12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434 |
- /* Long (arbitrary precision) integer object implementation */
- /* XXX The functional organization of this file is terrible */
- #include "Python.h"
- #include "pycore_bitutils.h" // _Py_popcount32()
- #include "pycore_initconfig.h" // _PyStatus_OK()
- #include "pycore_long.h" // _Py_SmallInts
- #include "pycore_object.h" // _PyObject_Init()
- #include "pycore_runtime.h" // _PY_NSMALLPOSINTS
- #include "pycore_structseq.h" // _PyStructSequence_FiniBuiltin()
- #include <ctype.h>
- #include <float.h>
- #include <stddef.h>
- #include <stdlib.h> // abs()
- #include "clinic/longobject.c.h"
- /*[clinic input]
- class int "PyObject *" "&PyLong_Type"
- [clinic start generated code]*/
- /*[clinic end generated code: output=da39a3ee5e6b4b0d input=ec0275e3422a36e3]*/
- #define medium_value(x) ((stwodigits)_PyLong_CompactValue(x))
- #define IS_SMALL_INT(ival) (-_PY_NSMALLNEGINTS <= (ival) && (ival) < _PY_NSMALLPOSINTS)
- #define IS_SMALL_UINT(ival) ((ival) < _PY_NSMALLPOSINTS)
- #define _MAX_STR_DIGITS_ERROR_FMT_TO_INT "Exceeds the limit (%d digits) for integer string conversion: value has %zd digits; use sys.set_int_max_str_digits() to increase the limit"
- #define _MAX_STR_DIGITS_ERROR_FMT_TO_STR "Exceeds the limit (%d digits) for integer string conversion; use sys.set_int_max_str_digits() to increase the limit"
- /* If defined, use algorithms from the _pylong.py module */
- #define WITH_PYLONG_MODULE 1
- static inline void
- _Py_DECREF_INT(PyLongObject *op)
- {
- assert(PyLong_CheckExact(op));
- _Py_DECREF_SPECIALIZED((PyObject *)op, (destructor)PyObject_Free);
- }
- static inline int
- is_medium_int(stwodigits x)
- {
- /* Take care that we are comparing unsigned values. */
- twodigits x_plus_mask = ((twodigits)x) + PyLong_MASK;
- return x_plus_mask < ((twodigits)PyLong_MASK) + PyLong_BASE;
- }
- static PyObject *
- get_small_int(sdigit ival)
- {
- assert(IS_SMALL_INT(ival));
- return (PyObject *)&_PyLong_SMALL_INTS[_PY_NSMALLNEGINTS + ival];
- }
- static PyLongObject *
- maybe_small_long(PyLongObject *v)
- {
- if (v && _PyLong_IsCompact(v)) {
- stwodigits ival = medium_value(v);
- if (IS_SMALL_INT(ival)) {
- _Py_DECREF_INT(v);
- return (PyLongObject *)get_small_int((sdigit)ival);
- }
- }
- return v;
- }
- /* For int multiplication, use the O(N**2) school algorithm unless
- * both operands contain more than KARATSUBA_CUTOFF digits (this
- * being an internal Python int digit, in base BASE).
- */
- #define KARATSUBA_CUTOFF 70
- #define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
- /* For exponentiation, use the binary left-to-right algorithm unless the
- ^ exponent contains more than HUGE_EXP_CUTOFF bits. In that case, do
- * (no more than) EXP_WINDOW_SIZE bits at a time. The potential drawback is
- * that a table of 2**(EXP_WINDOW_SIZE - 1) intermediate results is
- * precomputed.
- */
- #define EXP_WINDOW_SIZE 5
- #define EXP_TABLE_LEN (1 << (EXP_WINDOW_SIZE - 1))
- /* Suppose the exponent has bit length e. All ways of doing this
- * need e squarings. The binary method also needs a multiply for
- * each bit set. In a k-ary method with window width w, a multiply
- * for each non-zero window, so at worst (and likely!)
- * ceiling(e/w). The k-ary sliding window method has the same
- * worst case, but the window slides so it can sometimes skip
- * over an all-zero window that the fixed-window method can't
- * exploit. In addition, the windowing methods need multiplies
- * to precompute a table of small powers.
- *
- * For the sliding window method with width 5, 16 precomputation
- * multiplies are needed. Assuming about half the exponent bits
- * are set, then, the binary method needs about e/2 extra mults
- * and the window method about 16 + e/5.
- *
- * The latter is smaller for e > 53 1/3. We don't have direct
- * access to the bit length, though, so call it 60, which is a
- * multiple of a long digit's max bit length (15 or 30 so far).
- */
- #define HUGE_EXP_CUTOFF 60
- #define SIGCHECK(PyTryBlock) \
- do { \
- if (PyErr_CheckSignals()) PyTryBlock \
- } while(0)
- /* Normalize (remove leading zeros from) an int object.
- Doesn't attempt to free the storage--in most cases, due to the nature
- of the algorithms used, this could save at most be one word anyway. */
- static PyLongObject *
- long_normalize(PyLongObject *v)
- {
- Py_ssize_t j = _PyLong_DigitCount(v);
- Py_ssize_t i = j;
- while (i > 0 && v->long_value.ob_digit[i-1] == 0)
- --i;
- if (i != j) {
- if (i == 0) {
- _PyLong_SetSignAndDigitCount(v, 0, 0);
- }
- else {
- _PyLong_SetDigitCount(v, i);
- }
- }
- return v;
- }
- /* Allocate a new int object with size digits.
- Return NULL and set exception if we run out of memory. */
- #define MAX_LONG_DIGITS \
- ((PY_SSIZE_T_MAX - offsetof(PyLongObject, long_value.ob_digit))/sizeof(digit))
- PyLongObject *
- _PyLong_New(Py_ssize_t size)
- {
- assert(size >= 0);
- PyLongObject *result;
- if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
- PyErr_SetString(PyExc_OverflowError,
- "too many digits in integer");
- return NULL;
- }
- /* Fast operations for single digit integers (including zero)
- * assume that there is always at least one digit present. */
- Py_ssize_t ndigits = size ? size : 1;
- /* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
- sizeof(digit)*size. Previous incarnations of this code used
- sizeof() instead of the offsetof, but this risks being
- incorrect in the presence of padding between the header
- and the digits. */
- result = PyObject_Malloc(offsetof(PyLongObject, long_value.ob_digit) +
- ndigits*sizeof(digit));
- if (!result) {
- PyErr_NoMemory();
- return NULL;
- }
- _PyLong_SetSignAndDigitCount(result, size != 0, size);
- _PyObject_Init((PyObject*)result, &PyLong_Type);
- /* The digit has to be initialized explicitly to avoid
- * use-of-uninitialized-value. */
- result->long_value.ob_digit[0] = 0;
- return result;
- }
- PyLongObject *
- _PyLong_FromDigits(int negative, Py_ssize_t digit_count, digit *digits)
- {
- assert(digit_count >= 0);
- if (digit_count == 0) {
- return (PyLongObject *)Py_NewRef(_PyLong_GetZero());
- }
- PyLongObject *result = _PyLong_New(digit_count);
- if (result == NULL) {
- PyErr_NoMemory();
- return NULL;
- }
- _PyLong_SetSignAndDigitCount(result, negative?-1:1, digit_count);
- memcpy(result->long_value.ob_digit, digits, digit_count * sizeof(digit));
- return result;
- }
- PyObject *
- _PyLong_Copy(PyLongObject *src)
- {
- assert(src != NULL);
- if (_PyLong_IsCompact(src)) {
- stwodigits ival = medium_value(src);
- if (IS_SMALL_INT(ival)) {
- return get_small_int((sdigit)ival);
- }
- }
- Py_ssize_t size = _PyLong_DigitCount(src);
- return (PyObject *)_PyLong_FromDigits(_PyLong_IsNegative(src), size, src->long_value.ob_digit);
- }
- static PyObject *
- _PyLong_FromMedium(sdigit x)
- {
- assert(!IS_SMALL_INT(x));
- assert(is_medium_int(x));
- /* We could use a freelist here */
- PyLongObject *v = PyObject_Malloc(sizeof(PyLongObject));
- if (v == NULL) {
- PyErr_NoMemory();
- return NULL;
- }
- digit abs_x = x < 0 ? -x : x;
- _PyLong_SetSignAndDigitCount(v, x<0?-1:1, 1);
- _PyObject_Init((PyObject*)v, &PyLong_Type);
- v->long_value.ob_digit[0] = abs_x;
- return (PyObject*)v;
- }
- static PyObject *
- _PyLong_FromLarge(stwodigits ival)
- {
- twodigits abs_ival;
- int sign;
- assert(!is_medium_int(ival));
- if (ival < 0) {
- /* negate: can't write this as abs_ival = -ival since that
- invokes undefined behaviour when ival is LONG_MIN */
- abs_ival = 0U-(twodigits)ival;
- sign = -1;
- }
- else {
- abs_ival = (twodigits)ival;
- sign = 1;
- }
- /* Must be at least two digits */
- assert(abs_ival >> PyLong_SHIFT != 0);
- twodigits t = abs_ival >> (PyLong_SHIFT * 2);
- Py_ssize_t ndigits = 2;
- while (t) {
- ++ndigits;
- t >>= PyLong_SHIFT;
- }
- PyLongObject *v = _PyLong_New(ndigits);
- if (v != NULL) {
- digit *p = v->long_value.ob_digit;
- _PyLong_SetSignAndDigitCount(v, sign, ndigits);
- t = abs_ival;
- while (t) {
- *p++ = Py_SAFE_DOWNCAST(
- t & PyLong_MASK, twodigits, digit);
- t >>= PyLong_SHIFT;
- }
- }
- return (PyObject *)v;
- }
- /* Create a new int object from a C word-sized int */
- static inline PyObject *
- _PyLong_FromSTwoDigits(stwodigits x)
- {
- if (IS_SMALL_INT(x)) {
- return get_small_int((sdigit)x);
- }
- assert(x != 0);
- if (is_medium_int(x)) {
- return _PyLong_FromMedium((sdigit)x);
- }
- return _PyLong_FromLarge(x);
- }
- /* If a freshly-allocated int is already shared, it must
- be a small integer, so negating it must go to PyLong_FromLong */
- Py_LOCAL_INLINE(void)
- _PyLong_Negate(PyLongObject **x_p)
- {
- PyLongObject *x;
- x = (PyLongObject *)*x_p;
- if (Py_REFCNT(x) == 1) {
- _PyLong_FlipSign(x);
- return;
- }
- *x_p = (PyLongObject *)_PyLong_FromSTwoDigits(-medium_value(x));
- Py_DECREF(x);
- }
- /* Create a new int object from a C long int */
- PyObject *
- PyLong_FromLong(long ival)
- {
- PyLongObject *v;
- unsigned long abs_ival, t;
- int ndigits;
- /* Handle small and medium cases. */
- if (IS_SMALL_INT(ival)) {
- return get_small_int((sdigit)ival);
- }
- if (-(long)PyLong_MASK <= ival && ival <= (long)PyLong_MASK) {
- return _PyLong_FromMedium((sdigit)ival);
- }
- /* Count digits (at least two - smaller cases were handled above). */
- abs_ival = ival < 0 ? 0U-(unsigned long)ival : (unsigned long)ival;
- /* Do shift in two steps to avoid possible undefined behavior. */
- t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
- ndigits = 2;
- while (t) {
- ++ndigits;
- t >>= PyLong_SHIFT;
- }
- /* Construct output value. */
- v = _PyLong_New(ndigits);
- if (v != NULL) {
- digit *p = v->long_value.ob_digit;
- _PyLong_SetSignAndDigitCount(v, ival < 0 ? -1 : 1, ndigits);
- t = abs_ival;
- while (t) {
- *p++ = (digit)(t & PyLong_MASK);
- t >>= PyLong_SHIFT;
- }
- }
- return (PyObject *)v;
- }
- #define PYLONG_FROM_UINT(INT_TYPE, ival) \
- do { \
- if (IS_SMALL_UINT(ival)) { \
- return get_small_int((sdigit)(ival)); \
- } \
- /* Count the number of Python digits. */ \
- Py_ssize_t ndigits = 0; \
- INT_TYPE t = (ival); \
- while (t) { \
- ++ndigits; \
- t >>= PyLong_SHIFT; \
- } \
- PyLongObject *v = _PyLong_New(ndigits); \
- if (v == NULL) { \
- return NULL; \
- } \
- digit *p = v->long_value.ob_digit; \
- while ((ival)) { \
- *p++ = (digit)((ival) & PyLong_MASK); \
- (ival) >>= PyLong_SHIFT; \
- } \
- return (PyObject *)v; \
- } while(0)
- /* Create a new int object from a C unsigned long int */
- PyObject *
- PyLong_FromUnsignedLong(unsigned long ival)
- {
- PYLONG_FROM_UINT(unsigned long, ival);
- }
- /* Create a new int object from a C unsigned long long int. */
- PyObject *
- PyLong_FromUnsignedLongLong(unsigned long long ival)
- {
- PYLONG_FROM_UINT(unsigned long long, ival);
- }
- /* Create a new int object from a C size_t. */
- PyObject *
- PyLong_FromSize_t(size_t ival)
- {
- PYLONG_FROM_UINT(size_t, ival);
- }
- /* Create a new int object from a C double */
- PyObject *
- PyLong_FromDouble(double dval)
- {
- /* Try to get out cheap if this fits in a long. When a finite value of real
- * floating type is converted to an integer type, the value is truncated
- * toward zero. If the value of the integral part cannot be represented by
- * the integer type, the behavior is undefined. Thus, we must check that
- * value is in range (LONG_MIN - 1, LONG_MAX + 1). If a long has more bits
- * of precision than a double, casting LONG_MIN - 1 to double may yield an
- * approximation, but LONG_MAX + 1 is a power of two and can be represented
- * as double exactly (assuming FLT_RADIX is 2 or 16), so for simplicity
- * check against [-(LONG_MAX + 1), LONG_MAX + 1).
- */
- const double int_max = (unsigned long)LONG_MAX + 1;
- if (-int_max < dval && dval < int_max) {
- return PyLong_FromLong((long)dval);
- }
- PyLongObject *v;
- double frac;
- int i, ndig, expo, neg;
- neg = 0;
- if (Py_IS_INFINITY(dval)) {
- PyErr_SetString(PyExc_OverflowError,
- "cannot convert float infinity to integer");
- return NULL;
- }
- if (Py_IS_NAN(dval)) {
- PyErr_SetString(PyExc_ValueError,
- "cannot convert float NaN to integer");
- return NULL;
- }
- if (dval < 0.0) {
- neg = 1;
- dval = -dval;
- }
- frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
- assert(expo > 0);
- ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
- v = _PyLong_New(ndig);
- if (v == NULL)
- return NULL;
- frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
- for (i = ndig; --i >= 0; ) {
- digit bits = (digit)frac;
- v->long_value.ob_digit[i] = bits;
- frac = frac - (double)bits;
- frac = ldexp(frac, PyLong_SHIFT);
- }
- if (neg) {
- _PyLong_FlipSign(v);
- }
- return (PyObject *)v;
- }
- /* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
- * anything about what happens when a signed integer operation overflows,
- * and some compilers think they're doing you a favor by being "clever"
- * then. The bit pattern for the largest positive signed long is
- * (unsigned long)LONG_MAX, and for the smallest negative signed long
- * it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
- * However, some other compilers warn about applying unary minus to an
- * unsigned operand. Hence the weird "0-".
- */
- #define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
- #define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
- /* Get a C long int from an int object or any object that has an __index__
- method.
- On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
- the result. Otherwise *overflow is 0.
- For other errors (e.g., TypeError), return -1 and set an error condition.
- In this case *overflow will be 0.
- */
- long
- PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
- {
- /* This version by Tim Peters */
- PyLongObject *v;
- unsigned long x, prev;
- long res;
- Py_ssize_t i;
- int sign;
- int do_decref = 0; /* if PyNumber_Index was called */
- *overflow = 0;
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return -1;
- }
- if (PyLong_Check(vv)) {
- v = (PyLongObject *)vv;
- }
- else {
- v = (PyLongObject *)_PyNumber_Index(vv);
- if (v == NULL)
- return -1;
- do_decref = 1;
- }
- if (_PyLong_IsCompact(v)) {
- #if SIZEOF_LONG < SIZEOF_SIZE_T
- Py_ssize_t tmp = _PyLong_CompactValue(v);
- if (tmp < LONG_MIN) {
- *overflow = -1;
- res = -1;
- }
- else if (tmp > LONG_MAX) {
- *overflow = 1;
- res = -1;
- }
- else {
- res = (long)tmp;
- }
- #else
- res = _PyLong_CompactValue(v);
- #endif
- }
- else {
- res = -1;
- i = _PyLong_DigitCount(v);
- sign = _PyLong_NonCompactSign(v);
- x = 0;
- while (--i >= 0) {
- prev = x;
- x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
- if ((x >> PyLong_SHIFT) != prev) {
- *overflow = sign;
- goto exit;
- }
- }
- /* Haven't lost any bits, but casting to long requires extra
- * care (see comment above).
- */
- if (x <= (unsigned long)LONG_MAX) {
- res = (long)x * sign;
- }
- else if (sign < 0 && x == PY_ABS_LONG_MIN) {
- res = LONG_MIN;
- }
- else {
- *overflow = sign;
- /* res is already set to -1 */
- }
- }
- exit:
- if (do_decref) {
- Py_DECREF(v);
- }
- return res;
- }
- /* Get a C long int from an int object or any object that has an __index__
- method. Return -1 and set an error if overflow occurs. */
- long
- PyLong_AsLong(PyObject *obj)
- {
- int overflow;
- long result = PyLong_AsLongAndOverflow(obj, &overflow);
- if (overflow) {
- /* XXX: could be cute and give a different
- message for overflow == -1 */
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert to C long");
- }
- return result;
- }
- /* Get a C int from an int object or any object that has an __index__
- method. Return -1 and set an error if overflow occurs. */
- int
- _PyLong_AsInt(PyObject *obj)
- {
- int overflow;
- long result = PyLong_AsLongAndOverflow(obj, &overflow);
- if (overflow || result > INT_MAX || result < INT_MIN) {
- /* XXX: could be cute and give a different
- message for overflow == -1 */
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert to C int");
- return -1;
- }
- return (int)result;
- }
- /* Get a Py_ssize_t from an int object.
- Returns -1 and sets an error condition if overflow occurs. */
- Py_ssize_t
- PyLong_AsSsize_t(PyObject *vv) {
- PyLongObject *v;
- size_t x, prev;
- Py_ssize_t i;
- int sign;
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return -1;
- }
- if (!PyLong_Check(vv)) {
- PyErr_SetString(PyExc_TypeError, "an integer is required");
- return -1;
- }
- v = (PyLongObject *)vv;
- if (_PyLong_IsCompact(v)) {
- return _PyLong_CompactValue(v);
- }
- i = _PyLong_DigitCount(v);
- sign = _PyLong_NonCompactSign(v);
- x = 0;
- while (--i >= 0) {
- prev = x;
- x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
- if ((x >> PyLong_SHIFT) != prev)
- goto overflow;
- }
- /* Haven't lost any bits, but casting to a signed type requires
- * extra care (see comment above).
- */
- if (x <= (size_t)PY_SSIZE_T_MAX) {
- return (Py_ssize_t)x * sign;
- }
- else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
- return PY_SSIZE_T_MIN;
- }
- /* else overflow */
- overflow:
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert to C ssize_t");
- return -1;
- }
- /* Get a C unsigned long int from an int object.
- Returns -1 and sets an error condition if overflow occurs. */
- unsigned long
- PyLong_AsUnsignedLong(PyObject *vv)
- {
- PyLongObject *v;
- unsigned long x, prev;
- Py_ssize_t i;
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return (unsigned long)-1;
- }
- if (!PyLong_Check(vv)) {
- PyErr_SetString(PyExc_TypeError, "an integer is required");
- return (unsigned long)-1;
- }
- v = (PyLongObject *)vv;
- if (_PyLong_IsNonNegativeCompact(v)) {
- #if SIZEOF_LONG < SIZEOF_SIZE_T
- size_t tmp = (size_t)_PyLong_CompactValue(v);
- unsigned long res = (unsigned long)tmp;
- if (res != tmp) {
- goto overflow;
- }
- return res;
- #else
- return (unsigned long)(size_t)_PyLong_CompactValue(v);
- #endif
- }
- if (_PyLong_IsNegative(v)) {
- PyErr_SetString(PyExc_OverflowError,
- "can't convert negative value to unsigned int");
- return (unsigned long) -1;
- }
- i = _PyLong_DigitCount(v);
- x = 0;
- while (--i >= 0) {
- prev = x;
- x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
- if ((x >> PyLong_SHIFT) != prev) {
- goto overflow;
- }
- }
- return x;
- overflow:
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert "
- "to C unsigned long");
- return (unsigned long) -1;
- }
- /* Get a C size_t from an int object. Returns (size_t)-1 and sets
- an error condition if overflow occurs. */
- size_t
- PyLong_AsSize_t(PyObject *vv)
- {
- PyLongObject *v;
- size_t x, prev;
- Py_ssize_t i;
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return (size_t) -1;
- }
- if (!PyLong_Check(vv)) {
- PyErr_SetString(PyExc_TypeError, "an integer is required");
- return (size_t)-1;
- }
- v = (PyLongObject *)vv;
- if (_PyLong_IsNonNegativeCompact(v)) {
- return (size_t)_PyLong_CompactValue(v);
- }
- if (_PyLong_IsNegative(v)) {
- PyErr_SetString(PyExc_OverflowError,
- "can't convert negative value to size_t");
- return (size_t) -1;
- }
- i = _PyLong_DigitCount(v);
- x = 0;
- while (--i >= 0) {
- prev = x;
- x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
- if ((x >> PyLong_SHIFT) != prev) {
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert to C size_t");
- return (size_t) -1;
- }
- }
- return x;
- }
- /* Get a C unsigned long int from an int object, ignoring the high bits.
- Returns -1 and sets an error condition if an error occurs. */
- static unsigned long
- _PyLong_AsUnsignedLongMask(PyObject *vv)
- {
- PyLongObject *v;
- unsigned long x;
- Py_ssize_t i;
- if (vv == NULL || !PyLong_Check(vv)) {
- PyErr_BadInternalCall();
- return (unsigned long) -1;
- }
- v = (PyLongObject *)vv;
- if (_PyLong_IsCompact(v)) {
- #if SIZEOF_LONG < SIZEOF_SIZE_T
- return (unsigned long)(size_t)_PyLong_CompactValue(v);
- #else
- return (unsigned long)(long)_PyLong_CompactValue(v);
- #endif
- }
- i = _PyLong_DigitCount(v);
- int sign = _PyLong_NonCompactSign(v);
- x = 0;
- while (--i >= 0) {
- x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
- }
- return x * sign;
- }
- unsigned long
- PyLong_AsUnsignedLongMask(PyObject *op)
- {
- PyLongObject *lo;
- unsigned long val;
- if (op == NULL) {
- PyErr_BadInternalCall();
- return (unsigned long)-1;
- }
- if (PyLong_Check(op)) {
- return _PyLong_AsUnsignedLongMask(op);
- }
- lo = (PyLongObject *)_PyNumber_Index(op);
- if (lo == NULL)
- return (unsigned long)-1;
- val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
- Py_DECREF(lo);
- return val;
- }
- int
- _PyLong_Sign(PyObject *vv)
- {
- PyLongObject *v = (PyLongObject *)vv;
- assert(v != NULL);
- assert(PyLong_Check(v));
- if (_PyLong_IsCompact(v)) {
- return _PyLong_CompactSign(v);
- }
- return _PyLong_NonCompactSign(v);
- }
- static int
- bit_length_digit(digit x)
- {
- // digit can be larger than unsigned long, but only PyLong_SHIFT bits
- // of it will be ever used.
- static_assert(PyLong_SHIFT <= sizeof(unsigned long) * 8,
- "digit is larger than unsigned long");
- return _Py_bit_length((unsigned long)x);
- }
- size_t
- _PyLong_NumBits(PyObject *vv)
- {
- PyLongObject *v = (PyLongObject *)vv;
- size_t result = 0;
- Py_ssize_t ndigits;
- int msd_bits;
- assert(v != NULL);
- assert(PyLong_Check(v));
- ndigits = _PyLong_DigitCount(v);
- assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
- if (ndigits > 0) {
- digit msd = v->long_value.ob_digit[ndigits - 1];
- if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
- goto Overflow;
- result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
- msd_bits = bit_length_digit(msd);
- if (SIZE_MAX - msd_bits < result)
- goto Overflow;
- result += msd_bits;
- }
- return result;
- Overflow:
- PyErr_SetString(PyExc_OverflowError, "int has too many bits "
- "to express in a platform size_t");
- return (size_t)-1;
- }
- PyObject *
- _PyLong_FromByteArray(const unsigned char* bytes, size_t n,
- int little_endian, int is_signed)
- {
- const unsigned char* pstartbyte; /* LSB of bytes */
- int incr; /* direction to move pstartbyte */
- const unsigned char* pendbyte; /* MSB of bytes */
- size_t numsignificantbytes; /* number of bytes that matter */
- Py_ssize_t ndigits; /* number of Python int digits */
- PyLongObject* v; /* result */
- Py_ssize_t idigit = 0; /* next free index in v->long_value.ob_digit */
- if (n == 0)
- return PyLong_FromLong(0L);
- if (little_endian) {
- pstartbyte = bytes;
- pendbyte = bytes + n - 1;
- incr = 1;
- }
- else {
- pstartbyte = bytes + n - 1;
- pendbyte = bytes;
- incr = -1;
- }
- if (is_signed)
- is_signed = *pendbyte >= 0x80;
- /* Compute numsignificantbytes. This consists of finding the most
- significant byte. Leading 0 bytes are insignificant if the number
- is positive, and leading 0xff bytes if negative. */
- {
- size_t i;
- const unsigned char* p = pendbyte;
- const int pincr = -incr; /* search MSB to LSB */
- const unsigned char insignificant = is_signed ? 0xff : 0x00;
- for (i = 0; i < n; ++i, p += pincr) {
- if (*p != insignificant)
- break;
- }
- numsignificantbytes = n - i;
- /* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
- actually has 2 significant bytes. OTOH, 0xff0001 ==
- -0x00ffff, so we wouldn't *need* to bump it there; but we
- do for 0xffff = -0x0001. To be safe without bothering to
- check every case, bump it regardless. */
- if (is_signed && numsignificantbytes < n)
- ++numsignificantbytes;
- }
- /* How many Python int digits do we need? We have
- 8*numsignificantbytes bits, and each Python int digit has
- PyLong_SHIFT bits, so it's the ceiling of the quotient. */
- /* catch overflow before it happens */
- if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
- PyErr_SetString(PyExc_OverflowError,
- "byte array too long to convert to int");
- return NULL;
- }
- ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
- v = _PyLong_New(ndigits);
- if (v == NULL)
- return NULL;
- /* Copy the bits over. The tricky parts are computing 2's-comp on
- the fly for signed numbers, and dealing with the mismatch between
- 8-bit bytes and (probably) 15-bit Python digits.*/
- {
- size_t i;
- twodigits carry = 1; /* for 2's-comp calculation */
- twodigits accum = 0; /* sliding register */
- unsigned int accumbits = 0; /* number of bits in accum */
- const unsigned char* p = pstartbyte;
- for (i = 0; i < numsignificantbytes; ++i, p += incr) {
- twodigits thisbyte = *p;
- /* Compute correction for 2's comp, if needed. */
- if (is_signed) {
- thisbyte = (0xff ^ thisbyte) + carry;
- carry = thisbyte >> 8;
- thisbyte &= 0xff;
- }
- /* Because we're going LSB to MSB, thisbyte is
- more significant than what's already in accum,
- so needs to be prepended to accum. */
- accum |= thisbyte << accumbits;
- accumbits += 8;
- if (accumbits >= PyLong_SHIFT) {
- /* There's enough to fill a Python digit. */
- assert(idigit < ndigits);
- v->long_value.ob_digit[idigit] = (digit)(accum & PyLong_MASK);
- ++idigit;
- accum >>= PyLong_SHIFT;
- accumbits -= PyLong_SHIFT;
- assert(accumbits < PyLong_SHIFT);
- }
- }
- assert(accumbits < PyLong_SHIFT);
- if (accumbits) {
- assert(idigit < ndigits);
- v->long_value.ob_digit[idigit] = (digit)accum;
- ++idigit;
- }
- }
- int sign = is_signed ? -1: 1;
- if (idigit == 0) {
- sign = 0;
- }
- _PyLong_SetSignAndDigitCount(v, sign, idigit);
- return (PyObject *)maybe_small_long(long_normalize(v));
- }
- int
- _PyLong_AsByteArray(PyLongObject* v,
- unsigned char* bytes, size_t n,
- int little_endian, int is_signed)
- {
- Py_ssize_t i; /* index into v->long_value.ob_digit */
- Py_ssize_t ndigits; /* number of digits */
- twodigits accum; /* sliding register */
- unsigned int accumbits; /* # bits in accum */
- int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
- digit carry; /* for computing 2's-comp */
- size_t j; /* # bytes filled */
- unsigned char* p; /* pointer to next byte in bytes */
- int pincr; /* direction to move p */
- assert(v != NULL && PyLong_Check(v));
- ndigits = _PyLong_DigitCount(v);
- if (_PyLong_IsNegative(v)) {
- if (!is_signed) {
- PyErr_SetString(PyExc_OverflowError,
- "can't convert negative int to unsigned");
- return -1;
- }
- do_twos_comp = 1;
- }
- else {
- do_twos_comp = 0;
- }
- if (little_endian) {
- p = bytes;
- pincr = 1;
- }
- else {
- p = bytes + n - 1;
- pincr = -1;
- }
- /* Copy over all the Python digits.
- It's crucial that every Python digit except for the MSD contribute
- exactly PyLong_SHIFT bits to the total, so first assert that the int is
- normalized. */
- assert(ndigits == 0 || v->long_value.ob_digit[ndigits - 1] != 0);
- j = 0;
- accum = 0;
- accumbits = 0;
- carry = do_twos_comp ? 1 : 0;
- for (i = 0; i < ndigits; ++i) {
- digit thisdigit = v->long_value.ob_digit[i];
- if (do_twos_comp) {
- thisdigit = (thisdigit ^ PyLong_MASK) + carry;
- carry = thisdigit >> PyLong_SHIFT;
- thisdigit &= PyLong_MASK;
- }
- /* Because we're going LSB to MSB, thisdigit is more
- significant than what's already in accum, so needs to be
- prepended to accum. */
- accum |= (twodigits)thisdigit << accumbits;
- /* The most-significant digit may be (probably is) at least
- partly empty. */
- if (i == ndigits - 1) {
- /* Count # of sign bits -- they needn't be stored,
- * although for signed conversion we need later to
- * make sure at least one sign bit gets stored. */
- digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
- while (s != 0) {
- s >>= 1;
- accumbits++;
- }
- }
- else
- accumbits += PyLong_SHIFT;
- /* Store as many bytes as possible. */
- while (accumbits >= 8) {
- if (j >= n)
- goto Overflow;
- ++j;
- *p = (unsigned char)(accum & 0xff);
- p += pincr;
- accumbits -= 8;
- accum >>= 8;
- }
- }
- /* Store the straggler (if any). */
- assert(accumbits < 8);
- assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
- if (accumbits > 0) {
- if (j >= n)
- goto Overflow;
- ++j;
- if (do_twos_comp) {
- /* Fill leading bits of the byte with sign bits
- (appropriately pretending that the int had an
- infinite supply of sign bits). */
- accum |= (~(twodigits)0) << accumbits;
- }
- *p = (unsigned char)(accum & 0xff);
- p += pincr;
- }
- else if (j == n && n > 0 && is_signed) {
- /* The main loop filled the byte array exactly, so the code
- just above didn't get to ensure there's a sign bit, and the
- loop below wouldn't add one either. Make sure a sign bit
- exists. */
- unsigned char msb = *(p - pincr);
- int sign_bit_set = msb >= 0x80;
- assert(accumbits == 0);
- if (sign_bit_set == do_twos_comp)
- return 0;
- else
- goto Overflow;
- }
- /* Fill remaining bytes with copies of the sign bit. */
- {
- unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
- for ( ; j < n; ++j, p += pincr)
- *p = signbyte;
- }
- return 0;
- Overflow:
- PyErr_SetString(PyExc_OverflowError, "int too big to convert");
- return -1;
- }
- /* Create a new int object from a C pointer */
- PyObject *
- PyLong_FromVoidPtr(void *p)
- {
- #if SIZEOF_VOID_P <= SIZEOF_LONG
- return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
- #else
- #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
- # error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
- #endif
- return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
- #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
- }
- /* Get a C pointer from an int object. */
- void *
- PyLong_AsVoidPtr(PyObject *vv)
- {
- #if SIZEOF_VOID_P <= SIZEOF_LONG
- long x;
- if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
- x = PyLong_AsLong(vv);
- }
- else {
- x = PyLong_AsUnsignedLong(vv);
- }
- #else
- #if SIZEOF_LONG_LONG < SIZEOF_VOID_P
- # error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
- #endif
- long long x;
- if (PyLong_Check(vv) && _PyLong_IsNegative((PyLongObject *)vv)) {
- x = PyLong_AsLongLong(vv);
- }
- else {
- x = PyLong_AsUnsignedLongLong(vv);
- }
- #endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
- if (x == -1 && PyErr_Occurred())
- return NULL;
- return (void *)x;
- }
- /* Initial long long support by Chris Herborth (chrish@qnx.com), later
- * rewritten to use the newer PyLong_{As,From}ByteArray API.
- */
- #define PY_ABS_LLONG_MIN (0-(unsigned long long)LLONG_MIN)
- /* Create a new int object from a C long long int. */
- PyObject *
- PyLong_FromLongLong(long long ival)
- {
- PyLongObject *v;
- unsigned long long abs_ival, t;
- int ndigits;
- /* Handle small and medium cases. */
- if (IS_SMALL_INT(ival)) {
- return get_small_int((sdigit)ival);
- }
- if (-(long long)PyLong_MASK <= ival && ival <= (long long)PyLong_MASK) {
- return _PyLong_FromMedium((sdigit)ival);
- }
- /* Count digits (at least two - smaller cases were handled above). */
- abs_ival = ival < 0 ? 0U-(unsigned long long)ival : (unsigned long long)ival;
- /* Do shift in two steps to avoid possible undefined behavior. */
- t = abs_ival >> PyLong_SHIFT >> PyLong_SHIFT;
- ndigits = 2;
- while (t) {
- ++ndigits;
- t >>= PyLong_SHIFT;
- }
- /* Construct output value. */
- v = _PyLong_New(ndigits);
- if (v != NULL) {
- digit *p = v->long_value.ob_digit;
- _PyLong_SetSignAndDigitCount(v, ival < 0 ? -1 : 1, ndigits);
- t = abs_ival;
- while (t) {
- *p++ = (digit)(t & PyLong_MASK);
- t >>= PyLong_SHIFT;
- }
- }
- return (PyObject *)v;
- }
- /* Create a new int object from a C Py_ssize_t. */
- PyObject *
- PyLong_FromSsize_t(Py_ssize_t ival)
- {
- PyLongObject *v;
- size_t abs_ival;
- size_t t; /* unsigned so >> doesn't propagate sign bit */
- int ndigits = 0;
- int negative = 0;
- if (IS_SMALL_INT(ival)) {
- return get_small_int((sdigit)ival);
- }
- if (ival < 0) {
- /* avoid signed overflow when ival = SIZE_T_MIN */
- abs_ival = (size_t)(-1-ival)+1;
- negative = 1;
- }
- else {
- abs_ival = (size_t)ival;
- }
- /* Count the number of Python digits. */
- t = abs_ival;
- while (t) {
- ++ndigits;
- t >>= PyLong_SHIFT;
- }
- v = _PyLong_New(ndigits);
- if (v != NULL) {
- digit *p = v->long_value.ob_digit;
- _PyLong_SetSignAndDigitCount(v, negative ? -1 : 1, ndigits);
- t = abs_ival;
- while (t) {
- *p++ = (digit)(t & PyLong_MASK);
- t >>= PyLong_SHIFT;
- }
- }
- return (PyObject *)v;
- }
- /* Get a C long long int from an int object or any object that has an
- __index__ method. Return -1 and set an error if overflow occurs. */
- long long
- PyLong_AsLongLong(PyObject *vv)
- {
- PyLongObject *v;
- long long bytes;
- int res;
- int do_decref = 0; /* if PyNumber_Index was called */
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return -1;
- }
- if (PyLong_Check(vv)) {
- v = (PyLongObject *)vv;
- }
- else {
- v = (PyLongObject *)_PyNumber_Index(vv);
- if (v == NULL)
- return -1;
- do_decref = 1;
- }
- if (_PyLong_IsCompact(v)) {
- res = 0;
- bytes = _PyLong_CompactValue(v);
- }
- else {
- res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
- SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
- }
- if (do_decref) {
- Py_DECREF(v);
- }
- /* Plan 9 can't handle long long in ? : expressions */
- if (res < 0)
- return (long long)-1;
- else
- return bytes;
- }
- /* Get a C unsigned long long int from an int object.
- Return -1 and set an error if overflow occurs. */
- unsigned long long
- PyLong_AsUnsignedLongLong(PyObject *vv)
- {
- PyLongObject *v;
- unsigned long long bytes;
- int res;
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return (unsigned long long)-1;
- }
- if (!PyLong_Check(vv)) {
- PyErr_SetString(PyExc_TypeError, "an integer is required");
- return (unsigned long long)-1;
- }
- v = (PyLongObject*)vv;
- if (_PyLong_IsNonNegativeCompact(v)) {
- res = 0;
- #if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
- size_t tmp = (size_t)_PyLong_CompactValue(v);
- bytes = (unsigned long long)tmp;
- if (bytes != tmp) {
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large to convert "
- "to C unsigned long long");
- res = -1;
- }
- #else
- bytes = (unsigned long long)(size_t)_PyLong_CompactValue(v);
- #endif
- }
- else {
- res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
- SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
- }
- /* Plan 9 can't handle long long in ? : expressions */
- if (res < 0)
- return (unsigned long long)res;
- else
- return bytes;
- }
- /* Get a C unsigned long int from an int object, ignoring the high bits.
- Returns -1 and sets an error condition if an error occurs. */
- static unsigned long long
- _PyLong_AsUnsignedLongLongMask(PyObject *vv)
- {
- PyLongObject *v;
- unsigned long long x;
- Py_ssize_t i;
- int sign;
- if (vv == NULL || !PyLong_Check(vv)) {
- PyErr_BadInternalCall();
- return (unsigned long long) -1;
- }
- v = (PyLongObject *)vv;
- if (_PyLong_IsCompact(v)) {
- #if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
- return (unsigned long long)(size_t)_PyLong_CompactValue(v);
- #else
- return (unsigned long long)(long long)_PyLong_CompactValue(v);
- #endif
- }
- i = _PyLong_DigitCount(v);
- sign = _PyLong_NonCompactSign(v);
- x = 0;
- while (--i >= 0) {
- x = (x << PyLong_SHIFT) | v->long_value.ob_digit[i];
- }
- return x * sign;
- }
- unsigned long long
- PyLong_AsUnsignedLongLongMask(PyObject *op)
- {
- PyLongObject *lo;
- unsigned long long val;
- if (op == NULL) {
- PyErr_BadInternalCall();
- return (unsigned long long)-1;
- }
- if (PyLong_Check(op)) {
- return _PyLong_AsUnsignedLongLongMask(op);
- }
- lo = (PyLongObject *)_PyNumber_Index(op);
- if (lo == NULL)
- return (unsigned long long)-1;
- val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
- Py_DECREF(lo);
- return val;
- }
- /* Get a C long long int from an int object or any object that has an
- __index__ method.
- On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
- the result. Otherwise *overflow is 0.
- For other errors (e.g., TypeError), return -1 and set an error condition.
- In this case *overflow will be 0.
- */
- long long
- PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
- {
- /* This version by Tim Peters */
- PyLongObject *v;
- unsigned long long x, prev;
- long long res;
- Py_ssize_t i;
- int sign;
- int do_decref = 0; /* if PyNumber_Index was called */
- *overflow = 0;
- if (vv == NULL) {
- PyErr_BadInternalCall();
- return -1;
- }
- if (PyLong_Check(vv)) {
- v = (PyLongObject *)vv;
- }
- else {
- v = (PyLongObject *)_PyNumber_Index(vv);
- if (v == NULL)
- return -1;
- do_decref = 1;
- }
- if (_PyLong_IsCompact(v)) {
- #if SIZEOF_LONG_LONG < SIZEOF_SIZE_T
- Py_ssize_t tmp = _PyLong_CompactValue(v);
- if (tmp < LLONG_MIN) {
- *overflow = -1;
- res = -1;
- }
- else if (tmp > LLONG_MAX) {
- *overflow = 1;
- res = -1;
- }
- else {
- res = (long long)tmp;
- }
- #else
- res = _PyLong_CompactValue(v);
- #endif
- }
- else {
- i = _PyLong_DigitCount(v);
- sign = _PyLong_NonCompactSign(v);
- x = 0;
- while (--i >= 0) {
- prev = x;
- x = (x << PyLong_SHIFT) + v->long_value.ob_digit[i];
- if ((x >> PyLong_SHIFT) != prev) {
- *overflow = sign;
- res = -1;
- goto exit;
- }
- }
- /* Haven't lost any bits, but casting to long requires extra
- * care (see comment above).
- */
- if (x <= (unsigned long long)LLONG_MAX) {
- res = (long long)x * sign;
- }
- else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
- res = LLONG_MIN;
- }
- else {
- *overflow = sign;
- res = -1;
- }
- }
- exit:
- if (do_decref) {
- Py_DECREF(v);
- }
- return res;
- }
- int
- _PyLong_UnsignedShort_Converter(PyObject *obj, void *ptr)
- {
- unsigned long uval;
- if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
- PyErr_SetString(PyExc_ValueError, "value must be positive");
- return 0;
- }
- uval = PyLong_AsUnsignedLong(obj);
- if (uval == (unsigned long)-1 && PyErr_Occurred())
- return 0;
- if (uval > USHRT_MAX) {
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large for C unsigned short");
- return 0;
- }
- *(unsigned short *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned short);
- return 1;
- }
- int
- _PyLong_UnsignedInt_Converter(PyObject *obj, void *ptr)
- {
- unsigned long uval;
- if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
- PyErr_SetString(PyExc_ValueError, "value must be positive");
- return 0;
- }
- uval = PyLong_AsUnsignedLong(obj);
- if (uval == (unsigned long)-1 && PyErr_Occurred())
- return 0;
- if (uval > UINT_MAX) {
- PyErr_SetString(PyExc_OverflowError,
- "Python int too large for C unsigned int");
- return 0;
- }
- *(unsigned int *)ptr = Py_SAFE_DOWNCAST(uval, unsigned long, unsigned int);
- return 1;
- }
- int
- _PyLong_UnsignedLong_Converter(PyObject *obj, void *ptr)
- {
- unsigned long uval;
- if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
- PyErr_SetString(PyExc_ValueError, "value must be positive");
- return 0;
- }
- uval = PyLong_AsUnsignedLong(obj);
- if (uval == (unsigned long)-1 && PyErr_Occurred())
- return 0;
- *(unsigned long *)ptr = uval;
- return 1;
- }
- int
- _PyLong_UnsignedLongLong_Converter(PyObject *obj, void *ptr)
- {
- unsigned long long uval;
- if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
- PyErr_SetString(PyExc_ValueError, "value must be positive");
- return 0;
- }
- uval = PyLong_AsUnsignedLongLong(obj);
- if (uval == (unsigned long long)-1 && PyErr_Occurred())
- return 0;
- *(unsigned long long *)ptr = uval;
- return 1;
- }
- int
- _PyLong_Size_t_Converter(PyObject *obj, void *ptr)
- {
- size_t uval;
- if (PyLong_Check(obj) && _PyLong_IsNegative((PyLongObject *)obj)) {
- PyErr_SetString(PyExc_ValueError, "value must be positive");
- return 0;
- }
- uval = PyLong_AsSize_t(obj);
- if (uval == (size_t)-1 && PyErr_Occurred())
- return 0;
- *(size_t *)ptr = uval;
- return 1;
- }
- #define CHECK_BINOP(v,w) \
- do { \
- if (!PyLong_Check(v) || !PyLong_Check(w)) \
- Py_RETURN_NOTIMPLEMENTED; \
- } while(0)
- /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
- * is modified in place, by adding y to it. Carries are propagated as far as
- * x[m-1], and the remaining carry (0 or 1) is returned.
- */
- static digit
- v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
- {
- Py_ssize_t i;
- digit carry = 0;
- assert(m >= n);
- for (i = 0; i < n; ++i) {
- carry += x[i] + y[i];
- x[i] = carry & PyLong_MASK;
- carry >>= PyLong_SHIFT;
- assert((carry & 1) == carry);
- }
- for (; carry && i < m; ++i) {
- carry += x[i];
- x[i] = carry & PyLong_MASK;
- carry >>= PyLong_SHIFT;
- assert((carry & 1) == carry);
- }
- return carry;
- }
- /* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
- * is modified in place, by subtracting y from it. Borrows are propagated as
- * far as x[m-1], and the remaining borrow (0 or 1) is returned.
- */
- static digit
- v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
- {
- Py_ssize_t i;
- digit borrow = 0;
- assert(m >= n);
- for (i = 0; i < n; ++i) {
- borrow = x[i] - y[i] - borrow;
- x[i] = borrow & PyLong_MASK;
- borrow >>= PyLong_SHIFT;
- borrow &= 1; /* keep only 1 sign bit */
- }
- for (; borrow && i < m; ++i) {
- borrow = x[i] - borrow;
- x[i] = borrow & PyLong_MASK;
- borrow >>= PyLong_SHIFT;
- borrow &= 1;
- }
- return borrow;
- }
- /* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
- * result in z[0:m], and return the d bits shifted out of the top.
- */
- static digit
- v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
- {
- Py_ssize_t i;
- digit carry = 0;
- assert(0 <= d && d < PyLong_SHIFT);
- for (i=0; i < m; i++) {
- twodigits acc = (twodigits)a[i] << d | carry;
- z[i] = (digit)acc & PyLong_MASK;
- carry = (digit)(acc >> PyLong_SHIFT);
- }
- return carry;
- }
- /* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
- * result in z[0:m], and return the d bits shifted out of the bottom.
- */
- static digit
- v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
- {
- Py_ssize_t i;
- digit carry = 0;
- digit mask = ((digit)1 << d) - 1U;
- assert(0 <= d && d < PyLong_SHIFT);
- for (i=m; i-- > 0;) {
- twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
- carry = (digit)acc & mask;
- z[i] = (digit)(acc >> d);
- }
- return carry;
- }
- /* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
- in pout, and returning the remainder. pin and pout point at the LSD.
- It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
- _PyLong_Format, but that should be done with great care since ints are
- immutable.
- This version of the code can be 20% faster than the pre-2022 version
- on todays compilers on architectures like amd64. It evolved from Mark
- Dickinson observing that a 128:64 divide instruction was always being
- generated by the compiler despite us working with 30-bit digit values.
- See the thread for full context:
- https://mail.python.org/archives/list/python-dev@python.org/thread/ZICIMX5VFCX4IOFH5NUPVHCUJCQ4Q7QM/#NEUNFZU3TQU4CPTYZNF3WCN7DOJBBTK5
- If you ever want to change this code, pay attention to performance using
- different compilers, optimization levels, and cpu architectures. Beware of
- PGO/FDO builds doing value specialization such as a fast path for //10. :)
- Verify that 17 isn't specialized and this works as a quick test:
- python -m timeit -s 'x = 10**1000; r=x//10; assert r == 10**999, r' 'x//17'
- */
- static digit
- inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
- {
- digit remainder = 0;
- assert(n > 0 && n <= PyLong_MASK);
- while (--size >= 0) {
- twodigits dividend;
- dividend = ((twodigits)remainder << PyLong_SHIFT) | pin[size];
- digit quotient;
- quotient = (digit)(dividend / n);
- remainder = dividend % n;
- pout[size] = quotient;
- }
- return remainder;
- }
- /* Divide an integer by a digit, returning both the quotient
- (as function result) and the remainder (through *prem).
- The sign of a is ignored; n should not be zero. */
- static PyLongObject *
- divrem1(PyLongObject *a, digit n, digit *prem)
- {
- const Py_ssize_t size = _PyLong_DigitCount(a);
- PyLongObject *z;
- assert(n > 0 && n <= PyLong_MASK);
- z = _PyLong_New(size);
- if (z == NULL)
- return NULL;
- *prem = inplace_divrem1(z->long_value.ob_digit, a->long_value.ob_digit, size, n);
- return long_normalize(z);
- }
- /* Remainder of long pin, w/ size digits, by non-zero digit n,
- returning the remainder. pin points at the LSD. */
- static digit
- inplace_rem1(digit *pin, Py_ssize_t size, digit n)
- {
- twodigits rem = 0;
- assert(n > 0 && n <= PyLong_MASK);
- while (--size >= 0)
- rem = ((rem << PyLong_SHIFT) | pin[size]) % n;
- return (digit)rem;
- }
- /* Get the remainder of an integer divided by a digit, returning
- the remainder as the result of the function. The sign of a is
- ignored; n should not be zero. */
- static PyLongObject *
- rem1(PyLongObject *a, digit n)
- {
- const Py_ssize_t size = _PyLong_DigitCount(a);
- assert(n > 0 && n <= PyLong_MASK);
- return (PyLongObject *)PyLong_FromLong(
- (long)inplace_rem1(a->long_value.ob_digit, size, n)
- );
- }
- #ifdef WITH_PYLONG_MODULE
- /* asymptotically faster long_to_decimal_string, using _pylong.py */
- static int
- pylong_int_to_decimal_string(PyObject *aa,
- PyObject **p_output,
- _PyUnicodeWriter *writer,
- _PyBytesWriter *bytes_writer,
- char **bytes_str)
- {
- PyObject *s = NULL;
- PyObject *mod = PyImport_ImportModule("_pylong");
- if (mod == NULL) {
- return -1;
- }
- s = PyObject_CallMethod(mod, "int_to_decimal_string", "O", aa);
- if (s == NULL) {
- goto error;
- }
- if (!PyUnicode_Check(s)) {
- PyErr_SetString(PyExc_TypeError,
- "_pylong.int_to_decimal_string did not return a str");
- goto error;
- }
- if (writer) {
- Py_ssize_t size = PyUnicode_GET_LENGTH(s);
- if (_PyUnicodeWriter_Prepare(writer, size, '9') == -1) {
- goto error;
- }
- if (_PyUnicodeWriter_WriteStr(writer, s) < 0) {
- goto error;
- }
- goto success;
- }
- else if (bytes_writer) {
- Py_ssize_t size = PyUnicode_GET_LENGTH(s);
- const void *data = PyUnicode_DATA(s);
- int kind = PyUnicode_KIND(s);
- *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, size);
- if (*bytes_str == NULL) {
- goto error;
- }
- char *p = *bytes_str;
- for (Py_ssize_t i=0; i < size; i++) {
- Py_UCS4 ch = PyUnicode_READ(kind, data, i);
- *p++ = (char) ch;
- }
- (*bytes_str) = p;
- goto success;
- }
- else {
- *p_output = Py_NewRef(s);
- goto success;
- }
- error:
- Py_DECREF(mod);
- Py_XDECREF(s);
- return -1;
- success:
- Py_DECREF(mod);
- Py_DECREF(s);
- return 0;
- }
- #endif /* WITH_PYLONG_MODULE */
- /* Convert an integer to a base 10 string. Returns a new non-shared
- string. (Return value is non-shared so that callers can modify the
- returned value if necessary.) */
- static int
- long_to_decimal_string_internal(PyObject *aa,
- PyObject **p_output,
- _PyUnicodeWriter *writer,
- _PyBytesWriter *bytes_writer,
- char **bytes_str)
- {
- PyLongObject *scratch, *a;
- PyObject *str = NULL;
- Py_ssize_t size, strlen, size_a, i, j;
- digit *pout, *pin, rem, tenpow;
- int negative;
- int d;
- // writer or bytes_writer can be used, but not both at the same time.
- assert(writer == NULL || bytes_writer == NULL);
- a = (PyLongObject *)aa;
- if (a == NULL || !PyLong_Check(a)) {
- PyErr_BadInternalCall();
- return -1;
- }
- size_a = _PyLong_DigitCount(a);
- negative = _PyLong_IsNegative(a);
- /* quick and dirty pre-check for overflowing the decimal digit limit,
- based on the inequality 10/3 >= log2(10)
- explanation in https://github.com/python/cpython/pull/96537
- */
- if (size_a >= 10 * _PY_LONG_MAX_STR_DIGITS_THRESHOLD
- / (3 * PyLong_SHIFT) + 2) {
- PyInterpreterState *interp = _PyInterpreterState_GET();
- int max_str_digits = interp->long_state.max_str_digits;
- if ((max_str_digits > 0) &&
- (max_str_digits / (3 * PyLong_SHIFT) <= (size_a - 11) / 10)) {
- PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
- max_str_digits);
- return -1;
- }
- }
- #if WITH_PYLONG_MODULE
- if (size_a > 1000) {
- /* Switch to _pylong.int_to_decimal_string(). */
- return pylong_int_to_decimal_string(aa,
- p_output,
- writer,
- bytes_writer,
- bytes_str);
- }
- #endif
- /* quick and dirty upper bound for the number of digits
- required to express a in base _PyLong_DECIMAL_BASE:
- #digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
- But log2(a) < size_a * PyLong_SHIFT, and
- log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
- > 3.3 * _PyLong_DECIMAL_SHIFT
- size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
- size_a + size_a / d < size_a + size_a / floor(d),
- where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
- (PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
- */
- d = (33 * _PyLong_DECIMAL_SHIFT) /
- (10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
- assert(size_a < PY_SSIZE_T_MAX/2);
- size = 1 + size_a + size_a / d;
- scratch = _PyLong_New(size);
- if (scratch == NULL)
- return -1;
- /* convert array of base _PyLong_BASE digits in pin to an array of
- base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
- Volume 2 (3rd edn), section 4.4, Method 1b). */
- pin = a->long_value.ob_digit;
- pout = scratch->long_value.ob_digit;
- size = 0;
- for (i = size_a; --i >= 0; ) {
- digit hi = pin[i];
- for (j = 0; j < size; j++) {
- twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
- hi = (digit)(z / _PyLong_DECIMAL_BASE);
- pout[j] = (digit)(z - (twodigits)hi *
- _PyLong_DECIMAL_BASE);
- }
- while (hi) {
- pout[size++] = hi % _PyLong_DECIMAL_BASE;
- hi /= _PyLong_DECIMAL_BASE;
- }
- /* check for keyboard interrupt */
- SIGCHECK({
- Py_DECREF(scratch);
- return -1;
- });
- }
- /* pout should have at least one digit, so that the case when a = 0
- works correctly */
- if (size == 0)
- pout[size++] = 0;
- /* calculate exact length of output string, and allocate */
- strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
- tenpow = 10;
- rem = pout[size-1];
- while (rem >= tenpow) {
- tenpow *= 10;
- strlen++;
- }
- if (strlen > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
- PyInterpreterState *interp = _PyInterpreterState_GET();
- int max_str_digits = interp->long_state.max_str_digits;
- Py_ssize_t strlen_nosign = strlen - negative;
- if ((max_str_digits > 0) && (strlen_nosign > max_str_digits)) {
- Py_DECREF(scratch);
- PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_STR,
- max_str_digits);
- return -1;
- }
- }
- if (writer) {
- if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
- Py_DECREF(scratch);
- return -1;
- }
- }
- else if (bytes_writer) {
- *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
- if (*bytes_str == NULL) {
- Py_DECREF(scratch);
- return -1;
- }
- }
- else {
- str = PyUnicode_New(strlen, '9');
- if (str == NULL) {
- Py_DECREF(scratch);
- return -1;
- }
- }
- #define WRITE_DIGITS(p) \
- do { \
- /* pout[0] through pout[size-2] contribute exactly \
- _PyLong_DECIMAL_SHIFT digits each */ \
- for (i=0; i < size - 1; i++) { \
- rem = pout[i]; \
- for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { \
- *--p = '0' + rem % 10; \
- rem /= 10; \
- } \
- } \
- /* pout[size-1]: always produce at least one decimal digit */ \
- rem = pout[i]; \
- do { \
- *--p = '0' + rem % 10; \
- rem /= 10; \
- } while (rem != 0); \
- \
- /* and sign */ \
- if (negative) \
- *--p = '-'; \
- } while (0)
- #define WRITE_UNICODE_DIGITS(TYPE) \
- do { \
- if (writer) \
- p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
- else \
- p = (TYPE*)PyUnicode_DATA(str) + strlen; \
- \
- WRITE_DIGITS(p); \
- \
- /* check we've counted correctly */ \
- if (writer) \
- assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
- else \
- assert(p == (TYPE*)PyUnicode_DATA(str)); \
- } while (0)
- /* fill the string right-to-left */
- if (bytes_writer) {
- char *p = *bytes_str + strlen;
- WRITE_DIGITS(p);
- assert(p == *bytes_str);
- }
- else {
- int kind = writer ? writer->kind : PyUnicode_KIND(str);
- if (kind == PyUnicode_1BYTE_KIND) {
- Py_UCS1 *p;
- WRITE_UNICODE_DIGITS(Py_UCS1);
- }
- else if (kind == PyUnicode_2BYTE_KIND) {
- Py_UCS2 *p;
- WRITE_UNICODE_DIGITS(Py_UCS2);
- }
- else {
- assert (kind == PyUnicode_4BYTE_KIND);
- Py_UCS4 *p;
- WRITE_UNICODE_DIGITS(Py_UCS4);
- }
- }
- #undef WRITE_DIGITS
- #undef WRITE_UNICODE_DIGITS
- _Py_DECREF_INT(scratch);
- if (writer) {
- writer->pos += strlen;
- }
- else if (bytes_writer) {
- (*bytes_str) += strlen;
- }
- else {
- assert(_PyUnicode_CheckConsistency(str, 1));
- *p_output = (PyObject *)str;
- }
- return 0;
- }
- static PyObject *
- long_to_decimal_string(PyObject *aa)
- {
- PyObject *v;
- if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
- return NULL;
- return v;
- }
- /* Convert an int object to a string, using a given conversion base,
- which should be one of 2, 8 or 16. Return a string object.
- If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
- if alternate is nonzero. */
- static int
- long_format_binary(PyObject *aa, int base, int alternate,
- PyObject **p_output, _PyUnicodeWriter *writer,
- _PyBytesWriter *bytes_writer, char **bytes_str)
- {
- PyLongObject *a = (PyLongObject *)aa;
- PyObject *v = NULL;
- Py_ssize_t sz;
- Py_ssize_t size_a;
- int negative;
- int bits;
- assert(base == 2 || base == 8 || base == 16);
- // writer or bytes_writer can be used, but not both at the same time.
- assert(writer == NULL || bytes_writer == NULL);
- if (a == NULL || !PyLong_Check(a)) {
- PyErr_BadInternalCall();
- return -1;
- }
- size_a = _PyLong_DigitCount(a);
- negative = _PyLong_IsNegative(a);
- /* Compute a rough upper bound for the length of the string */
- switch (base) {
- case 16:
- bits = 4;
- break;
- case 8:
- bits = 3;
- break;
- case 2:
- bits = 1;
- break;
- default:
- Py_UNREACHABLE();
- }
- /* Compute exact length 'sz' of output string. */
- if (size_a == 0) {
- sz = 1;
- }
- else {
- Py_ssize_t size_a_in_bits;
- /* Ensure overflow doesn't occur during computation of sz. */
- if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
- PyErr_SetString(PyExc_OverflowError,
- "int too large to format");
- return -1;
- }
- size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
- bit_length_digit(a->long_value.ob_digit[size_a - 1]);
- /* Allow 1 character for a '-' sign. */
- sz = negative + (size_a_in_bits + (bits - 1)) / bits;
- }
- if (alternate) {
- /* 2 characters for prefix */
- sz += 2;
- }
- if (writer) {
- if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
- return -1;
- }
- else if (bytes_writer) {
- *bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
- if (*bytes_str == NULL)
- return -1;
- }
- else {
- v = PyUnicode_New(sz, 'x');
- if (v == NULL)
- return -1;
- }
- #define WRITE_DIGITS(p) \
- do { \
- if (size_a == 0) { \
- *--p = '0'; \
- } \
- else { \
- /* JRH: special case for power-of-2 bases */ \
- twodigits accum = 0; \
- int accumbits = 0; /* # of bits in accum */ \
- Py_ssize_t i; \
- for (i = 0; i < size_a; ++i) { \
- accum |= (twodigits)a->long_value.ob_digit[i] << accumbits; \
- accumbits += PyLong_SHIFT; \
- assert(accumbits >= bits); \
- do { \
- char cdigit; \
- cdigit = (char)(accum & (base - 1)); \
- cdigit += (cdigit < 10) ? '0' : 'a'-10; \
- *--p = cdigit; \
- accumbits -= bits; \
- accum >>= bits; \
- } while (i < size_a-1 ? accumbits >= bits : accum > 0); \
- } \
- } \
- \
- if (alternate) { \
- if (base == 16) \
- *--p = 'x'; \
- else if (base == 8) \
- *--p = 'o'; \
- else /* (base == 2) */ \
- *--p = 'b'; \
- *--p = '0'; \
- } \
- if (negative) \
- *--p = '-'; \
- } while (0)
- #define WRITE_UNICODE_DIGITS(TYPE) \
- do { \
- if (writer) \
- p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
- else \
- p = (TYPE*)PyUnicode_DATA(v) + sz; \
- \
- WRITE_DIGITS(p); \
- \
- if (writer) \
- assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
- else \
- assert(p == (TYPE*)PyUnicode_DATA(v)); \
- } while (0)
- if (bytes_writer) {
- char *p = *bytes_str + sz;
- WRITE_DIGITS(p);
- assert(p == *bytes_str);
- }
- else {
- int kind = writer ? writer->kind : PyUnicode_KIND(v);
- if (kind == PyUnicode_1BYTE_KIND) {
- Py_UCS1 *p;
- WRITE_UNICODE_DIGITS(Py_UCS1);
- }
- else if (kind == PyUnicode_2BYTE_KIND) {
- Py_UCS2 *p;
- WRITE_UNICODE_DIGITS(Py_UCS2);
- }
- else {
- assert (kind == PyUnicode_4BYTE_KIND);
- Py_UCS4 *p;
- WRITE_UNICODE_DIGITS(Py_UCS4);
- }
- }
- #undef WRITE_DIGITS
- #undef WRITE_UNICODE_DIGITS
- if (writer) {
- writer->pos += sz;
- }
- else if (bytes_writer) {
- (*bytes_str) += sz;
- }
- else {
- assert(_PyUnicode_CheckConsistency(v, 1));
- *p_output = v;
- }
- return 0;
- }
- PyObject *
- _PyLong_Format(PyObject *obj, int base)
- {
- PyObject *str;
- int err;
- if (base == 10)
- err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
- else
- err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
- if (err == -1)
- return NULL;
- return str;
- }
- int
- _PyLong_FormatWriter(_PyUnicodeWriter *writer,
- PyObject *obj,
- int base, int alternate)
- {
- if (base == 10)
- return long_to_decimal_string_internal(obj, NULL, writer,
- NULL, NULL);
- else
- return long_format_binary(obj, base, alternate, NULL, writer,
- NULL, NULL);
- }
- char*
- _PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
- PyObject *obj,
- int base, int alternate)
- {
- char *str2;
- int res;
- str2 = str;
- if (base == 10)
- res = long_to_decimal_string_internal(obj, NULL, NULL,
- writer, &str2);
- else
- res = long_format_binary(obj, base, alternate, NULL, NULL,
- writer, &str2);
- if (res < 0)
- return NULL;
- assert(str2 != NULL);
- return str2;
- }
- /* Table of digit values for 8-bit string -> integer conversion.
- * '0' maps to 0, ..., '9' maps to 9.
- * 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
- * All other indices map to 37.
- * Note that when converting a base B string, a char c is a legitimate
- * base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
- */
- unsigned char _PyLong_DigitValue[256] = {
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
- 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
- 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
- 37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
- 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
- };
- /* `start` and `end` point to the start and end of a string of base `base`
- * digits. base is a power of 2 (2, 4, 8, 16, or 32). An unnormalized int is
- * returned in *res. The string should be already validated by the caller and
- * consists only of valid digit characters and underscores. `digits` gives the
- * number of digit characters.
- *
- * The point to this routine is that it takes time linear in the
- * number of string characters.
- *
- * Return values:
- * -1 on syntax error (exception needs to be set, *res is untouched)
- * 0 else (exception may be set, in that case *res is set to NULL)
- */
- static int
- long_from_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
- {
- const char *p;
- int bits_per_char;
- Py_ssize_t n;
- PyLongObject *z;
- twodigits accum;
- int bits_in_accum;
- digit *pdigit;
- assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
- n = base;
- for (bits_per_char = -1; n; ++bits_per_char) {
- n >>= 1;
- }
- /* n <- the number of Python digits needed,
- = ceiling((digits * bits_per_char) / PyLong_SHIFT). */
- if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
- PyErr_SetString(PyExc_ValueError,
- "int string too large to convert");
- *res = NULL;
- return 0;
- }
- n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
- z = _PyLong_New(n);
- if (z == NULL) {
- *res = NULL;
- return 0;
- }
- /* Read string from right, and fill in int from left; i.e.,
- * from least to most significant in both.
- */
- accum = 0;
- bits_in_accum = 0;
- pdigit = z->long_value.ob_digit;
- p = end;
- while (--p >= start) {
- int k;
- if (*p == '_') {
- continue;
- }
- k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
- assert(k >= 0 && k < base);
- accum |= (twodigits)k << bits_in_accum;
- bits_in_accum += bits_per_char;
- if (bits_in_accum >= PyLong_SHIFT) {
- *pdigit++ = (digit)(accum & PyLong_MASK);
- assert(pdigit - z->long_value.ob_digit <= n);
- accum >>= PyLong_SHIFT;
- bits_in_accum -= PyLong_SHIFT;
- assert(bits_in_accum < PyLong_SHIFT);
- }
- }
- if (bits_in_accum) {
- assert(bits_in_accum <= PyLong_SHIFT);
- *pdigit++ = (digit)accum;
- assert(pdigit - z->long_value.ob_digit <= n);
- }
- while (pdigit - z->long_value.ob_digit < n)
- *pdigit++ = 0;
- *res = z;
- return 0;
- }
- static PyObject *long_neg(PyLongObject *v);
- #ifdef WITH_PYLONG_MODULE
- /* asymptotically faster str-to-long conversion for base 10, using _pylong.py */
- static int
- pylong_int_from_string(const char *start, const char *end, PyLongObject **res)
- {
- PyObject *mod = PyImport_ImportModule("_pylong");
- if (mod == NULL) {
- goto error;
- }
- PyObject *s = PyUnicode_FromStringAndSize(start, end-start);
- if (s == NULL) {
- Py_DECREF(mod);
- goto error;
- }
- PyObject *result = PyObject_CallMethod(mod, "int_from_string", "O", s);
- Py_DECREF(s);
- Py_DECREF(mod);
- if (result == NULL) {
- goto error;
- }
- if (!PyLong_Check(result)) {
- Py_DECREF(result);
- PyErr_SetString(PyExc_TypeError,
- "_pylong.int_from_string did not return an int");
- goto error;
- }
- *res = (PyLongObject *)result;
- return 0;
- error:
- *res = NULL;
- return 0; // See the long_from_string_base() API comment.
- }
- #endif /* WITH_PYLONG_MODULE */
- /***
- long_from_non_binary_base: parameters and return values are the same as
- long_from_binary_base.
- Binary bases can be converted in time linear in the number of digits, because
- Python's representation base is binary. Other bases (including decimal!) use
- the simple quadratic-time algorithm below, complicated by some speed tricks.
- First some math: the largest integer that can be expressed in N base-B digits
- is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
- case number of Python digits needed to hold it is the smallest integer n s.t.
- BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
- BASE**n >= B**N [taking logs to base BASE]
- n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
- The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
- this quickly. A Python int with that much space is reserved near the start,
- and the result is computed into it.
- The input string is actually treated as being in base base**i (i.e., i digits
- are processed at a time), where two more static arrays hold:
- convwidth_base[base] = the largest integer i such that base**i <= BASE
- convmultmax_base[base] = base ** convwidth_base[base]
- The first of these is the largest i such that i consecutive input digits
- must fit in a single Python digit. The second is effectively the input
- base we're really using.
- Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
- convmultmax_base[base], the result is "simply"
- (((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
- where B = convmultmax_base[base].
- Error analysis: as above, the number of Python digits `n` needed is worst-
- case
- n >= N * log(B)/log(BASE)
- where `N` is the number of input digits in base `B`. This is computed via
- size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
- below. Two numeric concerns are how much space this can waste, and whether
- the computed result can be too small. To be concrete, assume BASE = 2**15,
- which is the default (and it's unlikely anyone changes that).
- Waste isn't a problem: provided the first input digit isn't 0, the difference
- between the worst-case input with N digits and the smallest input with N
- digits is about a factor of B, but B is small compared to BASE so at most
- one allocated Python digit can remain unused on that count. If
- N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
- and adding 1 returns a result 1 larger than necessary. However, that can't
- happen: whenever B is a power of 2, long_from_binary_base() is called
- instead, and it's impossible for B**i to be an integer power of 2**15 when
- B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
- an exact integer when B is not a power of 2, since B**i has a prime factor
- other than 2 in that case, but (2**15)**j's only prime factor is 2).
- The computed result can be too small if the true value of N*log(B)/log(BASE)
- is a little bit larger than an exact integer, but due to roundoff errors (in
- computing log(B), log(BASE), their quotient, and/or multiplying that by N)
- yields a numeric result a little less than that integer. Unfortunately, "how
- close can a transcendental function get to an integer over some range?"
- questions are generally theoretically intractable. Computer analysis via
- continued fractions is practical: expand log(B)/log(BASE) via continued
- fractions, giving a sequence i/j of "the best" rational approximations. Then
- j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
- we can get very close to being in trouble, but very rarely. For example,
- 76573 is a denominator in one of the continued-fraction approximations to
- log(10)/log(2**15), and indeed:
- >>> log(10)/log(2**15)*76573
- 16958.000000654003
- is very close to an integer. If we were working with IEEE single-precision,
- rounding errors could kill us. Finding worst cases in IEEE double-precision
- requires better-than-double-precision log() functions, and Tim didn't bother.
- Instead the code checks to see whether the allocated space is enough as each
- new Python digit is added, and copies the whole thing to a larger int if not.
- This should happen extremely rarely, and in fact I don't have a test case
- that triggers it(!). Instead the code was tested by artificially allocating
- just 1 digit at the start, so that the copying code was exercised for every
- digit beyond the first.
- ***/
- static int
- long_from_non_binary_base(const char *start, const char *end, Py_ssize_t digits, int base, PyLongObject **res)
- {
- twodigits c; /* current input character */
- Py_ssize_t size_z;
- int i;
- int convwidth;
- twodigits convmultmax, convmult;
- digit *pz, *pzstop;
- PyLongObject *z;
- const char *p;
- static double log_base_BASE[37] = {0.0e0,};
- static int convwidth_base[37] = {0,};
- static twodigits convmultmax_base[37] = {0,};
- if (log_base_BASE[base] == 0.0) {
- twodigits convmax = base;
- int i = 1;
- log_base_BASE[base] = (log((double)base) /
- log((double)PyLong_BASE));
- for (;;) {
- twodigits next = convmax * base;
- if (next > PyLong_BASE) {
- break;
- }
- convmax = next;
- ++i;
- }
- convmultmax_base[base] = convmax;
- assert(i > 0);
- convwidth_base[base] = i;
- }
- /* Create an int object that can contain the largest possible
- * integer with this base and length. Note that there's no
- * need to initialize z->long_value.ob_digit -- no slot is read up before
- * being stored into.
- */
- double fsize_z = (double)digits * log_base_BASE[base] + 1.0;
- if (fsize_z > (double)MAX_LONG_DIGITS) {
- /* The same exception as in _PyLong_New(). */
- PyErr_SetString(PyExc_OverflowError,
- "too many digits in integer");
- *res = NULL;
- return 0;
- }
- size_z = (Py_ssize_t)fsize_z;
- /* Uncomment next line to test exceedingly rare copy code */
- /* size_z = 1; */
- assert(size_z > 0);
- z = _PyLong_New(size_z);
- if (z == NULL) {
- *res = NULL;
- return 0;
- }
- _PyLong_SetSignAndDigitCount(z, 0, 0);
- /* `convwidth` consecutive input digits are treated as a single
- * digit in base `convmultmax`.
- */
- convwidth = convwidth_base[base];
- convmultmax = convmultmax_base[base];
- /* Work ;-) */
- p = start;
- while (p < end) {
- if (*p == '_') {
- p++;
- continue;
- }
- /* grab up to convwidth digits from the input string */
- c = (digit)_PyLong_DigitValue[Py_CHARMASK(*p++)];
- for (i = 1; i < convwidth && p != end; ++p) {
- if (*p == '_') {
- continue;
- }
- i++;
- c = (twodigits)(c * base +
- (int)_PyLong_DigitValue[Py_CHARMASK(*p)]);
- assert(c < PyLong_BASE);
- }
- convmult = convmultmax;
- /* Calculate the shift only if we couldn't get
- * convwidth digits.
- */
- if (i != convwidth) {
- convmult = base;
- for ( ; i > 1; --i) {
- convmult *= base;
- }
- }
- /* Multiply z by convmult, and add c. */
- pz = z->long_value.ob_digit;
- pzstop = pz + _PyLong_DigitCount(z);
- for (; pz < pzstop; ++pz) {
- c += (twodigits)*pz * convmult;
- *pz = (digit)(c & PyLong_MASK);
- c >>= PyLong_SHIFT;
- }
- /* carry off the current end? */
- if (c) {
- assert(c < PyLong_BASE);
- if (_PyLong_DigitCount(z) < size_z) {
- *pz = (digit)c;
- assert(!_PyLong_IsNegative(z));
- _PyLong_SetSignAndDigitCount(z, 1, _PyLong_DigitCount(z) + 1);
- }
- else {
- PyLongObject *tmp;
- /* Extremely rare. Get more space. */
- assert(_PyLong_DigitCount(z) == size_z);
- tmp = _PyLong_New(size_z + 1);
- if (tmp == NULL) {
- Py_DECREF(z);
- *res = NULL;
- return 0;
- }
- memcpy(tmp->long_value.ob_digit,
- z->long_value.ob_digit,
- sizeof(digit) * size_z);
- Py_SETREF(z, tmp);
- z->long_value.ob_digit[size_z] = (digit)c;
- ++size_z;
- }
- }
- }
- *res = z;
- return 0;
- }
- /* *str points to the first digit in a string of base `base` digits. base is an
- * integer from 2 to 36 inclusive. Here we don't need to worry about prefixes
- * like 0x or leading +- signs. The string should be null terminated consisting
- * of ASCII digits and separating underscores possibly with trailing whitespace
- * but we have to validate all of those points here.
- *
- * If base is a power of 2 then the complexity is linear in the number of
- * characters in the string. Otherwise a quadratic algorithm is used for
- * non-binary bases.
- *
- * Return values:
- *
- * - Returns -1 on syntax error (exception needs to be set, *res is untouched)
- * - Returns 0 and sets *res to NULL for MemoryError, OverflowError, or
- * _pylong.int_from_string() errors.
- * - Returns 0 and sets *res to an unsigned, unnormalized PyLong (success!).
- *
- * Afterwards *str is set to point to the first non-digit (which may be *str!).
- */
- static int
- long_from_string_base(const char **str, int base, PyLongObject **res)
- {
- const char *start, *end, *p;
- char prev = 0;
- Py_ssize_t digits = 0;
- int is_binary_base = (base & (base - 1)) == 0;
- /* Here we do four things:
- *
- * - Find the `end` of the string.
- * - Validate the string.
- * - Count the number of `digits` (rather than underscores)
- * - Point *str to the end-of-string or first invalid character.
- */
- start = p = *str;
- /* Leading underscore not allowed. */
- if (*start == '_') {
- return -1;
- }
- /* Verify all characters are digits and underscores. */
- while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
- if (*p == '_') {
- /* Double underscore not allowed. */
- if (prev == '_') {
- *str = p - 1;
- return -1;
- }
- } else {
- ++digits;
- }
- prev = *p;
- ++p;
- }
- /* Trailing underscore not allowed. */
- if (prev == '_') {
- *str = p - 1;
- return -1;
- }
- *str = end = p;
- /* Reject empty strings */
- if (start == end) {
- return -1;
- }
- /* Allow only trailing whitespace after `end` */
- while (*p && Py_ISSPACE(*p)) {
- p++;
- }
- *str = p;
- if (*p != '\0') {
- return -1;
- }
- /*
- * Pass a validated string consisting of only valid digits and underscores
- * to long_from_xxx_base.
- */
- if (is_binary_base) {
- /* Use the linear algorithm for binary bases. */
- return long_from_binary_base(start, end, digits, base, res);
- }
- else {
- /* Limit the size to avoid excessive computation attacks exploiting the
- * quadratic algorithm. */
- if (digits > _PY_LONG_MAX_STR_DIGITS_THRESHOLD) {
- PyInterpreterState *interp = _PyInterpreterState_GET();
- int max_str_digits = interp->long_state.max_str_digits;
- if ((max_str_digits > 0) && (digits > max_str_digits)) {
- PyErr_Format(PyExc_ValueError, _MAX_STR_DIGITS_ERROR_FMT_TO_INT,
- max_str_digits, digits);
- *res = NULL;
- return 0;
- }
- }
- #if WITH_PYLONG_MODULE
- if (digits > 6000 && base == 10) {
- /* Switch to _pylong.int_from_string() */
- return pylong_int_from_string(start, end, res);
- }
- #endif
- /* Use the quadratic algorithm for non binary bases. */
- return long_from_non_binary_base(start, end, digits, base, res);
- }
- }
- /* Parses an int from a bytestring. Leading and trailing whitespace will be
- * ignored.
- *
- * If successful, a PyLong object will be returned and 'pend' will be pointing
- * to the first unused byte unless it's NULL.
- *
- * If unsuccessful, NULL will be returned.
- */
- PyObject *
- PyLong_FromString(const char *str, char **pend, int base)
- {
- int sign = 1, error_if_nonzero = 0;
- const char *orig_str = str;
- PyLongObject *z = NULL;
- PyObject *strobj;
- Py_ssize_t slen;
- if ((base != 0 && base < 2) || base > 36) {
- PyErr_SetString(PyExc_ValueError,
- "int() arg 2 must be >= 2 and <= 36");
- return NULL;
- }
- while (*str != '\0' && Py_ISSPACE(*str)) {
- ++str;
- }
- if (*str == '+') {
- ++str;
- }
- else if (*str == '-') {
- ++str;
- sign = -1;
- }
- if (base == 0) {
- if (str[0] != '0') {
- base = 10;
- }
- else if (str[1] == 'x' || str[1] == 'X') {
- base = 16;
- }
- else if (str[1] == 'o' || str[1] == 'O') {
- base = 8;
- }
- else if (str[1] == 'b' || str[1] == 'B') {
- base = 2;
- }
- else {
- /* "old" (C-style) octal literal, now invalid.
- it might still be zero though */
- error_if_nonzero = 1;
- base = 10;
- }
- }
- if (str[0] == '0' &&
- ((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
- (base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
- (base == 2 && (str[1] == 'b' || str[1] == 'B')))) {
- str += 2;
- /* One underscore allowed here. */
- if (*str == '_') {
- ++str;
- }
- }
- /* long_from_string_base is the main workhorse here. */
- int ret = long_from_string_base(&str, base, &z);
- if (ret == -1) {
- /* Syntax error. */
- goto onError;
- }
- if (z == NULL) {
- /* Error. exception already set. */
- return NULL;
- }
- if (error_if_nonzero) {
- /* reset the base to 0, else the exception message
- doesn't make too much sense */
- base = 0;
- if (!_PyLong_IsZero(z)) {
- goto onError;
- }
- /* there might still be other problems, therefore base
- remains zero here for the same reason */
- }
- /* Set sign and normalize */
- if (sign < 0) {
- _PyLong_FlipSign(z);
- }
- long_normalize(z);
- z = maybe_small_long(z);
- if (pend != NULL) {
- *pend = (char *)str;
- }
- return (PyObject *) z;
- onError:
- if (pend != NULL) {
- *pend = (char *)str;
- }
- Py_XDECREF(z);
- slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
- strobj = PyUnicode_FromStringAndSize(orig_str, slen);
- if (strobj == NULL) {
- return NULL;
- }
- PyErr_Format(PyExc_ValueError,
- "invalid literal for int() with base %d: %.200R",
- base, strobj);
- Py_DECREF(strobj);
- return NULL;
- }
- /* Since PyLong_FromString doesn't have a length parameter,
- * check here for possible NULs in the string.
- *
- * Reports an invalid literal as a bytes object.
- */
- PyObject *
- _PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
- {
- PyObject *result, *strobj;
- char *end = NULL;
- result = PyLong_FromString(s, &end, base);
- if (end == NULL || (result != NULL && end == s + len))
- return result;
- Py_XDECREF(result);
- strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
- if (strobj != NULL) {
- PyErr_Format(PyExc_ValueError,
- "invalid literal for int() with base %d: %.200R",
- base, strobj);
- Py_DECREF(strobj);
- }
- return NULL;
- }
- PyObject *
- PyLong_FromUnicodeObject(PyObject *u, int base)
- {
- PyObject *result, *asciidig;
- const char *buffer;
- char *end = NULL;
- Py_ssize_t buflen;
- asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
- if (asciidig == NULL)
- return NULL;
- assert(PyUnicode_IS_ASCII(asciidig));
- /* Simply get a pointer to existing ASCII characters. */
- buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
- assert(buffer != NULL);
- result = PyLong_FromString(buffer, &end, base);
- if (end == NULL || (result != NULL && end == buffer + buflen)) {
- Py_DECREF(asciidig);
- return result;
- }
- Py_DECREF(asciidig);
- Py_XDECREF(result);
- PyErr_Format(PyExc_ValueError,
- "invalid literal for int() with base %d: %.200R",
- base, u);
- return NULL;
- }
- /* forward */
- static PyLongObject *x_divrem
- (PyLongObject *, PyLongObject *, PyLongObject **);
- static PyObject *long_long(PyObject *v);
- /* Int division with remainder, top-level routine */
- static int
- long_divrem(PyLongObject *a, PyLongObject *b,
- PyLongObject **pdiv, PyLongObject **prem)
- {
- Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
- PyLongObject *z;
- if (size_b == 0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "integer division or modulo by zero");
- return -1;
- }
- if (size_a < size_b ||
- (size_a == size_b &&
- a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
- /* |a| < |b|. */
- *prem = (PyLongObject *)long_long((PyObject *)a);
- if (*prem == NULL) {
- return -1;
- }
- PyObject *zero = _PyLong_GetZero();
- *pdiv = (PyLongObject*)Py_NewRef(zero);
- return 0;
- }
- if (size_b == 1) {
- digit rem = 0;
- z = divrem1(a, b->long_value.ob_digit[0], &rem);
- if (z == NULL)
- return -1;
- *prem = (PyLongObject *) PyLong_FromLong((long)rem);
- if (*prem == NULL) {
- Py_DECREF(z);
- return -1;
- }
- }
- else {
- z = x_divrem(a, b, prem);
- *prem = maybe_small_long(*prem);
- if (z == NULL)
- return -1;
- }
- /* Set the signs.
- The quotient z has the sign of a*b;
- the remainder r has the sign of a,
- so a = b*z + r. */
- if ((_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b))) {
- _PyLong_Negate(&z);
- if (z == NULL) {
- Py_CLEAR(*prem);
- return -1;
- }
- }
- if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
- _PyLong_Negate(prem);
- if (*prem == NULL) {
- Py_DECREF(z);
- Py_CLEAR(*prem);
- return -1;
- }
- }
- *pdiv = maybe_small_long(z);
- return 0;
- }
- /* Int remainder, top-level routine */
- static int
- long_rem(PyLongObject *a, PyLongObject *b, PyLongObject **prem)
- {
- Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
- if (size_b == 0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "integer modulo by zero");
- return -1;
- }
- if (size_a < size_b ||
- (size_a == size_b &&
- a->long_value.ob_digit[size_a-1] < b->long_value.ob_digit[size_b-1])) {
- /* |a| < |b|. */
- *prem = (PyLongObject *)long_long((PyObject *)a);
- return -(*prem == NULL);
- }
- if (size_b == 1) {
- *prem = rem1(a, b->long_value.ob_digit[0]);
- if (*prem == NULL)
- return -1;
- }
- else {
- /* Slow path using divrem. */
- Py_XDECREF(x_divrem(a, b, prem));
- *prem = maybe_small_long(*prem);
- if (*prem == NULL)
- return -1;
- }
- /* Set the sign. */
- if (_PyLong_IsNegative(a) && !_PyLong_IsZero(*prem)) {
- _PyLong_Negate(prem);
- if (*prem == NULL) {
- Py_CLEAR(*prem);
- return -1;
- }
- }
- return 0;
- }
- /* Unsigned int division with remainder -- the algorithm. The arguments v1
- and w1 should satisfy 2 <= _PyLong_DigitCount(w1) <= _PyLong_DigitCount(v1). */
- static PyLongObject *
- x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
- {
- PyLongObject *v, *w, *a;
- Py_ssize_t i, k, size_v, size_w;
- int d;
- digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
- twodigits vv;
- sdigit zhi;
- stwodigits z;
- /* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
- edn.), section 4.3.1, Algorithm D], except that we don't explicitly
- handle the special case when the initial estimate q for a quotient
- digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
- that won't overflow a digit. */
- /* allocate space; w will also be used to hold the final remainder */
- size_v = _PyLong_DigitCount(v1);
- size_w = _PyLong_DigitCount(w1);
- assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
- v = _PyLong_New(size_v+1);
- if (v == NULL) {
- *prem = NULL;
- return NULL;
- }
- w = _PyLong_New(size_w);
- if (w == NULL) {
- Py_DECREF(v);
- *prem = NULL;
- return NULL;
- }
- /* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
- shift v1 left by the same amount. Results go into w and v. */
- d = PyLong_SHIFT - bit_length_digit(w1->long_value.ob_digit[size_w-1]);
- carry = v_lshift(w->long_value.ob_digit, w1->long_value.ob_digit, size_w, d);
- assert(carry == 0);
- carry = v_lshift(v->long_value.ob_digit, v1->long_value.ob_digit, size_v, d);
- if (carry != 0 || v->long_value.ob_digit[size_v-1] >= w->long_value.ob_digit[size_w-1]) {
- v->long_value.ob_digit[size_v] = carry;
- size_v++;
- }
- /* Now v->long_value.ob_digit[size_v-1] < w->long_value.ob_digit[size_w-1], so quotient has
- at most (and usually exactly) k = size_v - size_w digits. */
- k = size_v - size_w;
- assert(k >= 0);
- a = _PyLong_New(k);
- if (a == NULL) {
- Py_DECREF(w);
- Py_DECREF(v);
- *prem = NULL;
- return NULL;
- }
- v0 = v->long_value.ob_digit;
- w0 = w->long_value.ob_digit;
- wm1 = w0[size_w-1];
- wm2 = w0[size_w-2];
- for (vk = v0+k, ak = a->long_value.ob_digit + k; vk-- > v0;) {
- /* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
- single-digit quotient q, remainder in vk[0:size_w]. */
- SIGCHECK({
- Py_DECREF(a);
- Py_DECREF(w);
- Py_DECREF(v);
- *prem = NULL;
- return NULL;
- });
- /* estimate quotient digit q; may overestimate by 1 (rare) */
- vtop = vk[size_w];
- assert(vtop <= wm1);
- vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
- /* The code used to compute the remainder via
- * r = (digit)(vv - (twodigits)wm1 * q);
- * and compilers generally generated code to do the * and -.
- * But modern processors generally compute q and r with a single
- * instruction, and modern optimizing compilers exploit that if we
- * _don't_ try to optimize it.
- */
- q = (digit)(vv / wm1);
- r = (digit)(vv % wm1);
- while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
- | vk[size_w-2])) {
- --q;
- r += wm1;
- if (r >= PyLong_BASE)
- break;
- }
- assert(q <= PyLong_BASE);
- /* subtract q*w0[0:size_w] from vk[0:size_w+1] */
- zhi = 0;
- for (i = 0; i < size_w; ++i) {
- /* invariants: -PyLong_BASE <= -q <= zhi <= 0;
- -PyLong_BASE * q <= z < PyLong_BASE */
- z = (sdigit)vk[i] + zhi -
- (stwodigits)q * (stwodigits)w0[i];
- vk[i] = (digit)z & PyLong_MASK;
- zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
- z, PyLong_SHIFT);
- }
- /* add w back if q was too large (this branch taken rarely) */
- assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
- if ((sdigit)vtop + zhi < 0) {
- carry = 0;
- for (i = 0; i < size_w; ++i) {
- carry += vk[i] + w0[i];
- vk[i] = carry & PyLong_MASK;
- carry >>= PyLong_SHIFT;
- }
- --q;
- }
- /* store quotient digit */
- assert(q < PyLong_BASE);
- *--ak = q;
- }
- /* unshift remainder; we reuse w to store the result */
- carry = v_rshift(w0, v0, size_w, d);
- assert(carry==0);
- Py_DECREF(v);
- *prem = long_normalize(w);
- return long_normalize(a);
- }
- /* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
- abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
- rounded to DBL_MANT_DIG significant bits using round-half-to-even.
- If a == 0, return 0.0 and set *e = 0. If the resulting exponent
- e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
- -1.0. */
- /* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
- #if DBL_MANT_DIG == 53
- #define EXP2_DBL_MANT_DIG 9007199254740992.0
- #else
- #define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
- #endif
- double
- _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
- {
- Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
- /* See below for why x_digits is always large enough. */
- digit rem;
- digit x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT] = {0,};
- double dx;
- /* Correction term for round-half-to-even rounding. For a digit x,
- "x + half_even_correction[x & 7]" gives x rounded to the nearest
- multiple of 4, rounding ties to a multiple of 8. */
- static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
- a_size = _PyLong_DigitCount(a);
- if (a_size == 0) {
- /* Special case for 0: significand 0.0, exponent 0. */
- *e = 0;
- return 0.0;
- }
- a_bits = bit_length_digit(a->long_value.ob_digit[a_size-1]);
- /* The following is an overflow-free version of the check
- "if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
- if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
- (a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
- a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
- goto overflow;
- a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
- /* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
- (shifting left if a_bits <= DBL_MANT_DIG + 2).
- Number of digits needed for result: write // for floor division.
- Then if shifting left, we end up using
- 1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
- digits. If shifting right, we use
- a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
- digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
- the inequalities
- m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
- m // PyLong_SHIFT - n // PyLong_SHIFT <=
- 1 + (m - n - 1) // PyLong_SHIFT,
- valid for any integers m and n, we find that x_size satisfies
- x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
- in both cases.
- */
- if (a_bits <= DBL_MANT_DIG + 2) {
- shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
- shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
- x_size = shift_digits;
- rem = v_lshift(x_digits + x_size, a->long_value.ob_digit, a_size,
- (int)shift_bits);
- x_size += a_size;
- x_digits[x_size++] = rem;
- }
- else {
- shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
- shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
- rem = v_rshift(x_digits, a->long_value.ob_digit + shift_digits,
- a_size - shift_digits, (int)shift_bits);
- x_size = a_size - shift_digits;
- /* For correct rounding below, we need the least significant
- bit of x to be 'sticky' for this shift: if any of the bits
- shifted out was nonzero, we set the least significant bit
- of x. */
- if (rem)
- x_digits[0] |= 1;
- else
- while (shift_digits > 0)
- if (a->long_value.ob_digit[--shift_digits]) {
- x_digits[0] |= 1;
- break;
- }
- }
- assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
- /* Round, and convert to double. */
- x_digits[0] += half_even_correction[x_digits[0] & 7];
- dx = x_digits[--x_size];
- while (x_size > 0)
- dx = dx * PyLong_BASE + x_digits[--x_size];
- /* Rescale; make correction if result is 1.0. */
- dx /= 4.0 * EXP2_DBL_MANT_DIG;
- if (dx == 1.0) {
- if (a_bits == PY_SSIZE_T_MAX)
- goto overflow;
- dx = 0.5;
- a_bits += 1;
- }
- *e = a_bits;
- return _PyLong_IsNegative(a) ? -dx : dx;
- overflow:
- /* exponent > PY_SSIZE_T_MAX */
- PyErr_SetString(PyExc_OverflowError,
- "huge integer: number of bits overflows a Py_ssize_t");
- *e = 0;
- return -1.0;
- }
- /* Get a C double from an int object. Rounds to the nearest double,
- using the round-half-to-even rule in the case of a tie. */
- double
- PyLong_AsDouble(PyObject *v)
- {
- Py_ssize_t exponent;
- double x;
- if (v == NULL) {
- PyErr_BadInternalCall();
- return -1.0;
- }
- if (!PyLong_Check(v)) {
- PyErr_SetString(PyExc_TypeError, "an integer is required");
- return -1.0;
- }
- if (_PyLong_IsCompact((PyLongObject *)v)) {
- /* Fast path; single digit long (31 bits) will cast safely
- to double. This improves performance of FP/long operations
- by 20%.
- */
- return (double)medium_value((PyLongObject *)v);
- }
- x = _PyLong_Frexp((PyLongObject *)v, &exponent);
- if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
- PyErr_SetString(PyExc_OverflowError,
- "int too large to convert to float");
- return -1.0;
- }
- return ldexp(x, (int)exponent);
- }
- /* Methods */
- /* if a < b, return a negative number
- if a == b, return 0
- if a > b, return a positive number */
- static Py_ssize_t
- long_compare(PyLongObject *a, PyLongObject *b)
- {
- if (_PyLong_BothAreCompact(a, b)) {
- return _PyLong_CompactValue(a) - _PyLong_CompactValue(b);
- }
- Py_ssize_t sign = _PyLong_SignedDigitCount(a) - _PyLong_SignedDigitCount(b);
- if (sign == 0) {
- Py_ssize_t i = _PyLong_DigitCount(a);
- sdigit diff = 0;
- while (--i >= 0) {
- diff = (sdigit) a->long_value.ob_digit[i] - (sdigit) b->long_value.ob_digit[i];
- if (diff) {
- break;
- }
- }
- sign = _PyLong_IsNegative(a) ? -diff : diff;
- }
- return sign;
- }
- static PyObject *
- long_richcompare(PyObject *self, PyObject *other, int op)
- {
- Py_ssize_t result;
- CHECK_BINOP(self, other);
- if (self == other)
- result = 0;
- else
- result = long_compare((PyLongObject*)self, (PyLongObject*)other);
- Py_RETURN_RICHCOMPARE(result, 0, op);
- }
- static void
- long_dealloc(PyObject *self)
- {
- /* This should never get called, but we also don't want to SEGV if
- * we accidentally decref small Ints out of existence. Instead,
- * since small Ints are immortal, re-set the reference count.
- */
- PyLongObject *pylong = (PyLongObject*)self;
- if (pylong && _PyLong_IsCompact(pylong)) {
- stwodigits ival = medium_value(pylong);
- if (IS_SMALL_INT(ival)) {
- PyLongObject *small_pylong = (PyLongObject *)get_small_int((sdigit)ival);
- if (pylong == small_pylong) {
- _Py_SetImmortal(self);
- return;
- }
- }
- }
- Py_TYPE(self)->tp_free(self);
- }
- static Py_hash_t
- long_hash(PyLongObject *v)
- {
- Py_uhash_t x;
- Py_ssize_t i;
- int sign;
- if (_PyLong_IsCompact(v)) {
- x = (Py_uhash_t)_PyLong_CompactValue(v);
- if (x == (Py_uhash_t)-1) {
- x = (Py_uhash_t)-2;
- }
- return x;
- }
- i = _PyLong_DigitCount(v);
- sign = _PyLong_NonCompactSign(v);
- x = 0;
- while (--i >= 0) {
- /* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
- want to compute x * 2**PyLong_SHIFT + v->long_value.ob_digit[i] modulo
- _PyHASH_MODULUS.
- The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
- amounts to a rotation of the bits of x. To see this, write
- x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
- where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
- PyLong_SHIFT bits of x (those that are shifted out of the
- original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
- _PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
- bits of x, shifted up. Then since 2**_PyHASH_BITS is
- congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
- congruent to y modulo _PyHASH_MODULUS. So
- x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
- The right-hand side is just the result of rotating the
- _PyHASH_BITS bits of x left by PyLong_SHIFT places; since
- not all _PyHASH_BITS bits of x are 1s, the same is true
- after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
- the reduction of x*2**PyLong_SHIFT modulo
- _PyHASH_MODULUS. */
- x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
- (x >> (_PyHASH_BITS - PyLong_SHIFT));
- x += v->long_value.ob_digit[i];
- if (x >= _PyHASH_MODULUS)
- x -= _PyHASH_MODULUS;
- }
- x = x * sign;
- if (x == (Py_uhash_t)-1)
- x = (Py_uhash_t)-2;
- return (Py_hash_t)x;
- }
- /* Add the absolute values of two integers. */
- static PyLongObject *
- x_add(PyLongObject *a, PyLongObject *b)
- {
- Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
- PyLongObject *z;
- Py_ssize_t i;
- digit carry = 0;
- /* Ensure a is the larger of the two: */
- if (size_a < size_b) {
- { PyLongObject *temp = a; a = b; b = temp; }
- { Py_ssize_t size_temp = size_a;
- size_a = size_b;
- size_b = size_temp; }
- }
- z = _PyLong_New(size_a+1);
- if (z == NULL)
- return NULL;
- for (i = 0; i < size_b; ++i) {
- carry += a->long_value.ob_digit[i] + b->long_value.ob_digit[i];
- z->long_value.ob_digit[i] = carry & PyLong_MASK;
- carry >>= PyLong_SHIFT;
- }
- for (; i < size_a; ++i) {
- carry += a->long_value.ob_digit[i];
- z->long_value.ob_digit[i] = carry & PyLong_MASK;
- carry >>= PyLong_SHIFT;
- }
- z->long_value.ob_digit[i] = carry;
- return long_normalize(z);
- }
- /* Subtract the absolute values of two integers. */
- static PyLongObject *
- x_sub(PyLongObject *a, PyLongObject *b)
- {
- Py_ssize_t size_a = _PyLong_DigitCount(a), size_b = _PyLong_DigitCount(b);
- PyLongObject *z;
- Py_ssize_t i;
- int sign = 1;
- digit borrow = 0;
- /* Ensure a is the larger of the two: */
- if (size_a < size_b) {
- sign = -1;
- { PyLongObject *temp = a; a = b; b = temp; }
- { Py_ssize_t size_temp = size_a;
- size_a = size_b;
- size_b = size_temp; }
- }
- else if (size_a == size_b) {
- /* Find highest digit where a and b differ: */
- i = size_a;
- while (--i >= 0 && a->long_value.ob_digit[i] == b->long_value.ob_digit[i])
- ;
- if (i < 0)
- return (PyLongObject *)PyLong_FromLong(0);
- if (a->long_value.ob_digit[i] < b->long_value.ob_digit[i]) {
- sign = -1;
- { PyLongObject *temp = a; a = b; b = temp; }
- }
- size_a = size_b = i+1;
- }
- z = _PyLong_New(size_a);
- if (z == NULL)
- return NULL;
- for (i = 0; i < size_b; ++i) {
- /* The following assumes unsigned arithmetic
- works module 2**N for some N>PyLong_SHIFT. */
- borrow = a->long_value.ob_digit[i] - b->long_value.ob_digit[i] - borrow;
- z->long_value.ob_digit[i] = borrow & PyLong_MASK;
- borrow >>= PyLong_SHIFT;
- borrow &= 1; /* Keep only one sign bit */
- }
- for (; i < size_a; ++i) {
- borrow = a->long_value.ob_digit[i] - borrow;
- z->long_value.ob_digit[i] = borrow & PyLong_MASK;
- borrow >>= PyLong_SHIFT;
- borrow &= 1; /* Keep only one sign bit */
- }
- assert(borrow == 0);
- if (sign < 0) {
- _PyLong_FlipSign(z);
- }
- return maybe_small_long(long_normalize(z));
- }
- PyObject *
- _PyLong_Add(PyLongObject *a, PyLongObject *b)
- {
- if (_PyLong_BothAreCompact(a, b)) {
- return _PyLong_FromSTwoDigits(medium_value(a) + medium_value(b));
- }
- PyLongObject *z;
- if (_PyLong_IsNegative(a)) {
- if (_PyLong_IsNegative(b)) {
- z = x_add(a, b);
- if (z != NULL) {
- /* x_add received at least one multiple-digit int,
- and thus z must be a multiple-digit int.
- That also means z is not an element of
- small_ints, so negating it in-place is safe. */
- assert(Py_REFCNT(z) == 1);
- _PyLong_FlipSign(z);
- }
- }
- else
- z = x_sub(b, a);
- }
- else {
- if (_PyLong_IsNegative(b))
- z = x_sub(a, b);
- else
- z = x_add(a, b);
- }
- return (PyObject *)z;
- }
- static PyObject *
- long_add(PyLongObject *a, PyLongObject *b)
- {
- CHECK_BINOP(a, b);
- return _PyLong_Add(a, b);
- }
- PyObject *
- _PyLong_Subtract(PyLongObject *a, PyLongObject *b)
- {
- PyLongObject *z;
- if (_PyLong_BothAreCompact(a, b)) {
- return _PyLong_FromSTwoDigits(medium_value(a) - medium_value(b));
- }
- if (_PyLong_IsNegative(a)) {
- if (_PyLong_IsNegative(b)) {
- z = x_sub(b, a);
- }
- else {
- z = x_add(a, b);
- if (z != NULL) {
- assert(_PyLong_IsZero(z) || Py_REFCNT(z) == 1);
- _PyLong_FlipSign(z);
- }
- }
- }
- else {
- if (_PyLong_IsNegative(b))
- z = x_add(a, b);
- else
- z = x_sub(a, b);
- }
- return (PyObject *)z;
- }
- static PyObject *
- long_sub(PyLongObject *a, PyLongObject *b)
- {
- CHECK_BINOP(a, b);
- return _PyLong_Subtract(a, b);
- }
- /* Grade school multiplication, ignoring the signs.
- * Returns the absolute value of the product, or NULL if error.
- */
- static PyLongObject *
- x_mul(PyLongObject *a, PyLongObject *b)
- {
- PyLongObject *z;
- Py_ssize_t size_a = _PyLong_DigitCount(a);
- Py_ssize_t size_b = _PyLong_DigitCount(b);
- Py_ssize_t i;
- z = _PyLong_New(size_a + size_b);
- if (z == NULL)
- return NULL;
- memset(z->long_value.ob_digit, 0, _PyLong_DigitCount(z) * sizeof(digit));
- if (a == b) {
- /* Efficient squaring per HAC, Algorithm 14.16:
- * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
- * Gives slightly less than a 2x speedup when a == b,
- * via exploiting that each entry in the multiplication
- * pyramid appears twice (except for the size_a squares).
- */
- digit *paend = a->long_value.ob_digit + size_a;
- for (i = 0; i < size_a; ++i) {
- twodigits carry;
- twodigits f = a->long_value.ob_digit[i];
- digit *pz = z->long_value.ob_digit + (i << 1);
- digit *pa = a->long_value.ob_digit + i + 1;
- SIGCHECK({
- Py_DECREF(z);
- return NULL;
- });
- carry = *pz + f * f;
- *pz++ = (digit)(carry & PyLong_MASK);
- carry >>= PyLong_SHIFT;
- assert(carry <= PyLong_MASK);
- /* Now f is added in twice in each column of the
- * pyramid it appears. Same as adding f<<1 once.
- */
- f <<= 1;
- while (pa < paend) {
- carry += *pz + *pa++ * f;
- *pz++ = (digit)(carry & PyLong_MASK);
- carry >>= PyLong_SHIFT;
- assert(carry <= (PyLong_MASK << 1));
- }
- if (carry) {
- /* See comment below. pz points at the highest possible
- * carry position from the last outer loop iteration, so
- * *pz is at most 1.
- */
- assert(*pz <= 1);
- carry += *pz;
- *pz = (digit)(carry & PyLong_MASK);
- carry >>= PyLong_SHIFT;
- if (carry) {
- /* If there's still a carry, it must be into a position
- * that still holds a 0. Where the base
- ^ B is 1 << PyLong_SHIFT, the last add was of a carry no
- * more than 2*B - 2 to a stored digit no more than 1.
- * So the sum was no more than 2*B - 1, so the current
- * carry no more than floor((2*B - 1)/B) = 1.
- */
- assert(carry == 1);
- assert(pz[1] == 0);
- pz[1] = (digit)carry;
- }
- }
- }
- }
- else { /* a is not the same as b -- gradeschool int mult */
- for (i = 0; i < size_a; ++i) {
- twodigits carry = 0;
- twodigits f = a->long_value.ob_digit[i];
- digit *pz = z->long_value.ob_digit + i;
- digit *pb = b->long_value.ob_digit;
- digit *pbend = b->long_value.ob_digit + size_b;
- SIGCHECK({
- Py_DECREF(z);
- return NULL;
- });
- while (pb < pbend) {
- carry += *pz + *pb++ * f;
- *pz++ = (digit)(carry & PyLong_MASK);
- carry >>= PyLong_SHIFT;
- assert(carry <= PyLong_MASK);
- }
- if (carry)
- *pz += (digit)(carry & PyLong_MASK);
- assert((carry >> PyLong_SHIFT) == 0);
- }
- }
- return long_normalize(z);
- }
- /* A helper for Karatsuba multiplication (k_mul).
- Takes an int "n" and an integer "size" representing the place to
- split, and sets low and high such that abs(n) == (high << size) + low,
- viewing the shift as being by digits. The sign bit is ignored, and
- the return values are >= 0.
- Returns 0 on success, -1 on failure.
- */
- static int
- kmul_split(PyLongObject *n,
- Py_ssize_t size,
- PyLongObject **high,
- PyLongObject **low)
- {
- PyLongObject *hi, *lo;
- Py_ssize_t size_lo, size_hi;
- const Py_ssize_t size_n = _PyLong_DigitCount(n);
- size_lo = Py_MIN(size_n, size);
- size_hi = size_n - size_lo;
- if ((hi = _PyLong_New(size_hi)) == NULL)
- return -1;
- if ((lo = _PyLong_New(size_lo)) == NULL) {
- Py_DECREF(hi);
- return -1;
- }
- memcpy(lo->long_value.ob_digit, n->long_value.ob_digit, size_lo * sizeof(digit));
- memcpy(hi->long_value.ob_digit, n->long_value.ob_digit + size_lo, size_hi * sizeof(digit));
- *high = long_normalize(hi);
- *low = long_normalize(lo);
- return 0;
- }
- static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
- /* Karatsuba multiplication. Ignores the input signs, and returns the
- * absolute value of the product (or NULL if error).
- * See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
- */
- static PyLongObject *
- k_mul(PyLongObject *a, PyLongObject *b)
- {
- Py_ssize_t asize = _PyLong_DigitCount(a);
- Py_ssize_t bsize = _PyLong_DigitCount(b);
- PyLongObject *ah = NULL;
- PyLongObject *al = NULL;
- PyLongObject *bh = NULL;
- PyLongObject *bl = NULL;
- PyLongObject *ret = NULL;
- PyLongObject *t1, *t2, *t3;
- Py_ssize_t shift; /* the number of digits we split off */
- Py_ssize_t i;
- /* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
- * Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
- * Then the original product is
- * ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
- * By picking X to be a power of 2, "*X" is just shifting, and it's
- * been reduced to 3 multiplies on numbers half the size.
- */
- /* We want to split based on the larger number; fiddle so that b
- * is largest.
- */
- if (asize > bsize) {
- t1 = a;
- a = b;
- b = t1;
- i = asize;
- asize = bsize;
- bsize = i;
- }
- /* Use gradeschool math when either number is too small. */
- i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
- if (asize <= i) {
- if (asize == 0)
- return (PyLongObject *)PyLong_FromLong(0);
- else
- return x_mul(a, b);
- }
- /* If a is small compared to b, splitting on b gives a degenerate
- * case with ah==0, and Karatsuba may be (even much) less efficient
- * than "grade school" then. However, we can still win, by viewing
- * b as a string of "big digits", each of the same width as a. That
- * leads to a sequence of balanced calls to k_mul.
- */
- if (2 * asize <= bsize)
- return k_lopsided_mul(a, b);
- /* Split a & b into hi & lo pieces. */
- shift = bsize >> 1;
- if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
- assert(_PyLong_IsPositive(ah)); /* the split isn't degenerate */
- if (a == b) {
- bh = (PyLongObject*)Py_NewRef(ah);
- bl = (PyLongObject*)Py_NewRef(al);
- }
- else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
- /* The plan:
- * 1. Allocate result space (asize + bsize digits: that's always
- * enough).
- * 2. Compute ah*bh, and copy into result at 2*shift.
- * 3. Compute al*bl, and copy into result at 0. Note that this
- * can't overlap with #2.
- * 4. Subtract al*bl from the result, starting at shift. This may
- * underflow (borrow out of the high digit), but we don't care:
- * we're effectively doing unsigned arithmetic mod
- * BASE**(sizea + sizeb), and so long as the *final* result fits,
- * borrows and carries out of the high digit can be ignored.
- * 5. Subtract ah*bh from the result, starting at shift.
- * 6. Compute (ah+al)*(bh+bl), and add it into the result starting
- * at shift.
- */
- /* 1. Allocate result space. */
- ret = _PyLong_New(asize + bsize);
- if (ret == NULL) goto fail;
- #ifdef Py_DEBUG
- /* Fill with trash, to catch reference to uninitialized digits. */
- memset(ret->long_value.ob_digit, 0xDF, _PyLong_DigitCount(ret) * sizeof(digit));
- #endif
- /* 2. t1 <- ah*bh, and copy into high digits of result. */
- if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
- assert(!_PyLong_IsNegative(t1));
- assert(2*shift + _PyLong_DigitCount(t1) <= _PyLong_DigitCount(ret));
- memcpy(ret->long_value.ob_digit + 2*shift, t1->long_value.ob_digit,
- _PyLong_DigitCount(t1) * sizeof(digit));
- /* Zero-out the digits higher than the ah*bh copy. */
- i = _PyLong_DigitCount(ret) - 2*shift - _PyLong_DigitCount(t1);
- if (i)
- memset(ret->long_value.ob_digit + 2*shift + _PyLong_DigitCount(t1), 0,
- i * sizeof(digit));
- /* 3. t2 <- al*bl, and copy into the low digits. */
- if ((t2 = k_mul(al, bl)) == NULL) {
- Py_DECREF(t1);
- goto fail;
- }
- assert(!_PyLong_IsNegative(t2));
- assert(_PyLong_DigitCount(t2) <= 2*shift); /* no overlap with high digits */
- memcpy(ret->long_value.ob_digit, t2->long_value.ob_digit, _PyLong_DigitCount(t2) * sizeof(digit));
- /* Zero out remaining digits. */
- i = 2*shift - _PyLong_DigitCount(t2); /* number of uninitialized digits */
- if (i)
- memset(ret->long_value.ob_digit + _PyLong_DigitCount(t2), 0, i * sizeof(digit));
- /* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
- * because it's fresher in cache.
- */
- i = _PyLong_DigitCount(ret) - shift; /* # digits after shift */
- (void)v_isub(ret->long_value.ob_digit + shift, i, t2->long_value.ob_digit, _PyLong_DigitCount(t2));
- _Py_DECREF_INT(t2);
- (void)v_isub(ret->long_value.ob_digit + shift, i, t1->long_value.ob_digit, _PyLong_DigitCount(t1));
- _Py_DECREF_INT(t1);
- /* 6. t3 <- (ah+al)(bh+bl), and add into result. */
- if ((t1 = x_add(ah, al)) == NULL) goto fail;
- _Py_DECREF_INT(ah);
- _Py_DECREF_INT(al);
- ah = al = NULL;
- if (a == b) {
- t2 = (PyLongObject*)Py_NewRef(t1);
- }
- else if ((t2 = x_add(bh, bl)) == NULL) {
- Py_DECREF(t1);
- goto fail;
- }
- _Py_DECREF_INT(bh);
- _Py_DECREF_INT(bl);
- bh = bl = NULL;
- t3 = k_mul(t1, t2);
- _Py_DECREF_INT(t1);
- _Py_DECREF_INT(t2);
- if (t3 == NULL) goto fail;
- assert(!_PyLong_IsNegative(t3));
- /* Add t3. It's not obvious why we can't run out of room here.
- * See the (*) comment after this function.
- */
- (void)v_iadd(ret->long_value.ob_digit + shift, i, t3->long_value.ob_digit, _PyLong_DigitCount(t3));
- _Py_DECREF_INT(t3);
- return long_normalize(ret);
- fail:
- Py_XDECREF(ret);
- Py_XDECREF(ah);
- Py_XDECREF(al);
- Py_XDECREF(bh);
- Py_XDECREF(bl);
- return NULL;
- }
- /* (*) Why adding t3 can't "run out of room" above.
- Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
- to start with:
- 1. For any integer i, i = c(i/2) + f(i/2). In particular,
- bsize = c(bsize/2) + f(bsize/2).
- 2. shift = f(bsize/2)
- 3. asize <= bsize
- 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
- routine, so asize > bsize/2 >= f(bsize/2) in this routine.
- We allocated asize + bsize result digits, and add t3 into them at an offset
- of shift. This leaves asize+bsize-shift allocated digit positions for t3
- to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
- asize + c(bsize/2) available digit positions.
- bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
- at most c(bsize/2) digits + 1 bit.
- If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
- digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
- most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
- The product (ah+al)*(bh+bl) therefore has at most
- c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
- and we have asize + c(bsize/2) available digit positions. We need to show
- this is always enough. An instance of c(bsize/2) cancels out in both, so
- the question reduces to whether asize digits is enough to hold
- (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
- then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
- asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
- digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
- asize == bsize, then we're asking whether bsize digits is enough to hold
- c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
- is enough to hold 2 bits. This is so if bsize >= 2, which holds because
- bsize >= KARATSUBA_CUTOFF >= 2.
- Note that since there's always enough room for (ah+al)*(bh+bl), and that's
- clearly >= each of ah*bh and al*bl, there's always enough room to subtract
- ah*bh and al*bl too.
- */
- /* b has at least twice the digits of a, and a is big enough that Karatsuba
- * would pay off *if* the inputs had balanced sizes. View b as a sequence
- * of slices, each with the same number of digits as a, and multiply the
- * slices by a, one at a time. This gives k_mul balanced inputs to work with,
- * and is also cache-friendly (we compute one double-width slice of the result
- * at a time, then move on, never backtracking except for the helpful
- * single-width slice overlap between successive partial sums).
- */
- static PyLongObject *
- k_lopsided_mul(PyLongObject *a, PyLongObject *b)
- {
- const Py_ssize_t asize = _PyLong_DigitCount(a);
- Py_ssize_t bsize = _PyLong_DigitCount(b);
- Py_ssize_t nbdone; /* # of b digits already multiplied */
- PyLongObject *ret;
- PyLongObject *bslice = NULL;
- assert(asize > KARATSUBA_CUTOFF);
- assert(2 * asize <= bsize);
- /* Allocate result space, and zero it out. */
- ret = _PyLong_New(asize + bsize);
- if (ret == NULL)
- return NULL;
- memset(ret->long_value.ob_digit, 0, _PyLong_DigitCount(ret) * sizeof(digit));
- /* Successive slices of b are copied into bslice. */
- bslice = _PyLong_New(asize);
- if (bslice == NULL)
- goto fail;
- nbdone = 0;
- while (bsize > 0) {
- PyLongObject *product;
- const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
- /* Multiply the next slice of b by a. */
- memcpy(bslice->long_value.ob_digit, b->long_value.ob_digit + nbdone,
- nbtouse * sizeof(digit));
- assert(nbtouse >= 0);
- _PyLong_SetSignAndDigitCount(bslice, 1, nbtouse);
- product = k_mul(a, bslice);
- if (product == NULL)
- goto fail;
- /* Add into result. */
- (void)v_iadd(ret->long_value.ob_digit + nbdone, _PyLong_DigitCount(ret) - nbdone,
- product->long_value.ob_digit, _PyLong_DigitCount(product));
- _Py_DECREF_INT(product);
- bsize -= nbtouse;
- nbdone += nbtouse;
- }
- _Py_DECREF_INT(bslice);
- return long_normalize(ret);
- fail:
- Py_DECREF(ret);
- Py_XDECREF(bslice);
- return NULL;
- }
- PyObject *
- _PyLong_Multiply(PyLongObject *a, PyLongObject *b)
- {
- PyLongObject *z;
- /* fast path for single-digit multiplication */
- if (_PyLong_BothAreCompact(a, b)) {
- stwodigits v = medium_value(a) * medium_value(b);
- return _PyLong_FromSTwoDigits(v);
- }
- z = k_mul(a, b);
- /* Negate if exactly one of the inputs is negative. */
- if (!_PyLong_SameSign(a, b) && z) {
- _PyLong_Negate(&z);
- if (z == NULL)
- return NULL;
- }
- return (PyObject *)z;
- }
- static PyObject *
- long_mul(PyLongObject *a, PyLongObject *b)
- {
- CHECK_BINOP(a, b);
- return _PyLong_Multiply(a, b);
- }
- /* Fast modulo division for single-digit longs. */
- static PyObject *
- fast_mod(PyLongObject *a, PyLongObject *b)
- {
- sdigit left = a->long_value.ob_digit[0];
- sdigit right = b->long_value.ob_digit[0];
- sdigit mod;
- assert(_PyLong_DigitCount(a) == 1);
- assert(_PyLong_DigitCount(b) == 1);
- sdigit sign = _PyLong_CompactSign(b);
- if (_PyLong_SameSign(a, b)) {
- mod = left % right;
- }
- else {
- /* Either 'a' or 'b' is negative. */
- mod = right - 1 - (left - 1) % right;
- }
- return PyLong_FromLong(mod * sign);
- }
- /* Fast floor division for single-digit longs. */
- static PyObject *
- fast_floor_div(PyLongObject *a, PyLongObject *b)
- {
- sdigit left = a->long_value.ob_digit[0];
- sdigit right = b->long_value.ob_digit[0];
- sdigit div;
- assert(_PyLong_DigitCount(a) == 1);
- assert(_PyLong_DigitCount(b) == 1);
- if (_PyLong_SameSign(a, b)) {
- div = left / right;
- }
- else {
- /* Either 'a' or 'b' is negative. */
- div = -1 - (left - 1) / right;
- }
- return PyLong_FromLong(div);
- }
- #ifdef WITH_PYLONG_MODULE
- /* asymptotically faster divmod, using _pylong.py */
- static int
- pylong_int_divmod(PyLongObject *v, PyLongObject *w,
- PyLongObject **pdiv, PyLongObject **pmod)
- {
- PyObject *mod = PyImport_ImportModule("_pylong");
- if (mod == NULL) {
- return -1;
- }
- PyObject *result = PyObject_CallMethod(mod, "int_divmod", "OO", v, w);
- Py_DECREF(mod);
- if (result == NULL) {
- return -1;
- }
- if (!PyTuple_Check(result)) {
- Py_DECREF(result);
- PyErr_SetString(PyExc_ValueError,
- "tuple is required from int_divmod()");
- return -1;
- }
- PyObject *q = PyTuple_GET_ITEM(result, 0);
- PyObject *r = PyTuple_GET_ITEM(result, 1);
- if (!PyLong_Check(q) || !PyLong_Check(r)) {
- Py_DECREF(result);
- PyErr_SetString(PyExc_ValueError,
- "tuple of int is required from int_divmod()");
- return -1;
- }
- if (pdiv != NULL) {
- *pdiv = (PyLongObject *)Py_NewRef(q);
- }
- if (pmod != NULL) {
- *pmod = (PyLongObject *)Py_NewRef(r);
- }
- Py_DECREF(result);
- return 0;
- }
- #endif /* WITH_PYLONG_MODULE */
- /* The / and % operators are now defined in terms of divmod().
- The expression a mod b has the value a - b*floor(a/b).
- The long_divrem function gives the remainder after division of
- |a| by |b|, with the sign of a. This is also expressed
- as a - b*trunc(a/b), if trunc truncates towards zero.
- Some examples:
- a b a rem b a mod b
- 13 10 3 3
- -13 10 -3 7
- 13 -10 3 -7
- -13 -10 -3 -3
- So, to get from rem to mod, we have to add b if a and b
- have different signs. We then subtract one from the 'div'
- part of the outcome to keep the invariant intact. */
- /* Compute
- * *pdiv, *pmod = divmod(v, w)
- * NULL can be passed for pdiv or pmod, in which case that part of
- * the result is simply thrown away. The caller owns a reference to
- * each of these it requests (does not pass NULL for).
- */
- static int
- l_divmod(PyLongObject *v, PyLongObject *w,
- PyLongObject **pdiv, PyLongObject **pmod)
- {
- PyLongObject *div, *mod;
- if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
- /* Fast path for single-digit longs */
- div = NULL;
- if (pdiv != NULL) {
- div = (PyLongObject *)fast_floor_div(v, w);
- if (div == NULL) {
- return -1;
- }
- }
- if (pmod != NULL) {
- mod = (PyLongObject *)fast_mod(v, w);
- if (mod == NULL) {
- Py_XDECREF(div);
- return -1;
- }
- *pmod = mod;
- }
- if (pdiv != NULL) {
- /* We only want to set `*pdiv` when `*pmod` is
- set successfully. */
- *pdiv = div;
- }
- return 0;
- }
- #if WITH_PYLONG_MODULE
- Py_ssize_t size_v = _PyLong_DigitCount(v); /* digits in numerator */
- Py_ssize_t size_w = _PyLong_DigitCount(w); /* digits in denominator */
- if (size_w > 300 && (size_v - size_w) > 150) {
- /* Switch to _pylong.int_divmod(). If the quotient is small then
- "schoolbook" division is linear-time so don't use in that case.
- These limits are empirically determined and should be slightly
- conservative so that _pylong is used in cases it is likely
- to be faster. See Tools/scripts/divmod_threshold.py. */
- return pylong_int_divmod(v, w, pdiv, pmod);
- }
- #endif
- if (long_divrem(v, w, &div, &mod) < 0)
- return -1;
- if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
- (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
- PyLongObject *temp;
- temp = (PyLongObject *) long_add(mod, w);
- Py_SETREF(mod, temp);
- if (mod == NULL) {
- Py_DECREF(div);
- return -1;
- }
- temp = (PyLongObject *) long_sub(div, (PyLongObject *)_PyLong_GetOne());
- if (temp == NULL) {
- Py_DECREF(mod);
- Py_DECREF(div);
- return -1;
- }
- Py_SETREF(div, temp);
- }
- if (pdiv != NULL)
- *pdiv = div;
- else
- Py_DECREF(div);
- if (pmod != NULL)
- *pmod = mod;
- else
- Py_DECREF(mod);
- return 0;
- }
- /* Compute
- * *pmod = v % w
- * pmod cannot be NULL. The caller owns a reference to pmod.
- */
- static int
- l_mod(PyLongObject *v, PyLongObject *w, PyLongObject **pmod)
- {
- PyLongObject *mod;
- assert(pmod);
- if (_PyLong_DigitCount(v) == 1 && _PyLong_DigitCount(w) == 1) {
- /* Fast path for single-digit longs */
- *pmod = (PyLongObject *)fast_mod(v, w);
- return -(*pmod == NULL);
- }
- if (long_rem(v, w, &mod) < 0)
- return -1;
- if ((_PyLong_IsNegative(mod) && _PyLong_IsPositive(w)) ||
- (_PyLong_IsPositive(mod) && _PyLong_IsNegative(w))) {
- PyLongObject *temp;
- temp = (PyLongObject *) long_add(mod, w);
- Py_SETREF(mod, temp);
- if (mod == NULL)
- return -1;
- }
- *pmod = mod;
- return 0;
- }
- static PyObject *
- long_div(PyObject *a, PyObject *b)
- {
- PyLongObject *div;
- CHECK_BINOP(a, b);
- if (_PyLong_DigitCount((PyLongObject*)a) == 1 && _PyLong_DigitCount((PyLongObject*)b) == 1) {
- return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
- }
- if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
- div = NULL;
- return (PyObject *)div;
- }
- /* PyLong/PyLong -> float, with correctly rounded result. */
- #define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
- #define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
- static PyObject *
- long_true_divide(PyObject *v, PyObject *w)
- {
- PyLongObject *a, *b, *x;
- Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
- digit mask, low;
- int inexact, negate, a_is_small, b_is_small;
- double dx, result;
- CHECK_BINOP(v, w);
- a = (PyLongObject *)v;
- b = (PyLongObject *)w;
- /*
- Method in a nutshell:
- 0. reduce to case a, b > 0; filter out obvious underflow/overflow
- 1. choose a suitable integer 'shift'
- 2. use integer arithmetic to compute x = floor(2**-shift*a/b)
- 3. adjust x for correct rounding
- 4. convert x to a double dx with the same value
- 5. return ldexp(dx, shift).
- In more detail:
- 0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
- returns either 0.0 or -0.0, depending on the sign of b. For a and
- b both nonzero, ignore signs of a and b, and add the sign back in
- at the end. Now write a_bits and b_bits for the bit lengths of a
- and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
- for b). Then
- 2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
- So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
- so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
- DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
- the way, we can assume that
- DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
- 1. The integer 'shift' is chosen so that x has the right number of
- bits for a double, plus two or three extra bits that will be used
- in the rounding decisions. Writing a_bits and b_bits for the
- number of significant bits in a and b respectively, a
- straightforward formula for shift is:
- shift = a_bits - b_bits - DBL_MANT_DIG - 2
- This is fine in the usual case, but if a/b is smaller than the
- smallest normal float then it can lead to double rounding on an
- IEEE 754 platform, giving incorrectly rounded results. So we
- adjust the formula slightly. The actual formula used is:
- shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
- 2. The quantity x is computed by first shifting a (left -shift bits
- if shift <= 0, right shift bits if shift > 0) and then dividing by
- b. For both the shift and the division, we keep track of whether
- the result is inexact, in a flag 'inexact'; this information is
- needed at the rounding stage.
- With the choice of shift above, together with our assumption that
- a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
- that x >= 1.
- 3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
- this with an exactly representable float of the form
- round(x/2**extra_bits) * 2**(extra_bits+shift).
- For float representability, we need x/2**extra_bits <
- 2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
- DBL_MANT_DIG. This translates to the condition:
- extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
- To round, we just modify the bottom digit of x in-place; this can
- end up giving a digit with value > PyLONG_MASK, but that's not a
- problem since digits can hold values up to 2*PyLONG_MASK+1.
- With the original choices for shift above, extra_bits will always
- be 2 or 3. Then rounding under the round-half-to-even rule, we
- round up iff the most significant of the extra bits is 1, and
- either: (a) the computation of x in step 2 had an inexact result,
- or (b) at least one other of the extra bits is 1, or (c) the least
- significant bit of x (above those to be rounded) is 1.
- 4. Conversion to a double is straightforward; all floating-point
- operations involved in the conversion are exact, so there's no
- danger of rounding errors.
- 5. Use ldexp(x, shift) to compute x*2**shift, the final result.
- The result will always be exactly representable as a double, except
- in the case that it overflows. To avoid dependence on the exact
- behaviour of ldexp on overflow, we check for overflow before
- applying ldexp. The result of ldexp is adjusted for sign before
- returning.
- */
- /* Reduce to case where a and b are both positive. */
- a_size = _PyLong_DigitCount(a);
- b_size = _PyLong_DigitCount(b);
- negate = (_PyLong_IsNegative(a)) != (_PyLong_IsNegative(b));
- if (b_size == 0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "division by zero");
- goto error;
- }
- if (a_size == 0)
- goto underflow_or_zero;
- /* Fast path for a and b small (exactly representable in a double).
- Relies on floating-point division being correctly rounded; results
- may be subject to double rounding on x86 machines that operate with
- the x87 FPU set to 64-bit precision. */
- a_is_small = a_size <= MANT_DIG_DIGITS ||
- (a_size == MANT_DIG_DIGITS+1 &&
- a->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
- b_is_small = b_size <= MANT_DIG_DIGITS ||
- (b_size == MANT_DIG_DIGITS+1 &&
- b->long_value.ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
- if (a_is_small && b_is_small) {
- double da, db;
- da = a->long_value.ob_digit[--a_size];
- while (a_size > 0)
- da = da * PyLong_BASE + a->long_value.ob_digit[--a_size];
- db = b->long_value.ob_digit[--b_size];
- while (b_size > 0)
- db = db * PyLong_BASE + b->long_value.ob_digit[--b_size];
- result = da / db;
- goto success;
- }
- /* Catch obvious cases of underflow and overflow */
- diff = a_size - b_size;
- if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
- /* Extreme overflow */
- goto overflow;
- else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
- /* Extreme underflow */
- goto underflow_or_zero;
- /* Next line is now safe from overflowing a Py_ssize_t */
- diff = diff * PyLong_SHIFT + bit_length_digit(a->long_value.ob_digit[a_size - 1]) -
- bit_length_digit(b->long_value.ob_digit[b_size - 1]);
- /* Now diff = a_bits - b_bits. */
- if (diff > DBL_MAX_EXP)
- goto overflow;
- else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
- goto underflow_or_zero;
- /* Choose value for shift; see comments for step 1 above. */
- shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
- inexact = 0;
- /* x = abs(a * 2**-shift) */
- if (shift <= 0) {
- Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
- digit rem;
- /* x = a << -shift */
- if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
- /* In practice, it's probably impossible to end up
- here. Both a and b would have to be enormous,
- using close to SIZE_T_MAX bytes of memory each. */
- PyErr_SetString(PyExc_OverflowError,
- "intermediate overflow during division");
- goto error;
- }
- x = _PyLong_New(a_size + shift_digits + 1);
- if (x == NULL)
- goto error;
- for (i = 0; i < shift_digits; i++)
- x->long_value.ob_digit[i] = 0;
- rem = v_lshift(x->long_value.ob_digit + shift_digits, a->long_value.ob_digit,
- a_size, -shift % PyLong_SHIFT);
- x->long_value.ob_digit[a_size + shift_digits] = rem;
- }
- else {
- Py_ssize_t shift_digits = shift / PyLong_SHIFT;
- digit rem;
- /* x = a >> shift */
- assert(a_size >= shift_digits);
- x = _PyLong_New(a_size - shift_digits);
- if (x == NULL)
- goto error;
- rem = v_rshift(x->long_value.ob_digit, a->long_value.ob_digit + shift_digits,
- a_size - shift_digits, shift % PyLong_SHIFT);
- /* set inexact if any of the bits shifted out is nonzero */
- if (rem)
- inexact = 1;
- while (!inexact && shift_digits > 0)
- if (a->long_value.ob_digit[--shift_digits])
- inexact = 1;
- }
- long_normalize(x);
- x_size = _PyLong_SignedDigitCount(x);
- /* x //= b. If the remainder is nonzero, set inexact. We own the only
- reference to x, so it's safe to modify it in-place. */
- if (b_size == 1) {
- digit rem = inplace_divrem1(x->long_value.ob_digit, x->long_value.ob_digit, x_size,
- b->long_value.ob_digit[0]);
- long_normalize(x);
- if (rem)
- inexact = 1;
- }
- else {
- PyLongObject *div, *rem;
- div = x_divrem(x, b, &rem);
- Py_SETREF(x, div);
- if (x == NULL)
- goto error;
- if (!_PyLong_IsZero(rem))
- inexact = 1;
- Py_DECREF(rem);
- }
- x_size = _PyLong_DigitCount(x);
- assert(x_size > 0); /* result of division is never zero */
- x_bits = (x_size-1)*PyLong_SHIFT+bit_length_digit(x->long_value.ob_digit[x_size-1]);
- /* The number of extra bits that have to be rounded away. */
- extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
- assert(extra_bits == 2 || extra_bits == 3);
- /* Round by directly modifying the low digit of x. */
- mask = (digit)1 << (extra_bits - 1);
- low = x->long_value.ob_digit[0] | inexact;
- if ((low & mask) && (low & (3U*mask-1U)))
- low += mask;
- x->long_value.ob_digit[0] = low & ~(2U*mask-1U);
- /* Convert x to a double dx; the conversion is exact. */
- dx = x->long_value.ob_digit[--x_size];
- while (x_size > 0)
- dx = dx * PyLong_BASE + x->long_value.ob_digit[--x_size];
- Py_DECREF(x);
- /* Check whether ldexp result will overflow a double. */
- if (shift + x_bits >= DBL_MAX_EXP &&
- (shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
- goto overflow;
- result = ldexp(dx, (int)shift);
- success:
- return PyFloat_FromDouble(negate ? -result : result);
- underflow_or_zero:
- return PyFloat_FromDouble(negate ? -0.0 : 0.0);
- overflow:
- PyErr_SetString(PyExc_OverflowError,
- "integer division result too large for a float");
- error:
- return NULL;
- }
- static PyObject *
- long_mod(PyObject *a, PyObject *b)
- {
- PyLongObject *mod;
- CHECK_BINOP(a, b);
- if (l_mod((PyLongObject*)a, (PyLongObject*)b, &mod) < 0)
- mod = NULL;
- return (PyObject *)mod;
- }
- static PyObject *
- long_divmod(PyObject *a, PyObject *b)
- {
- PyLongObject *div, *mod;
- PyObject *z;
- CHECK_BINOP(a, b);
- if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
- return NULL;
- }
- z = PyTuple_New(2);
- if (z != NULL) {
- PyTuple_SET_ITEM(z, 0, (PyObject *) div);
- PyTuple_SET_ITEM(z, 1, (PyObject *) mod);
- }
- else {
- Py_DECREF(div);
- Py_DECREF(mod);
- }
- return z;
- }
- /* Compute an inverse to a modulo n, or raise ValueError if a is not
- invertible modulo n. Assumes n is positive. The inverse returned
- is whatever falls out of the extended Euclidean algorithm: it may
- be either positive or negative, but will be smaller than n in
- absolute value.
- Pure Python equivalent for long_invmod:
- def invmod(a, n):
- b, c = 1, 0
- while n:
- q, r = divmod(a, n)
- a, b, c, n = n, c, b - q*c, r
- # at this point a is the gcd of the original inputs
- if a == 1:
- return b
- raise ValueError("Not invertible")
- */
- static PyLongObject *
- long_invmod(PyLongObject *a, PyLongObject *n)
- {
- PyLongObject *b, *c;
- /* Should only ever be called for positive n */
- assert(_PyLong_IsPositive(n));
- b = (PyLongObject *)PyLong_FromLong(1L);
- if (b == NULL) {
- return NULL;
- }
- c = (PyLongObject *)PyLong_FromLong(0L);
- if (c == NULL) {
- Py_DECREF(b);
- return NULL;
- }
- Py_INCREF(a);
- Py_INCREF(n);
- /* references now owned: a, b, c, n */
- while (!_PyLong_IsZero(n)) {
- PyLongObject *q, *r, *s, *t;
- if (l_divmod(a, n, &q, &r) == -1) {
- goto Error;
- }
- Py_SETREF(a, n);
- n = r;
- t = (PyLongObject *)long_mul(q, c);
- Py_DECREF(q);
- if (t == NULL) {
- goto Error;
- }
- s = (PyLongObject *)long_sub(b, t);
- Py_DECREF(t);
- if (s == NULL) {
- goto Error;
- }
- Py_SETREF(b, c);
- c = s;
- }
- /* references now owned: a, b, c, n */
- Py_DECREF(c);
- Py_DECREF(n);
- if (long_compare(a, (PyLongObject *)_PyLong_GetOne())) {
- /* a != 1; we don't have an inverse. */
- Py_DECREF(a);
- Py_DECREF(b);
- PyErr_SetString(PyExc_ValueError,
- "base is not invertible for the given modulus");
- return NULL;
- }
- else {
- /* a == 1; b gives an inverse modulo n */
- Py_DECREF(a);
- return b;
- }
- Error:
- Py_DECREF(a);
- Py_DECREF(b);
- Py_DECREF(c);
- Py_DECREF(n);
- return NULL;
- }
- /* pow(v, w, x) */
- static PyObject *
- long_pow(PyObject *v, PyObject *w, PyObject *x)
- {
- PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
- int negativeOutput = 0; /* if x<0 return negative output */
- PyLongObject *z = NULL; /* accumulated result */
- Py_ssize_t i, j; /* counters */
- PyLongObject *temp = NULL;
- PyLongObject *a2 = NULL; /* may temporarily hold a**2 % c */
- /* k-ary values. If the exponent is large enough, table is
- * precomputed so that table[i] == a**(2*i+1) % c for i in
- * range(EXP_TABLE_LEN).
- * Note: this is uninitialized stack trash: don't pay to set it to known
- * values unless it's needed. Instead ensure that num_table_entries is
- * set to the number of entries actually filled whenever a branch to the
- * Error or Done labels is possible.
- */
- PyLongObject *table[EXP_TABLE_LEN];
- Py_ssize_t num_table_entries = 0;
- /* a, b, c = v, w, x */
- CHECK_BINOP(v, w);
- a = (PyLongObject*)Py_NewRef(v);
- b = (PyLongObject*)Py_NewRef(w);
- if (PyLong_Check(x)) {
- c = (PyLongObject *)Py_NewRef(x);
- }
- else if (x == Py_None)
- c = NULL;
- else {
- Py_DECREF(a);
- Py_DECREF(b);
- Py_RETURN_NOTIMPLEMENTED;
- }
- if (_PyLong_IsNegative(b) && c == NULL) {
- /* if exponent is negative and there's no modulus:
- return a float. This works because we know
- that this calls float_pow() which converts its
- arguments to double. */
- Py_DECREF(a);
- Py_DECREF(b);
- return PyFloat_Type.tp_as_number->nb_power(v, w, x);
- }
- if (c) {
- /* if modulus == 0:
- raise ValueError() */
- if (_PyLong_IsZero(c)) {
- PyErr_SetString(PyExc_ValueError,
- "pow() 3rd argument cannot be 0");
- goto Error;
- }
- /* if modulus < 0:
- negativeOutput = True
- modulus = -modulus */
- if (_PyLong_IsNegative(c)) {
- negativeOutput = 1;
- temp = (PyLongObject *)_PyLong_Copy(c);
- if (temp == NULL)
- goto Error;
- Py_SETREF(c, temp);
- temp = NULL;
- _PyLong_Negate(&c);
- if (c == NULL)
- goto Error;
- }
- /* if modulus == 1:
- return 0 */
- if (_PyLong_IsNonNegativeCompact(c) && (c->long_value.ob_digit[0] == 1)) {
- z = (PyLongObject *)PyLong_FromLong(0L);
- goto Done;
- }
- /* if exponent is negative, negate the exponent and
- replace the base with a modular inverse */
- if (_PyLong_IsNegative(b)) {
- temp = (PyLongObject *)_PyLong_Copy(b);
- if (temp == NULL)
- goto Error;
- Py_SETREF(b, temp);
- temp = NULL;
- _PyLong_Negate(&b);
- if (b == NULL)
- goto Error;
- temp = long_invmod(a, c);
- if (temp == NULL)
- goto Error;
- Py_SETREF(a, temp);
- temp = NULL;
- }
- /* Reduce base by modulus in some cases:
- 1. If base < 0. Forcing the base non-negative makes things easier.
- 2. If base is obviously larger than the modulus. The "small
- exponent" case later can multiply directly by base repeatedly,
- while the "large exponent" case multiplies directly by base 31
- times. It can be unboundedly faster to multiply by
- base % modulus instead.
- We could _always_ do this reduction, but l_mod() isn't cheap,
- so we only do it when it buys something. */
- if (_PyLong_IsNegative(a) || _PyLong_DigitCount(a) > _PyLong_DigitCount(c)) {
- if (l_mod(a, c, &temp) < 0)
- goto Error;
- Py_SETREF(a, temp);
- temp = NULL;
- }
- }
- /* At this point a, b, and c are guaranteed non-negative UNLESS
- c is NULL, in which case a may be negative. */
- z = (PyLongObject *)PyLong_FromLong(1L);
- if (z == NULL)
- goto Error;
- /* Perform a modular reduction, X = X % c, but leave X alone if c
- * is NULL.
- */
- #define REDUCE(X) \
- do { \
- if (c != NULL) { \
- if (l_mod(X, c, &temp) < 0) \
- goto Error; \
- Py_XDECREF(X); \
- X = temp; \
- temp = NULL; \
- } \
- } while(0)
- /* Multiply two values, then reduce the result:
- result = X*Y % c. If c is NULL, skip the mod. */
- #define MULT(X, Y, result) \
- do { \
- temp = (PyLongObject *)long_mul(X, Y); \
- if (temp == NULL) \
- goto Error; \
- Py_XDECREF(result); \
- result = temp; \
- temp = NULL; \
- REDUCE(result); \
- } while(0)
- i = _PyLong_SignedDigitCount(b);
- digit bi = i ? b->long_value.ob_digit[i-1] : 0;
- digit bit;
- if (i <= 1 && bi <= 3) {
- /* aim for minimal overhead */
- if (bi >= 2) {
- MULT(a, a, z);
- if (bi == 3) {
- MULT(z, a, z);
- }
- }
- else if (bi == 1) {
- /* Multiplying by 1 serves two purposes: if `a` is of an int
- * subclass, makes the result an int (e.g., pow(False, 1) returns
- * 0 instead of False), and potentially reduces `a` by the modulus.
- */
- MULT(a, z, z);
- }
- /* else bi is 0, and z==1 is correct */
- }
- else if (i <= HUGE_EXP_CUTOFF / PyLong_SHIFT ) {
- /* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
- /* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
- /* Find the first significant exponent bit. Search right to left
- * because we're primarily trying to cut overhead for small powers.
- */
- assert(bi); /* else there is no significant bit */
- Py_SETREF(z, (PyLongObject*)Py_NewRef(a));
- for (bit = 2; ; bit <<= 1) {
- if (bit > bi) { /* found the first bit */
- assert((bi & bit) == 0);
- bit >>= 1;
- assert(bi & bit);
- break;
- }
- }
- for (--i, bit >>= 1;;) {
- for (; bit != 0; bit >>= 1) {
- MULT(z, z, z);
- if (bi & bit) {
- MULT(z, a, z);
- }
- }
- if (--i < 0) {
- break;
- }
- bi = b->long_value.ob_digit[i];
- bit = (digit)1 << (PyLong_SHIFT-1);
- }
- }
- else {
- /* Left-to-right k-ary sliding window exponentiation
- * (Handbook of Applied Cryptography (HAC) Algorithm 14.85)
- */
- table[0] = (PyLongObject*)Py_NewRef(a);
- num_table_entries = 1;
- MULT(a, a, a2);
- /* table[i] == a**(2*i + 1) % c */
- for (i = 1; i < EXP_TABLE_LEN; ++i) {
- table[i] = NULL; /* must set to known value for MULT */
- MULT(table[i-1], a2, table[i]);
- ++num_table_entries; /* incremented iff MULT succeeded */
- }
- Py_CLEAR(a2);
- /* Repeatedly extract the next (no more than) EXP_WINDOW_SIZE bits
- * into `pending`, starting with the next 1 bit. The current bit
- * length of `pending` is `blen`.
- */
- int pending = 0, blen = 0;
- #define ABSORB_PENDING do { \
- int ntz = 0; /* number of trailing zeroes in `pending` */ \
- assert(pending && blen); \
- assert(pending >> (blen - 1)); \
- assert(pending >> blen == 0); \
- while ((pending & 1) == 0) { \
- ++ntz; \
- pending >>= 1; \
- } \
- assert(ntz < blen); \
- blen -= ntz; \
- do { \
- MULT(z, z, z); \
- } while (--blen); \
- MULT(z, table[pending >> 1], z); \
- while (ntz-- > 0) \
- MULT(z, z, z); \
- assert(blen == 0); \
- pending = 0; \
- } while(0)
- for (i = _PyLong_SignedDigitCount(b) - 1; i >= 0; --i) {
- const digit bi = b->long_value.ob_digit[i];
- for (j = PyLong_SHIFT - 1; j >= 0; --j) {
- const int bit = (bi >> j) & 1;
- pending = (pending << 1) | bit;
- if (pending) {
- ++blen;
- if (blen == EXP_WINDOW_SIZE)
- ABSORB_PENDING;
- }
- else /* absorb strings of 0 bits */
- MULT(z, z, z);
- }
- }
- if (pending)
- ABSORB_PENDING;
- }
- if (negativeOutput && !_PyLong_IsZero(z)) {
- temp = (PyLongObject *)long_sub(z, c);
- if (temp == NULL)
- goto Error;
- Py_SETREF(z, temp);
- temp = NULL;
- }
- goto Done;
- Error:
- Py_CLEAR(z);
- /* fall through */
- Done:
- for (i = 0; i < num_table_entries; ++i)
- Py_DECREF(table[i]);
- Py_DECREF(a);
- Py_DECREF(b);
- Py_XDECREF(c);
- Py_XDECREF(a2);
- Py_XDECREF(temp);
- return (PyObject *)z;
- }
- static PyObject *
- long_invert(PyLongObject *v)
- {
- /* Implement ~x as -(x+1) */
- PyLongObject *x;
- if (_PyLong_IsCompact(v))
- return _PyLong_FromSTwoDigits(~medium_value(v));
- x = (PyLongObject *) long_add(v, (PyLongObject *)_PyLong_GetOne());
- if (x == NULL)
- return NULL;
- _PyLong_Negate(&x);
- /* No need for maybe_small_long here, since any small longs
- will have been caught in the _PyLong_IsCompact() fast path. */
- return (PyObject *)x;
- }
- static PyObject *
- long_neg(PyLongObject *v)
- {
- PyLongObject *z;
- if (_PyLong_IsCompact(v))
- return _PyLong_FromSTwoDigits(-medium_value(v));
- z = (PyLongObject *)_PyLong_Copy(v);
- if (z != NULL)
- _PyLong_FlipSign(z);
- return (PyObject *)z;
- }
- static PyObject *
- long_abs(PyLongObject *v)
- {
- if (_PyLong_IsNegative(v))
- return long_neg(v);
- else
- return long_long((PyObject *)v);
- }
- static int
- long_bool(PyLongObject *v)
- {
- return !_PyLong_IsZero(v);
- }
- /* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
- static int
- divmod_shift(PyObject *shiftby, Py_ssize_t *wordshift, digit *remshift)
- {
- assert(PyLong_Check(shiftby));
- assert(!_PyLong_IsNegative((PyLongObject *)shiftby));
- Py_ssize_t lshiftby = PyLong_AsSsize_t((PyObject *)shiftby);
- if (lshiftby >= 0) {
- *wordshift = lshiftby / PyLong_SHIFT;
- *remshift = lshiftby % PyLong_SHIFT;
- return 0;
- }
- /* PyLong_Check(shiftby) is true and shiftby is not negative, so it must
- be that PyLong_AsSsize_t raised an OverflowError. */
- assert(PyErr_ExceptionMatches(PyExc_OverflowError));
- PyErr_Clear();
- PyLongObject *wordshift_obj = divrem1((PyLongObject *)shiftby, PyLong_SHIFT, remshift);
- if (wordshift_obj == NULL) {
- return -1;
- }
- *wordshift = PyLong_AsSsize_t((PyObject *)wordshift_obj);
- Py_DECREF(wordshift_obj);
- if (*wordshift >= 0 && *wordshift < PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(digit)) {
- return 0;
- }
- PyErr_Clear();
- /* Clip the value. With such large wordshift the right shift
- returns 0 and the left shift raises an error in _PyLong_New(). */
- *wordshift = PY_SSIZE_T_MAX / sizeof(digit);
- *remshift = 0;
- return 0;
- }
- /* Inner function for both long_rshift and _PyLong_Rshift, shifting an
- integer right by PyLong_SHIFT*wordshift + remshift bits.
- wordshift should be nonnegative. */
- static PyObject *
- long_rshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
- {
- PyLongObject *z = NULL;
- Py_ssize_t newsize, hishift, size_a;
- twodigits accum;
- int a_negative;
- /* Total number of bits shifted must be nonnegative. */
- assert(wordshift >= 0);
- assert(remshift < PyLong_SHIFT);
- /* Fast path for small a. */
- if (_PyLong_IsCompact(a)) {
- stwodigits m, x;
- digit shift;
- m = medium_value(a);
- shift = wordshift == 0 ? remshift : PyLong_SHIFT;
- x = m < 0 ? ~(~m >> shift) : m >> shift;
- return _PyLong_FromSTwoDigits(x);
- }
- a_negative = _PyLong_IsNegative(a);
- size_a = _PyLong_DigitCount(a);
- if (a_negative) {
- /* For negative 'a', adjust so that 0 < remshift <= PyLong_SHIFT,
- while keeping PyLong_SHIFT*wordshift + remshift the same. This
- ensures that 'newsize' is computed correctly below. */
- if (remshift == 0) {
- if (wordshift == 0) {
- /* Can only happen if the original shift was 0. */
- return long_long((PyObject *)a);
- }
- remshift = PyLong_SHIFT;
- --wordshift;
- }
- }
- assert(wordshift >= 0);
- newsize = size_a - wordshift;
- if (newsize <= 0) {
- /* Shifting all the bits of 'a' out gives either -1 or 0. */
- return PyLong_FromLong(-a_negative);
- }
- z = _PyLong_New(newsize);
- if (z == NULL) {
- return NULL;
- }
- hishift = PyLong_SHIFT - remshift;
- accum = a->long_value.ob_digit[wordshift];
- if (a_negative) {
- /*
- For a positive integer a and nonnegative shift, we have:
- (-a) >> shift == -((a + 2**shift - 1) >> shift).
- In the addition `a + (2**shift - 1)`, the low `wordshift` digits of
- `2**shift - 1` all have value `PyLong_MASK`, so we get a carry out
- from the bottom `wordshift` digits when at least one of the least
- significant `wordshift` digits of `a` is nonzero. Digit `wordshift`
- of `2**shift - 1` has value `PyLong_MASK >> hishift`.
- */
- _PyLong_SetSignAndDigitCount(z, -1, newsize);
- digit sticky = 0;
- for (Py_ssize_t j = 0; j < wordshift; j++) {
- sticky |= a->long_value.ob_digit[j];
- }
- accum += (PyLong_MASK >> hishift) + (digit)(sticky != 0);
- }
- accum >>= remshift;
- for (Py_ssize_t i = 0, j = wordshift + 1; j < size_a; i++, j++) {
- accum += (twodigits)a->long_value.ob_digit[j] << hishift;
- z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
- accum >>= PyLong_SHIFT;
- }
- assert(accum <= PyLong_MASK);
- z->long_value.ob_digit[newsize - 1] = (digit)accum;
- z = maybe_small_long(long_normalize(z));
- return (PyObject *)z;
- }
- static PyObject *
- long_rshift(PyObject *a, PyObject *b)
- {
- Py_ssize_t wordshift;
- digit remshift;
- CHECK_BINOP(a, b);
- if (_PyLong_IsNegative((PyLongObject *)b)) {
- PyErr_SetString(PyExc_ValueError, "negative shift count");
- return NULL;
- }
- if (_PyLong_IsZero((PyLongObject *)a)) {
- return PyLong_FromLong(0);
- }
- if (divmod_shift(b, &wordshift, &remshift) < 0)
- return NULL;
- return long_rshift1((PyLongObject *)a, wordshift, remshift);
- }
- /* Return a >> shiftby. */
- PyObject *
- _PyLong_Rshift(PyObject *a, size_t shiftby)
- {
- Py_ssize_t wordshift;
- digit remshift;
- assert(PyLong_Check(a));
- if (_PyLong_IsZero((PyLongObject *)a)) {
- return PyLong_FromLong(0);
- }
- wordshift = shiftby / PyLong_SHIFT;
- remshift = shiftby % PyLong_SHIFT;
- return long_rshift1((PyLongObject *)a, wordshift, remshift);
- }
- static PyObject *
- long_lshift1(PyLongObject *a, Py_ssize_t wordshift, digit remshift)
- {
- PyLongObject *z = NULL;
- Py_ssize_t oldsize, newsize, i, j;
- twodigits accum;
- if (wordshift == 0 && _PyLong_IsCompact(a)) {
- stwodigits m = medium_value(a);
- // bypass undefined shift operator behavior
- stwodigits x = m < 0 ? -(-m << remshift) : m << remshift;
- return _PyLong_FromSTwoDigits(x);
- }
- oldsize = _PyLong_DigitCount(a);
- newsize = oldsize + wordshift;
- if (remshift)
- ++newsize;
- z = _PyLong_New(newsize);
- if (z == NULL)
- return NULL;
- if (_PyLong_IsNegative(a)) {
- assert(Py_REFCNT(z) == 1);
- _PyLong_FlipSign(z);
- }
- for (i = 0; i < wordshift; i++)
- z->long_value.ob_digit[i] = 0;
- accum = 0;
- for (j = 0; j < oldsize; i++, j++) {
- accum |= (twodigits)a->long_value.ob_digit[j] << remshift;
- z->long_value.ob_digit[i] = (digit)(accum & PyLong_MASK);
- accum >>= PyLong_SHIFT;
- }
- if (remshift)
- z->long_value.ob_digit[newsize-1] = (digit)accum;
- else
- assert(!accum);
- z = long_normalize(z);
- return (PyObject *) maybe_small_long(z);
- }
- static PyObject *
- long_lshift(PyObject *a, PyObject *b)
- {
- Py_ssize_t wordshift;
- digit remshift;
- CHECK_BINOP(a, b);
- if (_PyLong_IsNegative((PyLongObject *)b)) {
- PyErr_SetString(PyExc_ValueError, "negative shift count");
- return NULL;
- }
- if (_PyLong_IsZero((PyLongObject *)a)) {
- return PyLong_FromLong(0);
- }
- if (divmod_shift(b, &wordshift, &remshift) < 0)
- return NULL;
- return long_lshift1((PyLongObject *)a, wordshift, remshift);
- }
- /* Return a << shiftby. */
- PyObject *
- _PyLong_Lshift(PyObject *a, size_t shiftby)
- {
- Py_ssize_t wordshift;
- digit remshift;
- assert(PyLong_Check(a));
- if (_PyLong_IsZero((PyLongObject *)a)) {
- return PyLong_FromLong(0);
- }
- wordshift = shiftby / PyLong_SHIFT;
- remshift = shiftby % PyLong_SHIFT;
- return long_lshift1((PyLongObject *)a, wordshift, remshift);
- }
- /* Compute two's complement of digit vector a[0:m], writing result to
- z[0:m]. The digit vector a need not be normalized, but should not
- be entirely zero. a and z may point to the same digit vector. */
- static void
- v_complement(digit *z, digit *a, Py_ssize_t m)
- {
- Py_ssize_t i;
- digit carry = 1;
- for (i = 0; i < m; ++i) {
- carry += a[i] ^ PyLong_MASK;
- z[i] = carry & PyLong_MASK;
- carry >>= PyLong_SHIFT;
- }
- assert(carry == 0);
- }
- /* Bitwise and/xor/or operations */
- static PyObject *
- long_bitwise(PyLongObject *a,
- char op, /* '&', '|', '^' */
- PyLongObject *b)
- {
- int nega, negb, negz;
- Py_ssize_t size_a, size_b, size_z, i;
- PyLongObject *z;
- /* Bitwise operations for negative numbers operate as though
- on a two's complement representation. So convert arguments
- from sign-magnitude to two's complement, and convert the
- result back to sign-magnitude at the end. */
- /* If a is negative, replace it by its two's complement. */
- size_a = _PyLong_DigitCount(a);
- nega = _PyLong_IsNegative(a);
- if (nega) {
- z = _PyLong_New(size_a);
- if (z == NULL)
- return NULL;
- v_complement(z->long_value.ob_digit, a->long_value.ob_digit, size_a);
- a = z;
- }
- else
- /* Keep reference count consistent. */
- Py_INCREF(a);
- /* Same for b. */
- size_b = _PyLong_DigitCount(b);
- negb = _PyLong_IsNegative(b);
- if (negb) {
- z = _PyLong_New(size_b);
- if (z == NULL) {
- Py_DECREF(a);
- return NULL;
- }
- v_complement(z->long_value.ob_digit, b->long_value.ob_digit, size_b);
- b = z;
- }
- else
- Py_INCREF(b);
- /* Swap a and b if necessary to ensure size_a >= size_b. */
- if (size_a < size_b) {
- z = a; a = b; b = z;
- size_z = size_a; size_a = size_b; size_b = size_z;
- negz = nega; nega = negb; negb = negz;
- }
- /* JRH: The original logic here was to allocate the result value (z)
- as the longer of the two operands. However, there are some cases
- where the result is guaranteed to be shorter than that: AND of two
- positives, OR of two negatives: use the shorter number. AND with
- mixed signs: use the positive number. OR with mixed signs: use the
- negative number.
- */
- switch (op) {
- case '^':
- negz = nega ^ negb;
- size_z = size_a;
- break;
- case '&':
- negz = nega & negb;
- size_z = negb ? size_a : size_b;
- break;
- case '|':
- negz = nega | negb;
- size_z = negb ? size_b : size_a;
- break;
- default:
- Py_UNREACHABLE();
- }
- /* We allow an extra digit if z is negative, to make sure that
- the final two's complement of z doesn't overflow. */
- z = _PyLong_New(size_z + negz);
- if (z == NULL) {
- Py_DECREF(a);
- Py_DECREF(b);
- return NULL;
- }
- /* Compute digits for overlap of a and b. */
- switch(op) {
- case '&':
- for (i = 0; i < size_b; ++i)
- z->long_value.ob_digit[i] = a->long_value.ob_digit[i] & b->long_value.ob_digit[i];
- break;
- case '|':
- for (i = 0; i < size_b; ++i)
- z->long_value.ob_digit[i] = a->long_value.ob_digit[i] | b->long_value.ob_digit[i];
- break;
- case '^':
- for (i = 0; i < size_b; ++i)
- z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ b->long_value.ob_digit[i];
- break;
- default:
- Py_UNREACHABLE();
- }
- /* Copy any remaining digits of a, inverting if necessary. */
- if (op == '^' && negb)
- for (; i < size_z; ++i)
- z->long_value.ob_digit[i] = a->long_value.ob_digit[i] ^ PyLong_MASK;
- else if (i < size_z)
- memcpy(&z->long_value.ob_digit[i], &a->long_value.ob_digit[i],
- (size_z-i)*sizeof(digit));
- /* Complement result if negative. */
- if (negz) {
- _PyLong_FlipSign(z);
- z->long_value.ob_digit[size_z] = PyLong_MASK;
- v_complement(z->long_value.ob_digit, z->long_value.ob_digit, size_z+1);
- }
- Py_DECREF(a);
- Py_DECREF(b);
- return (PyObject *)maybe_small_long(long_normalize(z));
- }
- static PyObject *
- long_and(PyObject *a, PyObject *b)
- {
- CHECK_BINOP(a, b);
- PyLongObject *x = (PyLongObject*)a;
- PyLongObject *y = (PyLongObject*)b;
- if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
- return _PyLong_FromSTwoDigits(medium_value(x) & medium_value(y));
- }
- return long_bitwise(x, '&', y);
- }
- static PyObject *
- long_xor(PyObject *a, PyObject *b)
- {
- CHECK_BINOP(a, b);
- PyLongObject *x = (PyLongObject*)a;
- PyLongObject *y = (PyLongObject*)b;
- if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
- return _PyLong_FromSTwoDigits(medium_value(x) ^ medium_value(y));
- }
- return long_bitwise(x, '^', y);
- }
- static PyObject *
- long_or(PyObject *a, PyObject *b)
- {
- CHECK_BINOP(a, b);
- PyLongObject *x = (PyLongObject*)a;
- PyLongObject *y = (PyLongObject*)b;
- if (_PyLong_IsCompact(x) && _PyLong_IsCompact(y)) {
- return _PyLong_FromSTwoDigits(medium_value(x) | medium_value(y));
- }
- return long_bitwise(x, '|', y);
- }
- static PyObject *
- long_long(PyObject *v)
- {
- if (PyLong_CheckExact(v)) {
- return Py_NewRef(v);
- }
- else {
- return _PyLong_Copy((PyLongObject *)v);
- }
- }
- PyObject *
- _PyLong_GCD(PyObject *aarg, PyObject *barg)
- {
- PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
- stwodigits x, y, q, s, t, c_carry, d_carry;
- stwodigits A, B, C, D, T;
- int nbits, k;
- digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
- a = (PyLongObject *)aarg;
- b = (PyLongObject *)barg;
- if (_PyLong_DigitCount(a) <= 2 && _PyLong_DigitCount(b) <= 2) {
- Py_INCREF(a);
- Py_INCREF(b);
- goto simple;
- }
- /* Initial reduction: make sure that 0 <= b <= a. */
- a = (PyLongObject *)long_abs(a);
- if (a == NULL)
- return NULL;
- b = (PyLongObject *)long_abs(b);
- if (b == NULL) {
- Py_DECREF(a);
- return NULL;
- }
- if (long_compare(a, b) < 0) {
- r = a;
- a = b;
- b = r;
- }
- /* We now own references to a and b */
- Py_ssize_t size_a, size_b, alloc_a, alloc_b;
- alloc_a = _PyLong_DigitCount(a);
- alloc_b = _PyLong_DigitCount(b);
- /* reduce until a fits into 2 digits */
- while ((size_a = _PyLong_DigitCount(a)) > 2) {
- nbits = bit_length_digit(a->long_value.ob_digit[size_a-1]);
- /* extract top 2*PyLong_SHIFT bits of a into x, along with
- corresponding bits of b into y */
- size_b = _PyLong_DigitCount(b);
- assert(size_b <= size_a);
- if (size_b == 0) {
- if (size_a < alloc_a) {
- r = (PyLongObject *)_PyLong_Copy(a);
- Py_DECREF(a);
- }
- else
- r = a;
- Py_DECREF(b);
- Py_XDECREF(c);
- Py_XDECREF(d);
- return (PyObject *)r;
- }
- x = (((twodigits)a->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
- ((twodigits)a->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
- (a->long_value.ob_digit[size_a-3] >> nbits));
- y = ((size_b >= size_a - 2 ? b->long_value.ob_digit[size_a-3] >> nbits : 0) |
- (size_b >= size_a - 1 ? (twodigits)b->long_value.ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
- (size_b >= size_a ? (twodigits)b->long_value.ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
- /* inner loop of Lehmer's algorithm; A, B, C, D never grow
- larger than PyLong_MASK during the algorithm. */
- A = 1; B = 0; C = 0; D = 1;
- for (k=0;; k++) {
- if (y-C == 0)
- break;
- q = (x+(A-1))/(y-C);
- s = B+q*D;
- t = x-q*y;
- if (s > t)
- break;
- x = y; y = t;
- t = A+q*C; A = D; B = C; C = s; D = t;
- }
- if (k == 0) {
- /* no progress; do a Euclidean step */
- if (l_mod(a, b, &r) < 0)
- goto error;
- Py_SETREF(a, b);
- b = r;
- alloc_a = alloc_b;
- alloc_b = _PyLong_DigitCount(b);
- continue;
- }
- /*
- a, b = A*b-B*a, D*a-C*b if k is odd
- a, b = A*a-B*b, D*b-C*a if k is even
- */
- if (k&1) {
- T = -A; A = -B; B = T;
- T = -C; C = -D; D = T;
- }
- if (c != NULL) {
- assert(size_a >= 0);
- _PyLong_SetSignAndDigitCount(c, 1, size_a);
- }
- else if (Py_REFCNT(a) == 1) {
- c = (PyLongObject*)Py_NewRef(a);
- }
- else {
- alloc_a = size_a;
- c = _PyLong_New(size_a);
- if (c == NULL)
- goto error;
- }
- if (d != NULL) {
- assert(size_a >= 0);
- _PyLong_SetSignAndDigitCount(d, 1, size_a);
- }
- else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
- d = (PyLongObject*)Py_NewRef(b);
- assert(size_a >= 0);
- _PyLong_SetSignAndDigitCount(d, 1, size_a);
- }
- else {
- alloc_b = size_a;
- d = _PyLong_New(size_a);
- if (d == NULL)
- goto error;
- }
- a_end = a->long_value.ob_digit + size_a;
- b_end = b->long_value.ob_digit + size_b;
- /* compute new a and new b in parallel */
- a_digit = a->long_value.ob_digit;
- b_digit = b->long_value.ob_digit;
- c_digit = c->long_value.ob_digit;
- d_digit = d->long_value.ob_digit;
- c_carry = 0;
- d_carry = 0;
- while (b_digit < b_end) {
- c_carry += (A * *a_digit) - (B * *b_digit);
- d_carry += (D * *b_digit++) - (C * *a_digit++);
- *c_digit++ = (digit)(c_carry & PyLong_MASK);
- *d_digit++ = (digit)(d_carry & PyLong_MASK);
- c_carry >>= PyLong_SHIFT;
- d_carry >>= PyLong_SHIFT;
- }
- while (a_digit < a_end) {
- c_carry += A * *a_digit;
- d_carry -= C * *a_digit++;
- *c_digit++ = (digit)(c_carry & PyLong_MASK);
- *d_digit++ = (digit)(d_carry & PyLong_MASK);
- c_carry >>= PyLong_SHIFT;
- d_carry >>= PyLong_SHIFT;
- }
- assert(c_carry == 0);
- assert(d_carry == 0);
- Py_INCREF(c);
- Py_INCREF(d);
- Py_DECREF(a);
- Py_DECREF(b);
- a = long_normalize(c);
- b = long_normalize(d);
- }
- Py_XDECREF(c);
- Py_XDECREF(d);
- simple:
- assert(Py_REFCNT(a) > 0);
- assert(Py_REFCNT(b) > 0);
- /* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
- undefined behaviour when LONG_MAX type is smaller than 60 bits */
- #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
- /* a fits into a long, so b must too */
- x = PyLong_AsLong((PyObject *)a);
- y = PyLong_AsLong((PyObject *)b);
- #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
- x = PyLong_AsLongLong((PyObject *)a);
- y = PyLong_AsLongLong((PyObject *)b);
- #else
- # error "_PyLong_GCD"
- #endif
- x = Py_ABS(x);
- y = Py_ABS(y);
- Py_DECREF(a);
- Py_DECREF(b);
- /* usual Euclidean algorithm for longs */
- while (y != 0) {
- t = y;
- y = x % y;
- x = t;
- }
- #if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
- return PyLong_FromLong(x);
- #elif LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
- return PyLong_FromLongLong(x);
- #else
- # error "_PyLong_GCD"
- #endif
- error:
- Py_DECREF(a);
- Py_DECREF(b);
- Py_XDECREF(c);
- Py_XDECREF(d);
- return NULL;
- }
- static PyObject *
- long_float(PyObject *v)
- {
- double result;
- result = PyLong_AsDouble(v);
- if (result == -1.0 && PyErr_Occurred())
- return NULL;
- return PyFloat_FromDouble(result);
- }
- static PyObject *
- long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase);
- /*[clinic input]
- @classmethod
- int.__new__ as long_new
- x: object(c_default="NULL") = 0
- /
- base as obase: object(c_default="NULL") = 10
- [clinic start generated code]*/
- static PyObject *
- long_new_impl(PyTypeObject *type, PyObject *x, PyObject *obase)
- /*[clinic end generated code: output=e47cfe777ab0f24c input=81c98f418af9eb6f]*/
- {
- Py_ssize_t base;
- if (type != &PyLong_Type)
- return long_subtype_new(type, x, obase); /* Wimp out */
- if (x == NULL) {
- if (obase != NULL) {
- PyErr_SetString(PyExc_TypeError,
- "int() missing string argument");
- return NULL;
- }
- return PyLong_FromLong(0L);
- }
- /* default base and limit, forward to standard implementation */
- if (obase == NULL)
- return PyNumber_Long(x);
- base = PyNumber_AsSsize_t(obase, NULL);
- if (base == -1 && PyErr_Occurred())
- return NULL;
- if ((base != 0 && base < 2) || base > 36) {
- PyErr_SetString(PyExc_ValueError,
- "int() base must be >= 2 and <= 36, or 0");
- return NULL;
- }
- if (PyUnicode_Check(x))
- return PyLong_FromUnicodeObject(x, (int)base);
- else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
- const char *string;
- if (PyByteArray_Check(x))
- string = PyByteArray_AS_STRING(x);
- else
- string = PyBytes_AS_STRING(x);
- return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
- }
- else {
- PyErr_SetString(PyExc_TypeError,
- "int() can't convert non-string with explicit base");
- return NULL;
- }
- }
- /* Wimpy, slow approach to tp_new calls for subtypes of int:
- first create a regular int from whatever arguments we got,
- then allocate a subtype instance and initialize it from
- the regular int. The regular int is then thrown away.
- */
- static PyObject *
- long_subtype_new(PyTypeObject *type, PyObject *x, PyObject *obase)
- {
- PyLongObject *tmp, *newobj;
- Py_ssize_t i, n;
- assert(PyType_IsSubtype(type, &PyLong_Type));
- tmp = (PyLongObject *)long_new_impl(&PyLong_Type, x, obase);
- if (tmp == NULL)
- return NULL;
- assert(PyLong_Check(tmp));
- n = _PyLong_DigitCount(tmp);
- /* Fast operations for single digit integers (including zero)
- * assume that there is always at least one digit present. */
- if (n == 0) {
- n = 1;
- }
- newobj = (PyLongObject *)type->tp_alloc(type, n);
- if (newobj == NULL) {
- Py_DECREF(tmp);
- return NULL;
- }
- assert(PyLong_Check(newobj));
- newobj->long_value.lv_tag = tmp->long_value.lv_tag;
- for (i = 0; i < n; i++) {
- newobj->long_value.ob_digit[i] = tmp->long_value.ob_digit[i];
- }
- Py_DECREF(tmp);
- return (PyObject *)newobj;
- }
- /*[clinic input]
- int.__getnewargs__
- [clinic start generated code]*/
- static PyObject *
- int___getnewargs___impl(PyObject *self)
- /*[clinic end generated code: output=839a49de3f00b61b input=5904770ab1fb8c75]*/
- {
- return Py_BuildValue("(N)", _PyLong_Copy((PyLongObject *)self));
- }
- static PyObject *
- long_get0(PyObject *Py_UNUSED(self), void *Py_UNUSED(context))
- {
- return PyLong_FromLong(0L);
- }
- static PyObject *
- long_get1(PyObject *Py_UNUSED(self), void *Py_UNUSED(ignored))
- {
- return PyLong_FromLong(1L);
- }
- /*[clinic input]
- int.__format__
- format_spec: unicode
- /
- Convert to a string according to format_spec.
- [clinic start generated code]*/
- static PyObject *
- int___format___impl(PyObject *self, PyObject *format_spec)
- /*[clinic end generated code: output=b4929dee9ae18689 input=d5e1254a47e8d1dc]*/
- {
- _PyUnicodeWriter writer;
- int ret;
- _PyUnicodeWriter_Init(&writer);
- ret = _PyLong_FormatAdvancedWriter(
- &writer,
- self,
- format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
- if (ret == -1) {
- _PyUnicodeWriter_Dealloc(&writer);
- return NULL;
- }
- return _PyUnicodeWriter_Finish(&writer);
- }
- /* Return a pair (q, r) such that a = b * q + r, and
- abs(r) <= abs(b)/2, with equality possible only if q is even.
- In other words, q == a / b, rounded to the nearest integer using
- round-half-to-even. */
- PyObject *
- _PyLong_DivmodNear(PyObject *a, PyObject *b)
- {
- PyLongObject *quo = NULL, *rem = NULL;
- PyObject *twice_rem, *result, *temp;
- int quo_is_odd, quo_is_neg;
- Py_ssize_t cmp;
- /* Equivalent Python code:
- def divmod_near(a, b):
- q, r = divmod(a, b)
- # round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
- # The expression r / b > 0.5 is equivalent to 2 * r > b if b is
- # positive, 2 * r < b if b negative.
- greater_than_half = 2*r > b if b > 0 else 2*r < b
- exactly_half = 2*r == b
- if greater_than_half or exactly_half and q % 2 == 1:
- q += 1
- r -= b
- return q, r
- */
- if (!PyLong_Check(a) || !PyLong_Check(b)) {
- PyErr_SetString(PyExc_TypeError,
- "non-integer arguments in division");
- return NULL;
- }
- /* Do a and b have different signs? If so, quotient is negative. */
- quo_is_neg = (_PyLong_IsNegative((PyLongObject *)a)) != (_PyLong_IsNegative((PyLongObject *)b));
- if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
- goto error;
- /* compare twice the remainder with the divisor, to see
- if we need to adjust the quotient and remainder */
- PyObject *one = _PyLong_GetOne(); // borrowed reference
- twice_rem = long_lshift((PyObject *)rem, one);
- if (twice_rem == NULL)
- goto error;
- if (quo_is_neg) {
- temp = long_neg((PyLongObject*)twice_rem);
- Py_SETREF(twice_rem, temp);
- if (twice_rem == NULL)
- goto error;
- }
- cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
- Py_DECREF(twice_rem);
- quo_is_odd = (quo->long_value.ob_digit[0] & 1) != 0;
- if ((_PyLong_IsNegative((PyLongObject *)b) ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
- /* fix up quotient */
- if (quo_is_neg)
- temp = long_sub(quo, (PyLongObject *)one);
- else
- temp = long_add(quo, (PyLongObject *)one);
- Py_SETREF(quo, (PyLongObject *)temp);
- if (quo == NULL)
- goto error;
- /* and remainder */
- if (quo_is_neg)
- temp = long_add(rem, (PyLongObject *)b);
- else
- temp = long_sub(rem, (PyLongObject *)b);
- Py_SETREF(rem, (PyLongObject *)temp);
- if (rem == NULL)
- goto error;
- }
- result = PyTuple_New(2);
- if (result == NULL)
- goto error;
- /* PyTuple_SET_ITEM steals references */
- PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
- PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
- return result;
- error:
- Py_XDECREF(quo);
- Py_XDECREF(rem);
- return NULL;
- }
- /*[clinic input]
- int.__round__
- ndigits as o_ndigits: object = NULL
- /
- Rounding an Integral returns itself.
- Rounding with an ndigits argument also returns an integer.
- [clinic start generated code]*/
- static PyObject *
- int___round___impl(PyObject *self, PyObject *o_ndigits)
- /*[clinic end generated code: output=954fda6b18875998 input=1614cf23ec9e18c3]*/
- {
- PyObject *temp, *result, *ndigits;
- /* To round an integer m to the nearest 10**n (n positive), we make use of
- * the divmod_near operation, defined by:
- *
- * divmod_near(a, b) = (q, r)
- *
- * where q is the nearest integer to the quotient a / b (the
- * nearest even integer in the case of a tie) and r == a - q * b.
- * Hence q * b = a - r is the nearest multiple of b to a,
- * preferring even multiples in the case of a tie.
- *
- * So the nearest multiple of 10**n to m is:
- *
- * m - divmod_near(m, 10**n)[1].
- */
- if (o_ndigits == NULL)
- return long_long(self);
- ndigits = _PyNumber_Index(o_ndigits);
- if (ndigits == NULL)
- return NULL;
- /* if ndigits >= 0 then no rounding is necessary; return self unchanged */
- if (!_PyLong_IsNegative((PyLongObject *)ndigits)) {
- Py_DECREF(ndigits);
- return long_long(self);
- }
- /* result = self - divmod_near(self, 10 ** -ndigits)[1] */
- temp = long_neg((PyLongObject*)ndigits);
- Py_SETREF(ndigits, temp);
- if (ndigits == NULL)
- return NULL;
- result = PyLong_FromLong(10L);
- if (result == NULL) {
- Py_DECREF(ndigits);
- return NULL;
- }
- temp = long_pow(result, ndigits, Py_None);
- Py_DECREF(ndigits);
- Py_SETREF(result, temp);
- if (result == NULL)
- return NULL;
- temp = _PyLong_DivmodNear(self, result);
- Py_SETREF(result, temp);
- if (result == NULL)
- return NULL;
- temp = long_sub((PyLongObject *)self,
- (PyLongObject *)PyTuple_GET_ITEM(result, 1));
- Py_SETREF(result, temp);
- return result;
- }
- /*[clinic input]
- int.__sizeof__ -> Py_ssize_t
- Returns size in memory, in bytes.
- [clinic start generated code]*/
- static Py_ssize_t
- int___sizeof___impl(PyObject *self)
- /*[clinic end generated code: output=3303f008eaa6a0a5 input=9b51620c76fc4507]*/
- {
- /* using Py_MAX(..., 1) because we always allocate space for at least
- one digit, even though the integer zero has a digit count of 0 */
- Py_ssize_t ndigits = Py_MAX(_PyLong_DigitCount((PyLongObject *)self), 1);
- return Py_TYPE(self)->tp_basicsize + Py_TYPE(self)->tp_itemsize * ndigits;
- }
- /*[clinic input]
- int.bit_length
- Number of bits necessary to represent self in binary.
- >>> bin(37)
- '0b100101'
- >>> (37).bit_length()
- 6
- [clinic start generated code]*/
- static PyObject *
- int_bit_length_impl(PyObject *self)
- /*[clinic end generated code: output=fc1977c9353d6a59 input=e4eb7a587e849a32]*/
- {
- PyLongObject *result, *x, *y;
- Py_ssize_t ndigits;
- int msd_bits;
- digit msd;
- assert(self != NULL);
- assert(PyLong_Check(self));
- ndigits = _PyLong_DigitCount((PyLongObject *)self);
- if (ndigits == 0)
- return PyLong_FromLong(0);
- msd = ((PyLongObject *)self)->long_value.ob_digit[ndigits-1];
- msd_bits = bit_length_digit(msd);
- if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
- return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
- /* expression above may overflow; use Python integers instead */
- result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
- if (result == NULL)
- return NULL;
- x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
- if (x == NULL)
- goto error;
- y = (PyLongObject *)long_mul(result, x);
- Py_DECREF(x);
- if (y == NULL)
- goto error;
- Py_SETREF(result, y);
- x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
- if (x == NULL)
- goto error;
- y = (PyLongObject *)long_add(result, x);
- Py_DECREF(x);
- if (y == NULL)
- goto error;
- Py_SETREF(result, y);
- return (PyObject *)result;
- error:
- Py_DECREF(result);
- return NULL;
- }
- static int
- popcount_digit(digit d)
- {
- // digit can be larger than uint32_t, but only PyLong_SHIFT bits
- // of it will be ever used.
- static_assert(PyLong_SHIFT <= 32, "digit is larger than uint32_t");
- return _Py_popcount32((uint32_t)d);
- }
- /*[clinic input]
- int.bit_count
- Number of ones in the binary representation of the absolute value of self.
- Also known as the population count.
- >>> bin(13)
- '0b1101'
- >>> (13).bit_count()
- 3
- [clinic start generated code]*/
- static PyObject *
- int_bit_count_impl(PyObject *self)
- /*[clinic end generated code: output=2e571970daf1e5c3 input=7e0adef8e8ccdf2e]*/
- {
- assert(self != NULL);
- assert(PyLong_Check(self));
- PyLongObject *z = (PyLongObject *)self;
- Py_ssize_t ndigits = _PyLong_DigitCount(z);
- Py_ssize_t bit_count = 0;
- /* Each digit has up to PyLong_SHIFT ones, so the accumulated bit count
- from the first PY_SSIZE_T_MAX/PyLong_SHIFT digits can't overflow a
- Py_ssize_t. */
- Py_ssize_t ndigits_fast = Py_MIN(ndigits, PY_SSIZE_T_MAX/PyLong_SHIFT);
- for (Py_ssize_t i = 0; i < ndigits_fast; i++) {
- bit_count += popcount_digit(z->long_value.ob_digit[i]);
- }
- PyObject *result = PyLong_FromSsize_t(bit_count);
- if (result == NULL) {
- return NULL;
- }
- /* Use Python integers if bit_count would overflow. */
- for (Py_ssize_t i = ndigits_fast; i < ndigits; i++) {
- PyObject *x = PyLong_FromLong(popcount_digit(z->long_value.ob_digit[i]));
- if (x == NULL) {
- goto error;
- }
- PyObject *y = long_add((PyLongObject *)result, (PyLongObject *)x);
- Py_DECREF(x);
- if (y == NULL) {
- goto error;
- }
- Py_SETREF(result, y);
- }
- return result;
- error:
- Py_DECREF(result);
- return NULL;
- }
- /*[clinic input]
- int.as_integer_ratio
- Return a pair of integers, whose ratio is equal to the original int.
- The ratio is in lowest terms and has a positive denominator.
- >>> (10).as_integer_ratio()
- (10, 1)
- >>> (-10).as_integer_ratio()
- (-10, 1)
- >>> (0).as_integer_ratio()
- (0, 1)
- [clinic start generated code]*/
- static PyObject *
- int_as_integer_ratio_impl(PyObject *self)
- /*[clinic end generated code: output=e60803ae1cc8621a input=384ff1766634bec2]*/
- {
- PyObject *ratio_tuple;
- PyObject *numerator = long_long(self);
- if (numerator == NULL) {
- return NULL;
- }
- ratio_tuple = PyTuple_Pack(2, numerator, _PyLong_GetOne());
- Py_DECREF(numerator);
- return ratio_tuple;
- }
- /*[clinic input]
- int.to_bytes
- length: Py_ssize_t = 1
- Length of bytes object to use. An OverflowError is raised if the
- integer is not representable with the given number of bytes. Default
- is length 1.
- byteorder: unicode(c_default="NULL") = "big"
- The byte order used to represent the integer. If byteorder is 'big',
- the most significant byte is at the beginning of the byte array. If
- byteorder is 'little', the most significant byte is at the end of the
- byte array. To request the native byte order of the host system, use
- `sys.byteorder' as the byte order value. Default is to use 'big'.
- *
- signed as is_signed: bool = False
- Determines whether two's complement is used to represent the integer.
- If signed is False and a negative integer is given, an OverflowError
- is raised.
- Return an array of bytes representing an integer.
- [clinic start generated code]*/
- static PyObject *
- int_to_bytes_impl(PyObject *self, Py_ssize_t length, PyObject *byteorder,
- int is_signed)
- /*[clinic end generated code: output=89c801df114050a3 input=d42ecfb545039d71]*/
- {
- int little_endian;
- PyObject *bytes;
- if (byteorder == NULL)
- little_endian = 0;
- else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
- little_endian = 1;
- else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
- little_endian = 0;
- else {
- PyErr_SetString(PyExc_ValueError,
- "byteorder must be either 'little' or 'big'");
- return NULL;
- }
- if (length < 0) {
- PyErr_SetString(PyExc_ValueError,
- "length argument must be non-negative");
- return NULL;
- }
- bytes = PyBytes_FromStringAndSize(NULL, length);
- if (bytes == NULL)
- return NULL;
- if (_PyLong_AsByteArray((PyLongObject *)self,
- (unsigned char *)PyBytes_AS_STRING(bytes),
- length, little_endian, is_signed) < 0) {
- Py_DECREF(bytes);
- return NULL;
- }
- return bytes;
- }
- /*[clinic input]
- @classmethod
- int.from_bytes
- bytes as bytes_obj: object
- Holds the array of bytes to convert. The argument must either
- support the buffer protocol or be an iterable object producing bytes.
- Bytes and bytearray are examples of built-in objects that support the
- buffer protocol.
- byteorder: unicode(c_default="NULL") = "big"
- The byte order used to represent the integer. If byteorder is 'big',
- the most significant byte is at the beginning of the byte array. If
- byteorder is 'little', the most significant byte is at the end of the
- byte array. To request the native byte order of the host system, use
- `sys.byteorder' as the byte order value. Default is to use 'big'.
- *
- signed as is_signed: bool = False
- Indicates whether two's complement is used to represent the integer.
- Return the integer represented by the given array of bytes.
- [clinic start generated code]*/
- static PyObject *
- int_from_bytes_impl(PyTypeObject *type, PyObject *bytes_obj,
- PyObject *byteorder, int is_signed)
- /*[clinic end generated code: output=efc5d68e31f9314f input=33326dccdd655553]*/
- {
- int little_endian;
- PyObject *long_obj, *bytes;
- if (byteorder == NULL)
- little_endian = 0;
- else if (_PyUnicode_Equal(byteorder, &_Py_ID(little)))
- little_endian = 1;
- else if (_PyUnicode_Equal(byteorder, &_Py_ID(big)))
- little_endian = 0;
- else {
- PyErr_SetString(PyExc_ValueError,
- "byteorder must be either 'little' or 'big'");
- return NULL;
- }
- bytes = PyObject_Bytes(bytes_obj);
- if (bytes == NULL)
- return NULL;
- long_obj = _PyLong_FromByteArray(
- (unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
- little_endian, is_signed);
- Py_DECREF(bytes);
- if (long_obj != NULL && type != &PyLong_Type) {
- Py_SETREF(long_obj, PyObject_CallOneArg((PyObject *)type, long_obj));
- }
- return long_obj;
- }
- static PyObject *
- long_long_meth(PyObject *self, PyObject *Py_UNUSED(ignored))
- {
- return long_long(self);
- }
- /*[clinic input]
- int.is_integer
- Returns True. Exists for duck type compatibility with float.is_integer.
- [clinic start generated code]*/
- static PyObject *
- int_is_integer_impl(PyObject *self)
- /*[clinic end generated code: output=90f8e794ce5430ef input=7e41c4d4416e05f2]*/
- {
- Py_RETURN_TRUE;
- }
- static PyMethodDef long_methods[] = {
- {"conjugate", long_long_meth, METH_NOARGS,
- "Returns self, the complex conjugate of any int."},
- INT_BIT_LENGTH_METHODDEF
- INT_BIT_COUNT_METHODDEF
- INT_TO_BYTES_METHODDEF
- INT_FROM_BYTES_METHODDEF
- INT_AS_INTEGER_RATIO_METHODDEF
- {"__trunc__", long_long_meth, METH_NOARGS,
- "Truncating an Integral returns itself."},
- {"__floor__", long_long_meth, METH_NOARGS,
- "Flooring an Integral returns itself."},
- {"__ceil__", long_long_meth, METH_NOARGS,
- "Ceiling of an Integral returns itself."},
- INT___ROUND___METHODDEF
- INT___GETNEWARGS___METHODDEF
- INT___FORMAT___METHODDEF
- INT___SIZEOF___METHODDEF
- INT_IS_INTEGER_METHODDEF
- {NULL, NULL} /* sentinel */
- };
- static PyGetSetDef long_getset[] = {
- {"real",
- (getter)long_long_meth, (setter)NULL,
- "the real part of a complex number",
- NULL},
- {"imag",
- long_get0, (setter)NULL,
- "the imaginary part of a complex number",
- NULL},
- {"numerator",
- (getter)long_long_meth, (setter)NULL,
- "the numerator of a rational number in lowest terms",
- NULL},
- {"denominator",
- long_get1, (setter)NULL,
- "the denominator of a rational number in lowest terms",
- NULL},
- {NULL} /* Sentinel */
- };
- PyDoc_STRVAR(long_doc,
- "int([x]) -> integer\n\
- int(x, base=10) -> integer\n\
- \n\
- Convert a number or string to an integer, or return 0 if no arguments\n\
- are given. If x is a number, return x.__int__(). For floating-point\n\
- numbers, this truncates towards zero.\n\
- \n\
- If x is not a number or if base is given, then x must be a string,\n\
- bytes, or bytearray instance representing an integer literal in the\n\
- given base. The literal can be preceded by '+' or '-' and be surrounded\n\
- by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\n\
- Base 0 means to interpret the base from the string as an integer literal.\n\
- >>> int('0b100', base=0)\n\
- 4");
- static PyNumberMethods long_as_number = {
- (binaryfunc)long_add, /*nb_add*/
- (binaryfunc)long_sub, /*nb_subtract*/
- (binaryfunc)long_mul, /*nb_multiply*/
- long_mod, /*nb_remainder*/
- long_divmod, /*nb_divmod*/
- long_pow, /*nb_power*/
- (unaryfunc)long_neg, /*nb_negative*/
- long_long, /*tp_positive*/
- (unaryfunc)long_abs, /*tp_absolute*/
- (inquiry)long_bool, /*tp_bool*/
- (unaryfunc)long_invert, /*nb_invert*/
- long_lshift, /*nb_lshift*/
- long_rshift, /*nb_rshift*/
- long_and, /*nb_and*/
- long_xor, /*nb_xor*/
- long_or, /*nb_or*/
- long_long, /*nb_int*/
- 0, /*nb_reserved*/
- long_float, /*nb_float*/
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- long_div, /* nb_floor_divide */
- long_true_divide, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
- long_long, /* nb_index */
- };
- PyTypeObject PyLong_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "int", /* tp_name */
- offsetof(PyLongObject, long_value.ob_digit), /* tp_basicsize */
- sizeof(digit), /* tp_itemsize */
- long_dealloc, /* tp_dealloc */
- 0, /* tp_vectorcall_offset */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_as_async */
- long_to_decimal_string, /* tp_repr */
- &long_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)long_hash, /* tp_hash */
- 0, /* tp_call */
- 0, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
- Py_TPFLAGS_LONG_SUBCLASS |
- _Py_TPFLAGS_MATCH_SELF, /* tp_flags */
- long_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- long_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- long_methods, /* tp_methods */
- 0, /* tp_members */
- long_getset, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- long_new, /* tp_new */
- PyObject_Free, /* tp_free */
- };
- static PyTypeObject Int_InfoType;
- PyDoc_STRVAR(int_info__doc__,
- "sys.int_info\n\
- \n\
- A named tuple that holds information about Python's\n\
- internal representation of integers. The attributes are read only.");
- static PyStructSequence_Field int_info_fields[] = {
- {"bits_per_digit", "size of a digit in bits"},
- {"sizeof_digit", "size in bytes of the C type used to represent a digit"},
- {"default_max_str_digits", "maximum string conversion digits limitation"},
- {"str_digits_check_threshold", "minimum positive value for int_max_str_digits"},
- {NULL, NULL}
- };
- static PyStructSequence_Desc int_info_desc = {
- "sys.int_info", /* name */
- int_info__doc__, /* doc */
- int_info_fields, /* fields */
- 4 /* number of fields */
- };
- PyObject *
- PyLong_GetInfo(void)
- {
- PyObject* int_info;
- int field = 0;
- int_info = PyStructSequence_New(&Int_InfoType);
- if (int_info == NULL)
- return NULL;
- PyStructSequence_SET_ITEM(int_info, field++,
- PyLong_FromLong(PyLong_SHIFT));
- PyStructSequence_SET_ITEM(int_info, field++,
- PyLong_FromLong(sizeof(digit)));
- /*
- * The following two fields were added after investigating uses of
- * sys.int_info in the wild: Exceedingly rarely used. The ONLY use found was
- * numba using sys.int_info.bits_per_digit as attribute access rather than
- * sequence unpacking. Cython and sympy also refer to sys.int_info but only
- * as info for debugging. No concern about adding these in a backport.
- */
- PyStructSequence_SET_ITEM(int_info, field++,
- PyLong_FromLong(_PY_LONG_DEFAULT_MAX_STR_DIGITS));
- PyStructSequence_SET_ITEM(int_info, field++,
- PyLong_FromLong(_PY_LONG_MAX_STR_DIGITS_THRESHOLD));
- if (PyErr_Occurred()) {
- Py_CLEAR(int_info);
- return NULL;
- }
- return int_info;
- }
- /* runtime lifecycle */
- PyStatus
- _PyLong_InitTypes(PyInterpreterState *interp)
- {
- /* initialize int_info */
- if (_PyStructSequence_InitBuiltin(interp, &Int_InfoType,
- &int_info_desc) < 0)
- {
- return _PyStatus_ERR("can't init int info type");
- }
- return _PyStatus_OK();
- }
- void
- _PyLong_FiniTypes(PyInterpreterState *interp)
- {
- _PyStructSequence_FiniBuiltin(interp, &Int_InfoType);
- }
- #undef PyUnstable_Long_IsCompact
- int
- PyUnstable_Long_IsCompact(const PyLongObject* op) {
- return _PyLong_IsCompact(op);
- }
- #undef PyUnstable_Long_CompactValue
- Py_ssize_t
- PyUnstable_Long_CompactValue(const PyLongObject* op) {
- return _PyLong_CompactValue(op);
- }
|