123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- // SPDX-License-Identifier: 0BSD
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file memcmplen.h
- /// \brief Optimized comparison of two buffers
- //
- // Author: Lasse Collin
- //
- ///////////////////////////////////////////////////////////////////////////////
- #ifndef LZMA_MEMCMPLEN_H
- #define LZMA_MEMCMPLEN_H
- #include "common.h"
- #ifdef HAVE_IMMINTRIN_H
- # include <immintrin.h>
- #endif
- // Only include <intrin.h> if it is needed. The header is only needed
- // on Windows when using an MSVC compatible compiler. The Intel compiler
- // can use the intrinsics without the header file.
- #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
- && defined(_MSC_VER) \
- && (defined(_M_X64) \
- || defined(_M_ARM64) || defined(_M_ARM64EC)) \
- && !defined(__INTEL_COMPILER)
- # include <intrin.h>
- #endif
- /// Find out how many equal bytes the two buffers have.
- ///
- /// \param buf1 First buffer
- /// \param buf2 Second buffer
- /// \param len How many bytes have already been compared and will
- /// be assumed to match
- /// \param limit How many bytes to compare at most, including the
- /// already-compared bytes. This must be significantly
- /// smaller than UINT32_MAX to avoid integer overflows.
- /// Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past
- /// the specified limit from both buf1 and buf2.
- ///
- /// \return Number of equal bytes in the buffers is returned.
- /// This is always at least len and at most limit.
- ///
- /// \note LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read.
- /// It's rounded up to 2^n. This extra amount needs to be
- /// allocated in the buffers being used. It needs to be
- /// initialized too to keep Valgrind quiet.
- static lzma_always_inline uint32_t
- lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
- uint32_t len, uint32_t limit)
- {
- assert(len <= limit);
- assert(limit <= UINT32_MAX / 2);
- #if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
- && (((TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) \
- && (defined(__x86_64__) \
- || defined(__aarch64__))) \
- || (defined(__INTEL_COMPILER) && defined(__x86_64__)) \
- || (defined(__INTEL_COMPILER) && defined(_M_X64)) \
- || (defined(_MSC_VER) && (defined(_M_X64) \
- || defined(_M_ARM64) || defined(_M_ARM64EC))))
- // This is only for x86-64 and ARM64 for now. This might be fine on
- // other 64-bit processors too. On big endian one should use xor
- // instead of subtraction and switch to __builtin_clzll().
- //
- // Reasons to use subtraction instead of xor:
- //
- // - On some x86-64 processors (Intel Sandy Bridge to Tiger Lake),
- // sub+jz and sub+jnz can be fused but xor+jz or xor+jnz cannot.
- // Thus using subtraction has potential to be a tiny amount faster
- // since the code checks if the quotient is non-zero.
- //
- // - Some processors (Intel Pentium 4) used to have more ALU
- // resources for add/sub instructions than and/or/xor.
- //
- // The processor info is based on Agner Fog's microarchitecture.pdf
- // version 2023-05-26. https://www.agner.org/optimize/
- #define LZMA_MEMCMPLEN_EXTRA 8
- while (len < limit) {
- const uint64_t x = read64ne(buf1 + len) - read64ne(buf2 + len);
- if (x != 0) {
- // MSVC or Intel C compiler on Windows
- # if defined(_MSC_VER) || defined(__INTEL_COMPILER)
- unsigned long tmp;
- _BitScanForward64(&tmp, x);
- len += (uint32_t)tmp >> 3;
- // GCC, Clang, or Intel C compiler
- # else
- len += (uint32_t)__builtin_ctzll(x) >> 3;
- # endif
- return my_min(len, limit);
- }
- len += 8;
- }
- return limit;
- #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
- && defined(HAVE__MM_MOVEMASK_EPI8) \
- && (defined(__SSE2__) \
- || (defined(_MSC_VER) && defined(_M_IX86_FP) \
- && _M_IX86_FP >= 2))
- // NOTE: This will use 128-bit unaligned access which
- // TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit,
- // but it's convenient here since this is x86-only.
- //
- // SSE2 version for 32-bit and 64-bit x86. On x86-64 the above
- // version is sometimes significantly faster and sometimes
- // slightly slower than this SSE2 version, so this SSE2
- // version isn't used on x86-64.
- # define LZMA_MEMCMPLEN_EXTRA 16
- while (len < limit) {
- const uint32_t x = 0xFFFF ^ (uint32_t)_mm_movemask_epi8(
- _mm_cmpeq_epi8(
- _mm_loadu_si128((const __m128i *)(buf1 + len)),
- _mm_loadu_si128((const __m128i *)(buf2 + len))));
- if (x != 0) {
- len += ctz32(x);
- return my_min(len, limit);
- }
- len += 16;
- }
- return limit;
- #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN)
- // Generic 32-bit little endian method
- # define LZMA_MEMCMPLEN_EXTRA 4
- while (len < limit) {
- uint32_t x = read32ne(buf1 + len) - read32ne(buf2 + len);
- if (x != 0) {
- if ((x & 0xFFFF) == 0) {
- len += 2;
- x >>= 16;
- }
- if ((x & 0xFF) == 0)
- ++len;
- return my_min(len, limit);
- }
- len += 4;
- }
- return limit;
- #elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN)
- // Generic 32-bit big endian method
- # define LZMA_MEMCMPLEN_EXTRA 4
- while (len < limit) {
- uint32_t x = read32ne(buf1 + len) ^ read32ne(buf2 + len);
- if (x != 0) {
- if ((x & 0xFFFF0000) == 0) {
- len += 2;
- x <<= 16;
- }
- if ((x & 0xFF000000) == 0)
- ++len;
- return my_min(len, limit);
- }
- len += 4;
- }
- return limit;
- #else
- // Simple portable version that doesn't use unaligned access.
- # define LZMA_MEMCMPLEN_EXTRA 0
- while (len < limit && buf1[len] == buf2[len])
- ++len;
- return len;
- #endif
- }
- #endif
|