123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993 |
- #ifndef Py_OBJECT_H
- #define Py_OBJECT_H
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* Object and type object interface */
- /*
- Objects are structures allocated on the heap. Special rules apply to
- the use of objects to ensure they are properly garbage-collected.
- Objects are never allocated statically or on the stack; they must be
- accessed through special macros and functions only. (Type objects are
- exceptions to the first rule; the standard types are represented by
- statically initialized type objects, although work on type/class unification
- for Python 2.2 made it possible to have heap-allocated type objects too).
- An object has a 'reference count' that is increased or decreased when a
- pointer to the object is copied or deleted; when the reference count
- reaches zero there are no references to the object left and it can be
- removed from the heap.
- An object has a 'type' that determines what it represents and what kind
- of data it contains. An object's type is fixed when it is created.
- Types themselves are represented as objects; an object contains a
- pointer to the corresponding type object. The type itself has a type
- pointer pointing to the object representing the type 'type', which
- contains a pointer to itself!.
- Objects do not float around in memory; once allocated an object keeps
- the same size and address. Objects that must hold variable-size data
- can contain pointers to variable-size parts of the object. Not all
- objects of the same type have the same size; but the size cannot change
- after allocation. (These restrictions are made so a reference to an
- object can be simply a pointer -- moving an object would require
- updating all the pointers, and changing an object's size would require
- moving it if there was another object right next to it.)
- Objects are always accessed through pointers of the type 'PyObject *'.
- The type 'PyObject' is a structure that only contains the reference count
- and the type pointer. The actual memory allocated for an object
- contains other data that can only be accessed after casting the pointer
- to a pointer to a longer structure type. This longer type must start
- with the reference count and type fields; the macro PyObject_HEAD should be
- used for this (to accommodate for future changes). The implementation
- of a particular object type can cast the object pointer to the proper
- type and back.
- A standard interface exists for objects that contain an array of items
- whose size is determined when the object is allocated.
- */
- #include "pystats.h"
- /* Py_DEBUG implies Py_REF_DEBUG. */
- #if defined(Py_DEBUG) && !defined(Py_REF_DEBUG)
- # define Py_REF_DEBUG
- #endif
- #if defined(Py_LIMITED_API) && defined(Py_TRACE_REFS)
- # error Py_LIMITED_API is incompatible with Py_TRACE_REFS
- #endif
- #ifdef Py_TRACE_REFS
- /* Define pointers to support a doubly-linked list of all live heap objects. */
- #define _PyObject_HEAD_EXTRA \
- PyObject *_ob_next; \
- PyObject *_ob_prev;
- #define _PyObject_EXTRA_INIT _Py_NULL, _Py_NULL,
- #else
- # define _PyObject_HEAD_EXTRA
- # define _PyObject_EXTRA_INIT
- #endif
- /* PyObject_HEAD defines the initial segment of every PyObject. */
- #define PyObject_HEAD PyObject ob_base;
- /*
- Immortalization:
- The following indicates the immortalization strategy depending on the amount
- of available bits in the reference count field. All strategies are backwards
- compatible but the specific reference count value or immortalization check
- might change depending on the specializations for the underlying system.
- Proper deallocation of immortal instances requires distinguishing between
- statically allocated immortal instances vs those promoted by the runtime to be
- immortal. The latter should be the only instances that require
- cleanup during runtime finalization.
- */
- #if SIZEOF_VOID_P > 4
- /*
- In 64+ bit systems, an object will be marked as immortal by setting all of the
- lower 32 bits of the reference count field, which is equal to: 0xFFFFFFFF
- Using the lower 32 bits makes the value backwards compatible by allowing
- C-Extensions without the updated checks in Py_INCREF and Py_DECREF to safely
- increase and decrease the objects reference count. The object would lose its
- immortality, but the execution would still be correct.
- Reference count increases will use saturated arithmetic, taking advantage of
- having all the lower 32 bits set, which will avoid the reference count to go
- beyond the refcount limit. Immortality checks for reference count decreases will
- be done by checking the bit sign flag in the lower 32 bits.
- */
- #define _Py_IMMORTAL_REFCNT UINT_MAX
- #else
- /*
- In 32 bit systems, an object will be marked as immortal by setting all of the
- lower 30 bits of the reference count field, which is equal to: 0x3FFFFFFF
- Using the lower 30 bits makes the value backwards compatible by allowing
- C-Extensions without the updated checks in Py_INCREF and Py_DECREF to safely
- increase and decrease the objects reference count. The object would lose its
- immortality, but the execution would still be correct.
- Reference count increases and decreases will first go through an immortality
- check by comparing the reference count field to the immortality reference count.
- */
- #define _Py_IMMORTAL_REFCNT (UINT_MAX >> 2)
- #endif
- // Make all internal uses of PyObject_HEAD_INIT immortal while preserving the
- // C-API expectation that the refcnt will be set to 1.
- #ifdef Py_BUILD_CORE
- #define PyObject_HEAD_INIT(type) \
- { \
- _PyObject_EXTRA_INIT \
- { _Py_IMMORTAL_REFCNT }, \
- (type) \
- },
- #else
- #define PyObject_HEAD_INIT(type) \
- { \
- _PyObject_EXTRA_INIT \
- { 1 }, \
- (type) \
- },
- #endif /* Py_BUILD_CORE */
- #define PyVarObject_HEAD_INIT(type, size) \
- { \
- PyObject_HEAD_INIT(type) \
- (size) \
- },
- /* PyObject_VAR_HEAD defines the initial segment of all variable-size
- * container objects. These end with a declaration of an array with 1
- * element, but enough space is malloc'ed so that the array actually
- * has room for ob_size elements. Note that ob_size is an element count,
- * not necessarily a byte count.
- */
- #define PyObject_VAR_HEAD PyVarObject ob_base;
- #define Py_INVALID_SIZE (Py_ssize_t)-1
- /* Nothing is actually declared to be a PyObject, but every pointer to
- * a Python object can be cast to a PyObject*. This is inheritance built
- * by hand. Similarly every pointer to a variable-size Python object can,
- * in addition, be cast to PyVarObject*.
- */
- struct _object {
- _PyObject_HEAD_EXTRA
- #if (defined(__GNUC__) || defined(__clang__)) \
- && !(defined __STDC_VERSION__ && __STDC_VERSION__ >= 201112L)
- // On C99 and older, anonymous union is a GCC and clang extension
- __extension__
- #endif
- #ifdef _MSC_VER
- // Ignore MSC warning C4201: "nonstandard extension used:
- // nameless struct/union"
- __pragma(warning(push))
- __pragma(warning(disable: 4201))
- #endif
- union {
- Py_ssize_t ob_refcnt;
- #if SIZEOF_VOID_P > 4
- PY_UINT32_T ob_refcnt_split[2];
- #endif
- };
- #ifdef _MSC_VER
- __pragma(warning(pop))
- #endif
- PyTypeObject *ob_type;
- };
- /* Cast argument to PyObject* type. */
- #define _PyObject_CAST(op) _Py_CAST(PyObject*, (op))
- typedef struct {
- PyObject ob_base;
- Py_ssize_t ob_size; /* Number of items in variable part */
- } PyVarObject;
- /* Cast argument to PyVarObject* type. */
- #define _PyVarObject_CAST(op) _Py_CAST(PyVarObject*, (op))
- // Test if the 'x' object is the 'y' object, the same as "x is y" in Python.
- PyAPI_FUNC(int) Py_Is(PyObject *x, PyObject *y);
- #define Py_Is(x, y) ((x) == (y))
- static inline Py_ssize_t Py_REFCNT(PyObject *ob) {
- return ob->ob_refcnt;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_REFCNT(ob) Py_REFCNT(_PyObject_CAST(ob))
- #endif
- // bpo-39573: The Py_SET_TYPE() function must be used to set an object type.
- static inline PyTypeObject* Py_TYPE(PyObject *ob) {
- return ob->ob_type;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_TYPE(ob) Py_TYPE(_PyObject_CAST(ob))
- #endif
- PyAPI_DATA(PyTypeObject) PyLong_Type;
- PyAPI_DATA(PyTypeObject) PyBool_Type;
- // bpo-39573: The Py_SET_SIZE() function must be used to set an object size.
- static inline Py_ssize_t Py_SIZE(PyObject *ob) {
- assert(ob->ob_type != &PyLong_Type);
- assert(ob->ob_type != &PyBool_Type);
- return _PyVarObject_CAST(ob)->ob_size;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_SIZE(ob) Py_SIZE(_PyObject_CAST(ob))
- #endif
- static inline Py_ALWAYS_INLINE int _Py_IsImmortal(PyObject *op)
- {
- #if SIZEOF_VOID_P > 4
- return _Py_CAST(PY_INT32_T, op->ob_refcnt) < 0;
- #else
- return op->ob_refcnt == _Py_IMMORTAL_REFCNT;
- #endif
- }
- #define _Py_IsImmortal(op) _Py_IsImmortal(_PyObject_CAST(op))
- static inline int Py_IS_TYPE(PyObject *ob, PyTypeObject *type) {
- return Py_TYPE(ob) == type;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_IS_TYPE(ob, type) Py_IS_TYPE(_PyObject_CAST(ob), (type))
- #endif
- static inline void Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) {
- // This immortal check is for code that is unaware of immortal objects.
- // The runtime tracks these objects and we should avoid as much
- // as possible having extensions inadvertently change the refcnt
- // of an immortalized object.
- if (_Py_IsImmortal(ob)) {
- return;
- }
- ob->ob_refcnt = refcnt;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_SET_REFCNT(ob, refcnt) Py_SET_REFCNT(_PyObject_CAST(ob), (refcnt))
- #endif
- static inline void Py_SET_TYPE(PyObject *ob, PyTypeObject *type) {
- ob->ob_type = type;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_SET_TYPE(ob, type) Py_SET_TYPE(_PyObject_CAST(ob), type)
- #endif
- static inline void Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size) {
- assert(ob->ob_base.ob_type != &PyLong_Type);
- assert(ob->ob_base.ob_type != &PyBool_Type);
- ob->ob_size = size;
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_SET_SIZE(ob, size) Py_SET_SIZE(_PyVarObject_CAST(ob), (size))
- #endif
- /*
- Type objects contain a string containing the type name (to help somewhat
- in debugging), the allocation parameters (see PyObject_New() and
- PyObject_NewVar()),
- and methods for accessing objects of the type. Methods are optional, a
- nil pointer meaning that particular kind of access is not available for
- this type. The Py_DECREF() macro uses the tp_dealloc method without
- checking for a nil pointer; it should always be implemented except if
- the implementation can guarantee that the reference count will never
- reach zero (e.g., for statically allocated type objects).
- NB: the methods for certain type groups are now contained in separate
- method blocks.
- */
- typedef PyObject * (*unaryfunc)(PyObject *);
- typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
- typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
- typedef int (*inquiry)(PyObject *);
- typedef Py_ssize_t (*lenfunc)(PyObject *);
- typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
- typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
- typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
- typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
- typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
- typedef int (*objobjproc)(PyObject *, PyObject *);
- typedef int (*visitproc)(PyObject *, void *);
- typedef int (*traverseproc)(PyObject *, visitproc, void *);
- typedef void (*freefunc)(void *);
- typedef void (*destructor)(PyObject *);
- typedef PyObject *(*getattrfunc)(PyObject *, char *);
- typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
- typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
- typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
- typedef PyObject *(*reprfunc)(PyObject *);
- typedef Py_hash_t (*hashfunc)(PyObject *);
- typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
- typedef PyObject *(*getiterfunc) (PyObject *);
- typedef PyObject *(*iternextfunc) (PyObject *);
- typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
- typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
- typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
- typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *);
- typedef PyObject *(*allocfunc)(PyTypeObject *, Py_ssize_t);
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030c0000 // 3.12
- typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args,
- size_t nargsf, PyObject *kwnames);
- #endif
- typedef struct{
- int slot; /* slot id, see below */
- void *pfunc; /* function pointer */
- } PyType_Slot;
- typedef struct{
- const char* name;
- int basicsize;
- int itemsize;
- unsigned int flags;
- PyType_Slot *slots; /* terminated by slot==0. */
- } PyType_Spec;
- PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*);
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000
- PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*);
- #endif
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000
- PyAPI_FUNC(void*) PyType_GetSlot(PyTypeObject*, int);
- #endif
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03090000
- PyAPI_FUNC(PyObject*) PyType_FromModuleAndSpec(PyObject *, PyType_Spec *, PyObject *);
- PyAPI_FUNC(PyObject *) PyType_GetModule(PyTypeObject *);
- PyAPI_FUNC(void *) PyType_GetModuleState(PyTypeObject *);
- #endif
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030B0000
- PyAPI_FUNC(PyObject *) PyType_GetName(PyTypeObject *);
- PyAPI_FUNC(PyObject *) PyType_GetQualName(PyTypeObject *);
- #endif
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030C0000
- PyAPI_FUNC(PyObject *) PyType_FromMetaclass(PyTypeObject*, PyObject*, PyType_Spec*, PyObject*);
- PyAPI_FUNC(void *) PyObject_GetTypeData(PyObject *obj, PyTypeObject *cls);
- PyAPI_FUNC(Py_ssize_t) PyType_GetTypeDataSize(PyTypeObject *cls);
- #endif
- /* Generic type check */
- PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
- static inline int PyObject_TypeCheck(PyObject *ob, PyTypeObject *type) {
- return Py_IS_TYPE(ob, type) || PyType_IsSubtype(Py_TYPE(ob), type);
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define PyObject_TypeCheck(ob, type) PyObject_TypeCheck(_PyObject_CAST(ob), (type))
- #endif
- PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
- PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
- PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
- PyAPI_FUNC(unsigned long) PyType_GetFlags(PyTypeObject*);
- PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
- PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
- PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
- PyObject *, PyObject *);
- PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
- PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
- /* Generic operations on objects */
- PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
- PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
- PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
- PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
- PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
- PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
- PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
- PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
- PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
- PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, PyObject *, PyObject *);
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000
- PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *);
- #endif
- PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *);
- PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *);
- PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
- PyAPI_FUNC(int) PyObject_Not(PyObject *);
- PyAPI_FUNC(int) PyCallable_Check(PyObject *);
- PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
- /* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a
- list of strings. PyObject_Dir(NULL) is like builtins.dir(),
- returning the names of the current locals. In this case, if there are
- no current locals, NULL is returned, and PyErr_Occurred() is false.
- */
- PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
- /* Pickle support. */
- #ifndef Py_LIMITED_API
- PyAPI_FUNC(PyObject *) _PyObject_GetState(PyObject *);
- #endif
- /* Helpers for printing recursive container types */
- PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
- PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
- /* Flag bits for printing: */
- #define Py_PRINT_RAW 1 /* No string quotes etc. */
- /*
- Type flags (tp_flags)
- These flags are used to change expected features and behavior for a
- particular type.
- Arbitration of the flag bit positions will need to be coordinated among
- all extension writers who publicly release their extensions (this will
- be fewer than you might expect!).
- Most flags were removed as of Python 3.0 to make room for new flags. (Some
- flags are not for backwards compatibility but to indicate the presence of an
- optional feature; these flags remain of course.)
- Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
- Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
- given type object has a specified feature.
- */
- #ifndef Py_LIMITED_API
- /* Track types initialized using _PyStaticType_InitBuiltin(). */
- #define _Py_TPFLAGS_STATIC_BUILTIN (1 << 1)
- /* Placement of weakref pointers are managed by the VM, not by the type.
- * The VM will automatically set tp_weaklistoffset.
- */
- #define Py_TPFLAGS_MANAGED_WEAKREF (1 << 3)
- /* Placement of dict (and values) pointers are managed by the VM, not by the type.
- * The VM will automatically set tp_dictoffset.
- */
- #define Py_TPFLAGS_MANAGED_DICT (1 << 4)
- #define Py_TPFLAGS_PREHEADER (Py_TPFLAGS_MANAGED_WEAKREF | Py_TPFLAGS_MANAGED_DICT)
- /* Set if instances of the type object are treated as sequences for pattern matching */
- #define Py_TPFLAGS_SEQUENCE (1 << 5)
- /* Set if instances of the type object are treated as mappings for pattern matching */
- #define Py_TPFLAGS_MAPPING (1 << 6)
- #endif
- /* Disallow creating instances of the type: set tp_new to NULL and don't create
- * the "__new__" key in the type dictionary. */
- #define Py_TPFLAGS_DISALLOW_INSTANTIATION (1UL << 7)
- /* Set if the type object is immutable: type attributes cannot be set nor deleted */
- #define Py_TPFLAGS_IMMUTABLETYPE (1UL << 8)
- /* Set if the type object is dynamically allocated */
- #define Py_TPFLAGS_HEAPTYPE (1UL << 9)
- /* Set if the type allows subclassing */
- #define Py_TPFLAGS_BASETYPE (1UL << 10)
- /* Set if the type implements the vectorcall protocol (PEP 590) */
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030C0000
- #define Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11)
- #ifndef Py_LIMITED_API
- // Backwards compatibility alias for API that was provisional in Python 3.8
- #define _Py_TPFLAGS_HAVE_VECTORCALL Py_TPFLAGS_HAVE_VECTORCALL
- #endif
- #endif
- /* Set if the type is 'ready' -- fully initialized */
- #define Py_TPFLAGS_READY (1UL << 12)
- /* Set while the type is being 'readied', to prevent recursive ready calls */
- #define Py_TPFLAGS_READYING (1UL << 13)
- /* Objects support garbage collection (see objimpl.h) */
- #define Py_TPFLAGS_HAVE_GC (1UL << 14)
- /* These two bits are preserved for Stackless Python, next after this is 17 */
- #ifdef STACKLESS
- #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15)
- #else
- #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
- #endif
- /* Objects behave like an unbound method */
- #define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17)
- /* Object has up-to-date type attribute cache */
- #define Py_TPFLAGS_VALID_VERSION_TAG (1UL << 19)
- /* Type is abstract and cannot be instantiated */
- #define Py_TPFLAGS_IS_ABSTRACT (1UL << 20)
- // This undocumented flag gives certain built-ins their unique pattern-matching
- // behavior, which allows a single positional subpattern to match against the
- // subject itself (rather than a mapped attribute on it):
- #define _Py_TPFLAGS_MATCH_SELF (1UL << 22)
- /* Items (ob_size*tp_itemsize) are found at the end of an instance's memory */
- #define Py_TPFLAGS_ITEMS_AT_END (1UL << 23)
- /* These flags are used to determine if a type is a subclass. */
- #define Py_TPFLAGS_LONG_SUBCLASS (1UL << 24)
- #define Py_TPFLAGS_LIST_SUBCLASS (1UL << 25)
- #define Py_TPFLAGS_TUPLE_SUBCLASS (1UL << 26)
- #define Py_TPFLAGS_BYTES_SUBCLASS (1UL << 27)
- #define Py_TPFLAGS_UNICODE_SUBCLASS (1UL << 28)
- #define Py_TPFLAGS_DICT_SUBCLASS (1UL << 29)
- #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1UL << 30)
- #define Py_TPFLAGS_TYPE_SUBCLASS (1UL << 31)
- #define Py_TPFLAGS_DEFAULT ( \
- Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
- 0)
- /* NOTE: Some of the following flags reuse lower bits (removed as part of the
- * Python 3.0 transition). */
- /* The following flags are kept for compatibility; in previous
- * versions they indicated presence of newer tp_* fields on the
- * type struct.
- * Starting with 3.8, binary compatibility of C extensions across
- * feature releases of Python is not supported anymore (except when
- * using the stable ABI, in which all classes are created dynamically,
- * using the interpreter's memory layout.)
- * Note that older extensions using the stable ABI set these flags,
- * so the bits must not be repurposed.
- */
- #define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0)
- #define Py_TPFLAGS_HAVE_VERSION_TAG (1UL << 18)
- /*
- The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
- reference counts. Py_DECREF calls the object's deallocator function when
- the refcount falls to 0; for
- objects that don't contain references to other objects or heap memory
- this can be the standard function free(). Both macros can be used
- wherever a void expression is allowed. The argument must not be a
- NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
- The macro _Py_NewReference(op) initialize reference counts to 1, and
- in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
- bookkeeping appropriate to the special build.
- We assume that the reference count field can never overflow; this can
- be proven when the size of the field is the same as the pointer size, so
- we ignore the possibility. Provided a C int is at least 32 bits (which
- is implicitly assumed in many parts of this code), that's enough for
- about 2**31 references to an object.
- XXX The following became out of date in Python 2.2, but I'm not sure
- XXX what the full truth is now. Certainly, heap-allocated type objects
- XXX can and should be deallocated.
- Type objects should never be deallocated; the type pointer in an object
- is not considered to be a reference to the type object, to save
- complications in the deallocation function. (This is actually a
- decision that's up to the implementer of each new type so if you want,
- you can count such references to the type object.)
- */
- #if defined(Py_REF_DEBUG) && !defined(Py_LIMITED_API)
- PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno,
- PyObject *op);
- PyAPI_FUNC(void) _Py_INCREF_IncRefTotal(void);
- PyAPI_FUNC(void) _Py_DECREF_DecRefTotal(void);
- #endif // Py_REF_DEBUG && !Py_LIMITED_API
- PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
- /*
- These are provided as conveniences to Python runtime embedders, so that
- they can have object code that is not dependent on Python compilation flags.
- */
- PyAPI_FUNC(void) Py_IncRef(PyObject *);
- PyAPI_FUNC(void) Py_DecRef(PyObject *);
- // Similar to Py_IncRef() and Py_DecRef() but the argument must be non-NULL.
- // Private functions used by Py_INCREF() and Py_DECREF().
- PyAPI_FUNC(void) _Py_IncRef(PyObject *);
- PyAPI_FUNC(void) _Py_DecRef(PyObject *);
- static inline Py_ALWAYS_INLINE void Py_INCREF(PyObject *op)
- {
- #if defined(Py_LIMITED_API) && (Py_LIMITED_API+0 >= 0x030c0000 || defined(Py_REF_DEBUG))
- // Stable ABI implements Py_INCREF() as a function call on limited C API
- // version 3.12 and newer, and on Python built in debug mode. _Py_IncRef()
- // was added to Python 3.10.0a7, use Py_IncRef() on older Python versions.
- // Py_IncRef() accepts NULL whereas _Py_IncRef() doesn't.
- # if Py_LIMITED_API+0 >= 0x030a00A7
- _Py_IncRef(op);
- # else
- Py_IncRef(op);
- # endif
- #else
- // Non-limited C API and limited C API for Python 3.9 and older access
- // directly PyObject.ob_refcnt.
- #if SIZEOF_VOID_P > 4
- // Portable saturated add, branching on the carry flag and set low bits
- PY_UINT32_T cur_refcnt = op->ob_refcnt_split[PY_BIG_ENDIAN];
- PY_UINT32_T new_refcnt = cur_refcnt + 1;
- if (new_refcnt == 0) {
- return;
- }
- op->ob_refcnt_split[PY_BIG_ENDIAN] = new_refcnt;
- #else
- // Explicitly check immortality against the immortal value
- if (_Py_IsImmortal(op)) {
- return;
- }
- op->ob_refcnt++;
- #endif
- _Py_INCREF_STAT_INC();
- #ifdef Py_REF_DEBUG
- _Py_INCREF_IncRefTotal();
- #endif
- #endif
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_INCREF(op) Py_INCREF(_PyObject_CAST(op))
- #endif
- #if defined(Py_LIMITED_API) && (Py_LIMITED_API+0 >= 0x030c0000 || defined(Py_REF_DEBUG))
- // Stable ABI implements Py_DECREF() as a function call on limited C API
- // version 3.12 and newer, and on Python built in debug mode. _Py_DecRef() was
- // added to Python 3.10.0a7, use Py_DecRef() on older Python versions.
- // Py_DecRef() accepts NULL whereas _Py_IncRef() doesn't.
- static inline void Py_DECREF(PyObject *op) {
- # if Py_LIMITED_API+0 >= 0x030a00A7
- _Py_DecRef(op);
- # else
- Py_DecRef(op);
- # endif
- }
- #define Py_DECREF(op) Py_DECREF(_PyObject_CAST(op))
- #elif defined(Py_REF_DEBUG)
- static inline void Py_DECREF(const char *filename, int lineno, PyObject *op)
- {
- if (op->ob_refcnt <= 0) {
- _Py_NegativeRefcount(filename, lineno, op);
- }
- if (_Py_IsImmortal(op)) {
- return;
- }
- _Py_DECREF_STAT_INC();
- _Py_DECREF_DecRefTotal();
- if (--op->ob_refcnt == 0) {
- _Py_Dealloc(op);
- }
- }
- #define Py_DECREF(op) Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
- #else
- static inline Py_ALWAYS_INLINE void Py_DECREF(PyObject *op)
- {
- // Non-limited C API and limited C API for Python 3.9 and older access
- // directly PyObject.ob_refcnt.
- if (_Py_IsImmortal(op)) {
- return;
- }
- _Py_DECREF_STAT_INC();
- if (--op->ob_refcnt == 0) {
- _Py_Dealloc(op);
- }
- }
- #define Py_DECREF(op) Py_DECREF(_PyObject_CAST(op))
- #endif
- /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
- * and tp_dealloc implementations.
- *
- * Note that "the obvious" code can be deadly:
- *
- * Py_XDECREF(op);
- * op = NULL;
- *
- * Typically, `op` is something like self->containee, and `self` is done
- * using its `containee` member. In the code sequence above, suppose
- * `containee` is non-NULL with a refcount of 1. Its refcount falls to
- * 0 on the first line, which can trigger an arbitrary amount of code,
- * possibly including finalizers (like __del__ methods or weakref callbacks)
- * coded in Python, which in turn can release the GIL and allow other threads
- * to run, etc. Such code may even invoke methods of `self` again, or cause
- * cyclic gc to trigger, but-- oops! --self->containee still points to the
- * object being torn down, and it may be in an insane state while being torn
- * down. This has in fact been a rich historic source of miserable (rare &
- * hard-to-diagnose) segfaulting (and other) bugs.
- *
- * The safe way is:
- *
- * Py_CLEAR(op);
- *
- * That arranges to set `op` to NULL _before_ decref'ing, so that any code
- * triggered as a side-effect of `op` getting torn down no longer believes
- * `op` points to a valid object.
- *
- * There are cases where it's safe to use the naive code, but they're brittle.
- * For example, if `op` points to a Python integer, you know that destroying
- * one of those can't cause problems -- but in part that relies on that
- * Python integers aren't currently weakly referencable. Best practice is
- * to use Py_CLEAR() even if you can't think of a reason for why you need to.
- *
- * gh-98724: Use a temporary variable to only evaluate the macro argument once,
- * to avoid the duplication of side effects if the argument has side effects.
- *
- * gh-99701: If the PyObject* type is used with casting arguments to PyObject*,
- * the code can be miscompiled with strict aliasing because of type punning.
- * With strict aliasing, a compiler considers that two pointers of different
- * types cannot read or write the same memory which enables optimization
- * opportunities.
- *
- * If available, use _Py_TYPEOF() to use the 'op' type for temporary variables,
- * and so avoid type punning. Otherwise, use memcpy() which causes type erasure
- * and so prevents the compiler to reuse an old cached 'op' value after
- * Py_CLEAR().
- */
- #ifdef _Py_TYPEOF
- #define Py_CLEAR(op) \
- do { \
- _Py_TYPEOF(op)* _tmp_op_ptr = &(op); \
- _Py_TYPEOF(op) _tmp_old_op = (*_tmp_op_ptr); \
- if (_tmp_old_op != NULL) { \
- *_tmp_op_ptr = _Py_NULL; \
- Py_DECREF(_tmp_old_op); \
- } \
- } while (0)
- #else
- #define Py_CLEAR(op) \
- do { \
- PyObject **_tmp_op_ptr = _Py_CAST(PyObject**, &(op)); \
- PyObject *_tmp_old_op = (*_tmp_op_ptr); \
- if (_tmp_old_op != NULL) { \
- PyObject *_null_ptr = _Py_NULL; \
- memcpy(_tmp_op_ptr, &_null_ptr, sizeof(PyObject*)); \
- Py_DECREF(_tmp_old_op); \
- } \
- } while (0)
- #endif
- /* Function to use in case the object pointer can be NULL: */
- static inline void Py_XINCREF(PyObject *op)
- {
- if (op != _Py_NULL) {
- Py_INCREF(op);
- }
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_XINCREF(op) Py_XINCREF(_PyObject_CAST(op))
- #endif
- static inline void Py_XDECREF(PyObject *op)
- {
- if (op != _Py_NULL) {
- Py_DECREF(op);
- }
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_XDECREF(op) Py_XDECREF(_PyObject_CAST(op))
- #endif
- // Create a new strong reference to an object:
- // increment the reference count of the object and return the object.
- PyAPI_FUNC(PyObject*) Py_NewRef(PyObject *obj);
- // Similar to Py_NewRef(), but the object can be NULL.
- PyAPI_FUNC(PyObject*) Py_XNewRef(PyObject *obj);
- static inline PyObject* _Py_NewRef(PyObject *obj)
- {
- Py_INCREF(obj);
- return obj;
- }
- static inline PyObject* _Py_XNewRef(PyObject *obj)
- {
- Py_XINCREF(obj);
- return obj;
- }
- // Py_NewRef() and Py_XNewRef() are exported as functions for the stable ABI.
- // Names overridden with macros by static inline functions for best
- // performances.
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define Py_NewRef(obj) _Py_NewRef(_PyObject_CAST(obj))
- # define Py_XNewRef(obj) _Py_XNewRef(_PyObject_CAST(obj))
- #else
- # define Py_NewRef(obj) _Py_NewRef(obj)
- # define Py_XNewRef(obj) _Py_XNewRef(obj)
- #endif
- /*
- _Py_NoneStruct is an object of undefined type which can be used in contexts
- where NULL (nil) is not suitable (since NULL often means 'error').
- Don't forget to apply Py_INCREF() when returning this value!!!
- */
- PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
- #define Py_None (&_Py_NoneStruct)
- // Test if an object is the None singleton, the same as "x is None" in Python.
- PyAPI_FUNC(int) Py_IsNone(PyObject *x);
- #define Py_IsNone(x) Py_Is((x), Py_None)
- /* Macro for returning Py_None from a function */
- #define Py_RETURN_NONE return Py_None
- /*
- Py_NotImplemented is a singleton used to signal that an operation is
- not implemented for a given type combination.
- */
- PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
- #define Py_NotImplemented (&_Py_NotImplementedStruct)
- /* Macro for returning Py_NotImplemented from a function */
- #define Py_RETURN_NOTIMPLEMENTED return Py_NotImplemented
- /* Rich comparison opcodes */
- #define Py_LT 0
- #define Py_LE 1
- #define Py_EQ 2
- #define Py_NE 3
- #define Py_GT 4
- #define Py_GE 5
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030A0000
- /* Result of calling PyIter_Send */
- typedef enum {
- PYGEN_RETURN = 0,
- PYGEN_ERROR = -1,
- PYGEN_NEXT = 1,
- } PySendResult;
- #endif
- /*
- * Macro for implementing rich comparisons
- *
- * Needs to be a macro because any C-comparable type can be used.
- */
- #define Py_RETURN_RICHCOMPARE(val1, val2, op) \
- do { \
- switch (op) { \
- case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \
- default: \
- Py_UNREACHABLE(); \
- } \
- } while (0)
- /*
- More conventions
- ================
- Argument Checking
- -----------------
- Functions that take objects as arguments normally don't check for nil
- arguments, but they do check the type of the argument, and return an
- error if the function doesn't apply to the type.
- Failure Modes
- -------------
- Functions may fail for a variety of reasons, including running out of
- memory. This is communicated to the caller in two ways: an error string
- is set (see errors.h), and the function result differs: functions that
- normally return a pointer return NULL for failure, functions returning
- an integer return -1 (which could be a legal return value too!), and
- other functions return 0 for success and -1 for failure.
- Callers should always check for errors before using the result. If
- an error was set, the caller must either explicitly clear it, or pass
- the error on to its caller.
- Reference Counts
- ----------------
- It takes a while to get used to the proper usage of reference counts.
- Functions that create an object set the reference count to 1; such new
- objects must be stored somewhere or destroyed again with Py_DECREF().
- Some functions that 'store' objects, such as PyTuple_SetItem() and
- PyList_SetItem(),
- don't increment the reference count of the object, since the most
- frequent use is to store a fresh object. Functions that 'retrieve'
- objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
- don't increment
- the reference count, since most frequently the object is only looked at
- quickly. Thus, to retrieve an object and store it again, the caller
- must call Py_INCREF() explicitly.
- NOTE: functions that 'consume' a reference count, like
- PyList_SetItem(), consume the reference even if the object wasn't
- successfully stored, to simplify error handling.
- It seems attractive to make other functions that take an object as
- argument consume a reference count; however, this may quickly get
- confusing (even the current practice is already confusing). Consider
- it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
- times.
- */
- #ifndef Py_LIMITED_API
- # define Py_CPYTHON_OBJECT_H
- # include "cpython/object.h"
- # undef Py_CPYTHON_OBJECT_H
- #endif
- static inline int
- PyType_HasFeature(PyTypeObject *type, unsigned long feature)
- {
- unsigned long flags;
- #ifdef Py_LIMITED_API
- // PyTypeObject is opaque in the limited C API
- flags = PyType_GetFlags(type);
- #else
- flags = type->tp_flags;
- #endif
- return ((flags & feature) != 0);
- }
- #define PyType_FastSubclass(type, flag) PyType_HasFeature((type), (flag))
- static inline int PyType_Check(PyObject *op) {
- return PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS);
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define PyType_Check(op) PyType_Check(_PyObject_CAST(op))
- #endif
- #define _PyType_CAST(op) \
- (assert(PyType_Check(op)), _Py_CAST(PyTypeObject*, (op)))
- static inline int PyType_CheckExact(PyObject *op) {
- return Py_IS_TYPE(op, &PyType_Type);
- }
- #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000
- # define PyType_CheckExact(op) PyType_CheckExact(_PyObject_CAST(op))
- #endif
- #ifdef __cplusplus
- }
- #endif
- #endif // !Py_OBJECT_H
|