std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
- } while (false)
- SET(mask, int64_t, 1);
- SET(is_free, int64_t, Intervals.empty());
- SET(nr_urgent, float, NrUrgent);
- SET(nr_broken_hints, float, NrBrokenHints);
- SET(is_hint, int64_t, IsHint);
- SET(is_local, int64_t, LocalIntfsCount);
- SET(nr_rematerializable, float, NrRematerializable);
- SET(nr_defs_and_uses, float, NrDefsAndUses);
- SET(weighed_reads_by_max, float, R);
- SET(weighed_writes_by_max, float, W);
- SET(weighed_read_writes_by_max, float, RW);
- SET(weighed_indvars_by_max, float, IndVarUpdates);
- SET(hint_weights_by_max, float, HintWeights);
- SET(start_bb_freq_by_max, float, StartBBFreq);
- SET(end_bb_freq_by_max, float, EndBBFreq);
- SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
- SET(liverange_size, float, Size);
- SET(use_def_density, float, TotalWeight);
- SET(max_stage, int64_t, MaxStage);
- SET(min_stage, int64_t, MinStage);
- #undef SET
- }
- // Development mode-specific implementations
- #ifdef LLVM_HAVE_TF_API
- RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
- return new DevelopmentModeEvictionAdvisorAnalysis();
- }
- int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
- LiveInterval &VirtReg, const AllocationOrder &Order, unsigned OrderLimit,
- uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
- int64_t Ret = 0;
- if (isa<ModelUnderTrainingRunner>(getRunner())) {
- Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
- VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
- } else {
- MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
- VirtReg, Order, CostPerUseLimit, FixedRegisters);
- // Find the index of the selected PhysReg. We need it for logging, otherwise
- // this is wasted cycles (but so would starting development mode without a
- // model nor logging)
- if (!PhysReg)
- Ret = CandidateVirtRegPos;
- else
- for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
- I != E; ++I, ++Ret)
- if (*I == PhysReg)
- break;
- }
- if (TrainingLog.empty())
- return Ret;
- size_t CurrentFeature = 0;
- for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) {
- Log->logSpecifiedTensorValue(
- CurrentFeature, reinterpret_cast<const char *>(
- getRunner().getTensorUntyped(CurrentFeature)));
- }
- if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
- for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size();
- ++I, ++CurrentFeature)
- Log->logSpecifiedTensorValue(
- CurrentFeature,
- reinterpret_cast<const char *>(
- MUTR->lastEvaluationResult()->getUntypedTensorValue(I)));
- // The output is right after the features and the extra outputs
- Log->logInt64Value(CurrentFeature, &Ret);
- return Ret;
- }
- bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
- if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>(
- &getAnalysis<RegAllocEvictionAdvisorAnalysis>()))
- if (auto *Log = DevModeAnalysis->getLogger(MF))
- Log->logFloatFinalReward(static_cast<float>(
- calculateRegAllocScore(
- MF, getAnalysis<MachineBlockFrequencyInfo>(),
- getAnalysis<AAResultsWrapperPass>().getAAResults())
- .getScore()));
- return false;
- }
- #endif // #ifdef LLVM_HAVE_TF_API
- #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
- RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
- return new ReleaseModeEvictionAdvisorAnalysis();
- }
- #endif
- // In all cases except development mode, we don't need scoring.
- #if !defined(LLVM_HAVE_TF_API)
- bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
- #endif
|