123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924 |
- /* ----------------------------------------------------------------------------
- Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
- This is free software; you can redistribute it and/or modify it under the
- terms of the MIT license. A copy of the license can be found in the file
- "LICENSE" at the root of this distribution.
- -----------------------------------------------------------------------------*/
- #pragma once
- #ifndef MIMALLOC_INTERNAL_H
- #define MIMALLOC_INTERNAL_H
- #include "mimalloc-types.h"
- #if (MI_DEBUG>0)
- #define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
- #else
- #define mi_trace_message(...)
- #endif
- #define MI_CACHE_LINE 64
- #if defined(_MSC_VER)
- #pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths)
- #define mi_decl_noinline __declspec(noinline)
- #define mi_decl_thread __declspec(thread)
- #define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
- #elif (defined(__GNUC__) && (__GNUC__>=3)) // includes clang and icc
- #define mi_decl_noinline __attribute__((noinline))
- #define mi_decl_thread __thread
- #define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE)))
- #else
- #define mi_decl_noinline
- #define mi_decl_thread __thread // hope for the best :-)
- #define mi_decl_cache_align
- #endif
- // "options.c"
- void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message);
- void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...);
- void _mi_warning_message(const char* fmt, ...);
- void _mi_verbose_message(const char* fmt, ...);
- void _mi_trace_message(const char* fmt, ...);
- void _mi_options_init(void);
- void _mi_error_message(int err, const char* fmt, ...);
- // random.c
- void _mi_random_init(mi_random_ctx_t* ctx);
- void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
- uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
- uintptr_t _mi_heap_random_next(mi_heap_t* heap);
- uintptr_t _os_random_weak(uintptr_t extra_seed);
- static inline uintptr_t _mi_random_shuffle(uintptr_t x);
- // init.c
- extern mi_decl_cache_align mi_stats_t _mi_stats_main;
- extern mi_decl_cache_align const mi_page_t _mi_page_empty;
- bool _mi_is_main_thread(void);
- bool _mi_preloading(); // true while the C runtime is not ready
- // os.c
- size_t _mi_os_page_size(void);
- void _mi_os_init(void); // called from process init
- void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
- void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
- size_t _mi_os_good_alloc_size(size_t size);
- // memory.c
- void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* id, mi_os_tld_t* tld);
- void _mi_mem_free(void* p, size_t size, size_t id, bool fully_committed, bool any_reset, mi_os_tld_t* tld);
- bool _mi_mem_reset(void* p, size_t size, mi_os_tld_t* tld);
- bool _mi_mem_unreset(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld);
- bool _mi_mem_commit(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld);
- bool _mi_mem_protect(void* addr, size_t size);
- bool _mi_mem_unprotect(void* addr, size_t size);
- void _mi_mem_collect(mi_os_tld_t* tld);
- // "segment.c"
- mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
- void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
- void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
- uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size); // page start for any page
- void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
- void _mi_segment_thread_collect(mi_segments_tld_t* tld);
- void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld);
- void _mi_abandoned_await_readers(void);
- // "page.c"
- void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc;
- void _mi_page_retire(mi_page_t* page); // free the page if there are no other pages with many free blocks
- void _mi_page_unfull(mi_page_t* page);
- void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
- void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
- void _mi_heap_delayed_free(mi_heap_t* heap);
- void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
- void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
- size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
- void _mi_deferred_free(mi_heap_t* heap, bool force);
- void _mi_page_free_collect(mi_page_t* page,bool force);
- void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments
- size_t _mi_bin_size(uint8_t bin); // for stats
- uint8_t _mi_bin(size_t size); // for stats
- // "heap.c"
- void _mi_heap_destroy_pages(mi_heap_t* heap);
- void _mi_heap_collect_abandon(mi_heap_t* heap);
- void _mi_heap_set_default_direct(mi_heap_t* heap);
- // "stats.c"
- void _mi_stats_done(mi_stats_t* stats);
- mi_msecs_t _mi_clock_now(void);
- mi_msecs_t _mi_clock_end(mi_msecs_t start);
- mi_msecs_t _mi_clock_start(void);
- // "alloc.c"
- void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_malloc_generic`
- void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero);
- void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero);
- mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
- bool _mi_free_delayed_block(mi_block_t* block);
- void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size);
- #if MI_DEBUG>1
- bool _mi_page_is_valid(mi_page_t* page);
- #endif
- // ------------------------------------------------------
- // Branches
- // ------------------------------------------------------
- #if defined(__GNUC__) || defined(__clang__)
- #define mi_unlikely(x) __builtin_expect((x),0)
- #define mi_likely(x) __builtin_expect((x),1)
- #else
- #define mi_unlikely(x) (x)
- #define mi_likely(x) (x)
- #endif
- #ifndef __has_builtin
- #define __has_builtin(x) 0
- #endif
- /* -----------------------------------------------------------
- Error codes passed to `_mi_fatal_error`
- All are recoverable but EFAULT is a serious error and aborts by default in secure mode.
- For portability define undefined error codes using common Unix codes:
- <https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html>
- ----------------------------------------------------------- */
- #include <errno.h>
- #ifndef EAGAIN // double free
- #define EAGAIN (11)
- #endif
- #ifndef ENOMEM // out of memory
- #define ENOMEM (12)
- #endif
- #ifndef EFAULT // corrupted free-list or meta-data
- #define EFAULT (14)
- #endif
- #ifndef EINVAL // trying to free an invalid pointer
- #define EINVAL (22)
- #endif
- #ifndef EOVERFLOW // count*size overflow
- #define EOVERFLOW (75)
- #endif
- /* -----------------------------------------------------------
- Inlined definitions
- ----------------------------------------------------------- */
- #define UNUSED(x) (void)(x)
- #if (MI_DEBUG>0)
- #define UNUSED_RELEASE(x)
- #else
- #define UNUSED_RELEASE(x) UNUSED(x)
- #endif
- #define MI_INIT4(x) x(),x(),x(),x()
- #define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
- #define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
- #define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
- #define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
- #define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
- #define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
- // Is `x` a power of two? (0 is considered a power of two)
- static inline bool _mi_is_power_of_two(uintptr_t x) {
- return ((x & (x - 1)) == 0);
- }
- // Align upwards
- static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
- mi_assert_internal(alignment != 0);
- uintptr_t mask = alignment - 1;
- if ((alignment & mask) == 0) { // power of two?
- return ((sz + mask) & ~mask);
- }
- else {
- return (((sz + mask)/alignment)*alignment);
- }
- }
- // Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`.
- static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) {
- mi_assert_internal(divider != 0);
- return (divider == 0 ? size : ((size + divider - 1) / divider));
- }
- // Is memory zero initialized?
- static inline bool mi_mem_is_zero(void* p, size_t size) {
- for (size_t i = 0; i < size; i++) {
- if (((uint8_t*)p)[i] != 0) return false;
- }
- return true;
- }
- // Align a byte size to a size in _machine words_,
- // i.e. byte size == `wsize*sizeof(void*)`.
- static inline size_t _mi_wsize_from_size(size_t size) {
- mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
- return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
- }
- // Does malloc satisfy the alignment constraints already?
- static inline bool mi_malloc_satisfies_alignment(size_t alignment, size_t size) {
- return (alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2)));
- }
- // Overflow detecting multiply
- #if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5
- #include <limits.h> // UINT_MAX, ULONG_MAX
- #if defined(_CLOCK_T) // for Illumos
- #undef _CLOCK_T
- #endif
- static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
- #if (SIZE_MAX == UINT_MAX)
- return __builtin_umul_overflow(count, size, total);
- #elif (SIZE_MAX == ULONG_MAX)
- return __builtin_umull_overflow(count, size, total);
- #else
- return __builtin_umulll_overflow(count, size, total);
- #endif
- }
- #else /* __builtin_umul_overflow is unavailable */
- static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
- #define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
- *total = count * size;
- return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW)
- && size > 0 && (SIZE_MAX / size) < count);
- }
- #endif
- // Safe multiply `count*size` into `total`; return `true` on overflow.
- static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) {
- if (count==1) { // quick check for the case where count is one (common for C++ allocators)
- *total = size;
- return false;
- }
- else if (mi_unlikely(mi_mul_overflow(count, size, total))) {
- _mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size);
- *total = SIZE_MAX;
- return true;
- }
- else return false;
- }
- /* ----------------------------------------------------------------------------------------
- The thread local default heap: `_mi_get_default_heap` returns the thread local heap.
- On most platforms (Windows, Linux, FreeBSD, NetBSD, etc), this just returns a
- __thread local variable (`_mi_heap_default`). With the initial-exec TLS model this ensures
- that the storage will always be available (allocated on the thread stacks).
- On some platforms though we cannot use that when overriding `malloc` since the underlying
- TLS implementation (or the loader) will call itself `malloc` on a first access and recurse.
- We try to circumvent this in an efficient way:
- - macOSX : we use an unused TLS slot from the OS allocated slots (MI_TLS_SLOT). On OSX, the
- loader itself calls `malloc` even before the modules are initialized.
- - OpenBSD: we use an unused slot from the pthread block (MI_TLS_PTHREAD_SLOT_OFS).
- - DragonFly: the uniqueid use is buggy but kept for reference.
- ------------------------------------------------------------------------------------------- */
- extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
- extern bool _mi_process_is_initialized;
- mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap
- #if defined(MI_MALLOC_OVERRIDE)
- #if defined(__APPLE__) // macOS
- #define MI_TLS_SLOT 89 // seems unused?
- // other possible unused ones are 9, 29, __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY4 (94), __PTK_FRAMEWORK_GC_KEY9 (112) and __PTK_FRAMEWORK_OLDGC_KEY9 (89)
- // see <https://github.com/rweichler/substrate/blob/master/include/pthread_machdep.h>
- #elif defined(__OpenBSD__)
- // use end bytes of a name; goes wrong if anyone uses names > 23 characters (ptrhread specifies 16)
- // see <https://github.com/openbsd/src/blob/master/lib/libc/include/thread_private.h#L371>
- #define MI_TLS_PTHREAD_SLOT_OFS (6*sizeof(int) + 4*sizeof(void*) + 24)
- #elif defined(__DragonFly__)
- #warning "mimalloc is not working correctly on DragonFly yet."
- //#define MI_TLS_PTHREAD_SLOT_OFS (4 + 1*sizeof(void*)) // offset `uniqueid` (also used by gdb?) <https://github.com/DragonFlyBSD/DragonFlyBSD/blob/master/lib/libthread_xu/thread/thr_private.h#L458>
- #endif
- #endif
- #if defined(MI_TLS_SLOT)
- static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept; // forward declaration
- #elif defined(MI_TLS_PTHREAD_SLOT_OFS)
- #include <pthread.h>
- static inline mi_heap_t** mi_tls_pthread_heap_slot(void) {
- pthread_t self = pthread_self();
- #if defined(__DragonFly__)
- if (self==NULL) {
- mi_heap_t* pheap_main = _mi_heap_main_get();
- return &pheap_main;
- }
- #endif
- return (mi_heap_t**)((uint8_t*)self + MI_TLS_PTHREAD_SLOT_OFS);
- }
- #elif defined(MI_TLS_PTHREAD)
- #include <pthread.h>
- extern pthread_key_t _mi_heap_default_key;
- #endif
- // Default heap to allocate from (if not using TLS- or pthread slots).
- // Do not use this directly but use through `mi_heap_get_default()` (or the unchecked `mi_get_default_heap`).
- // This thread local variable is only used when neither MI_TLS_SLOT, MI_TLS_PTHREAD, or MI_TLS_PTHREAD_SLOT_OFS are defined.
- // However, on the Apple M1 we do use the address of this variable as the unique thread-id (issue #356).
- extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
- static inline mi_heap_t* mi_get_default_heap(void) {
- #if defined(MI_TLS_SLOT)
- mi_heap_t* heap = (mi_heap_t*)mi_tls_slot(MI_TLS_SLOT);
- return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
- #elif defined(MI_TLS_PTHREAD_SLOT_OFS)
- mi_heap_t* heap = *mi_tls_pthread_heap_slot();
- return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
- #elif defined(MI_TLS_PTHREAD)
- mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? _mi_heap_main_get() : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key));
- return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
- #else
- #if defined(MI_TLS_RECURSE_GUARD)
- if (mi_unlikely(!_mi_process_is_initialized)) return _mi_heap_main_get();
- #endif
- return _mi_heap_default;
- #endif
- }
- static inline bool mi_heap_is_default(const mi_heap_t* heap) {
- return (heap == mi_get_default_heap());
- }
- static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
- return (heap->tld->heap_backing == heap);
- }
- static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
- mi_assert_internal(heap != NULL);
- return (heap != &_mi_heap_empty);
- }
- static inline uintptr_t _mi_ptr_cookie(const void* p) {
- extern mi_heap_t _mi_heap_main;
- mi_assert_internal(_mi_heap_main.cookie != 0);
- return ((uintptr_t)p ^ _mi_heap_main.cookie);
- }
- /* -----------------------------------------------------------
- Pages
- ----------------------------------------------------------- */
- static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
- mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
- const size_t idx = _mi_wsize_from_size(size);
- mi_assert_internal(idx < MI_PAGES_DIRECT);
- return heap->pages_free_direct[idx];
- }
- // Get the page belonging to a certain size class
- static inline mi_page_t* _mi_get_free_small_page(size_t size) {
- return _mi_heap_get_free_small_page(mi_get_default_heap(), size);
- }
- // Segment that contains the pointer
- static inline mi_segment_t* _mi_ptr_segment(const void* p) {
- // mi_assert_internal(p != NULL);
- return (mi_segment_t*)((uintptr_t)p & ~MI_SEGMENT_MASK);
- }
- // Segment belonging to a page
- static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
- mi_segment_t* segment = _mi_ptr_segment(page);
- mi_assert_internal(segment == NULL || page == &segment->pages[page->segment_idx]);
- return segment;
- }
- // used internally
- static inline uintptr_t _mi_segment_page_idx_of(const mi_segment_t* segment, const void* p) {
- // if (segment->page_size > MI_SEGMENT_SIZE) return &segment->pages[0]; // huge pages
- ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment;
- mi_assert_internal(diff >= 0 && (size_t)diff < MI_SEGMENT_SIZE);
- uintptr_t idx = (uintptr_t)diff >> segment->page_shift;
- mi_assert_internal(idx < segment->capacity);
- mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM || idx == 0);
- return idx;
- }
- // Get the page containing the pointer
- static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) {
- uintptr_t idx = _mi_segment_page_idx_of(segment, p);
- return &((mi_segment_t*)segment)->pages[idx];
- }
- // Quick page start for initialized pages
- static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
- const size_t bsize = page->xblock_size;
- mi_assert_internal(bsize > 0 && (bsize%sizeof(void*)) == 0);
- return _mi_segment_page_start(segment, page, bsize, page_size, NULL);
- }
- // Get the page containing the pointer
- static inline mi_page_t* _mi_ptr_page(void* p) {
- return _mi_segment_page_of(_mi_ptr_segment(p), p);
- }
- // Get the block size of a page (special cased for huge objects)
- static inline size_t mi_page_block_size(const mi_page_t* page) {
- const size_t bsize = page->xblock_size;
- mi_assert_internal(bsize > 0);
- if (mi_likely(bsize < MI_HUGE_BLOCK_SIZE)) {
- return bsize;
- }
- else {
- size_t psize;
- _mi_segment_page_start(_mi_page_segment(page), page, bsize, &psize, NULL);
- return psize;
- }
- }
- // Get the usable block size of a page without fixed padding.
- // This may still include internal padding due to alignment and rounding up size classes.
- static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
- return mi_page_block_size(page) - MI_PADDING_SIZE;
- }
- // Thread free access
- static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {
- return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3);
- }
- static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) {
- return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3);
- }
- // Heap access
- static inline mi_heap_t* mi_page_heap(const mi_page_t* page) {
- return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap));
- }
- static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) {
- mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING);
- mi_atomic_store_release(&page->xheap,(uintptr_t)heap);
- }
- // Thread free flag helpers
- static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
- return (mi_block_t*)(tf & ~0x03);
- }
- static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) {
- return (mi_delayed_t)(tf & 0x03);
- }
- static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) {
- return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed);
- }
- static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) {
- return mi_tf_make(mi_tf_block(tf),delayed);
- }
- static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) {
- return mi_tf_make(block, mi_tf_delayed(tf));
- }
- // are all blocks in a page freed?
- // note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`.
- static inline bool mi_page_all_free(const mi_page_t* page) {
- mi_assert_internal(page != NULL);
- return (page->used == 0);
- }
- // are there any available blocks?
- static inline bool mi_page_has_any_available(const mi_page_t* page) {
- mi_assert_internal(page != NULL && page->reserved > 0);
- return (page->used < page->reserved || (mi_page_thread_free(page) != NULL));
- }
- // are there immediately available blocks, i.e. blocks available on the free list.
- static inline bool mi_page_immediate_available(const mi_page_t* page) {
- mi_assert_internal(page != NULL);
- return (page->free != NULL);
- }
- // is more than 7/8th of a page in use?
- static inline bool mi_page_mostly_used(const mi_page_t* page) {
- if (page==NULL) return true;
- uint16_t frac = page->reserved / 8U;
- return (page->reserved - page->used <= frac);
- }
- static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
- return &((mi_heap_t*)heap)->pages[_mi_bin(size)];
- }
- //-----------------------------------------------------------
- // Page flags
- //-----------------------------------------------------------
- static inline bool mi_page_is_in_full(const mi_page_t* page) {
- return page->flags.x.in_full;
- }
- static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
- page->flags.x.in_full = in_full;
- }
- static inline bool mi_page_has_aligned(const mi_page_t* page) {
- return page->flags.x.has_aligned;
- }
- static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
- page->flags.x.has_aligned = has_aligned;
- }
- /* -------------------------------------------------------------------
- Encoding/Decoding the free list next pointers
- This is to protect against buffer overflow exploits where the
- free list is mutated. Many hardened allocators xor the next pointer `p`
- with a secret key `k1`, as `p^k1`. This prevents overwriting with known
- values but might be still too weak: if the attacker can guess
- the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
- Moreover, if multiple blocks can be read as well, the attacker can
- xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
- about the pointers (and subsequently `k1`).
- Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
- Since these operations are not associative, the above approaches do not
- work so well any more even if the `p` can be guesstimated. For example,
- for the read case we can subtract two entries to discard the `+k1` term,
- but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
- We include the left-rotation since xor and addition are otherwise linear
- in the lowest bit. Finally, both keys are unique per page which reduces
- the re-use of keys by a large factor.
- We also pass a separate `null` value to be used as `NULL` or otherwise
- `(k2<<<k1)+k1` would appear (too) often as a sentinel value.
- ------------------------------------------------------------------- */
- static inline bool mi_is_in_same_segment(const void* p, const void* q) {
- return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
- }
- static inline bool mi_is_in_same_page(const void* p, const void* q) {
- mi_segment_t* segmentp = _mi_ptr_segment(p);
- mi_segment_t* segmentq = _mi_ptr_segment(q);
- if (segmentp != segmentq) return false;
- uintptr_t idxp = _mi_segment_page_idx_of(segmentp, p);
- uintptr_t idxq = _mi_segment_page_idx_of(segmentq, q);
- return (idxp == idxq);
- }
- static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) {
- shift %= MI_INTPTR_BITS;
- return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift))));
- }
- static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
- shift %= MI_INTPTR_BITS;
- return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift))));
- }
- static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
- void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
- return (mi_unlikely(p==null) ? NULL : p);
- }
- static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
- uintptr_t x = (uintptr_t)(mi_unlikely(p==NULL) ? null : p);
- return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
- }
- static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
- #ifdef MI_ENCODE_FREELIST
- return (mi_block_t*)mi_ptr_decode(null, block->next, keys);
- #else
- UNUSED(keys); UNUSED(null);
- return (mi_block_t*)block->next;
- #endif
- }
- static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) {
- #ifdef MI_ENCODE_FREELIST
- block->next = mi_ptr_encode(null, next, keys);
- #else
- UNUSED(keys); UNUSED(null);
- block->next = (mi_encoded_t)next;
- #endif
- }
- static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
- #ifdef MI_ENCODE_FREELIST
- mi_block_t* next = mi_block_nextx(page,block,page->keys);
- // check for free list corruption: is `next` at least in the same page?
- // TODO: check if `next` is `page->block_size` aligned?
- if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) {
- _mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next);
- next = NULL;
- }
- return next;
- #else
- UNUSED(page);
- return mi_block_nextx(page,block,NULL);
- #endif
- }
- static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
- #ifdef MI_ENCODE_FREELIST
- mi_block_set_nextx(page,block,next, page->keys);
- #else
- UNUSED(page);
- mi_block_set_nextx(page,block,next,NULL);
- #endif
- }
- // -------------------------------------------------------------------
- // Fast "random" shuffle
- // -------------------------------------------------------------------
- static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
- if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
- #if (MI_INTPTR_SIZE==8)
- // by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
- x ^= x >> 30;
- x *= 0xbf58476d1ce4e5b9UL;
- x ^= x >> 27;
- x *= 0x94d049bb133111ebUL;
- x ^= x >> 31;
- #elif (MI_INTPTR_SIZE==4)
- // by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
- x ^= x >> 16;
- x *= 0x7feb352dUL;
- x ^= x >> 15;
- x *= 0x846ca68bUL;
- x ^= x >> 16;
- #endif
- return x;
- }
- // -------------------------------------------------------------------
- // Optimize numa node access for the common case (= one node)
- // -------------------------------------------------------------------
- int _mi_os_numa_node_get(mi_os_tld_t* tld);
- size_t _mi_os_numa_node_count_get(void);
- extern _Atomic(size_t) _mi_numa_node_count;
- static inline int _mi_os_numa_node(mi_os_tld_t* tld) {
- if (mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1)) return 0;
- else return _mi_os_numa_node_get(tld);
- }
- static inline size_t _mi_os_numa_node_count(void) {
- const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count);
- if (mi_likely(count>0)) return count;
- else return _mi_os_numa_node_count_get();
- }
- // -------------------------------------------------------------------
- // Getting the thread id should be performant as it is called in the
- // fast path of `_mi_free` and we specialize for various platforms.
- // -------------------------------------------------------------------
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #include <windows.h>
- static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
- // Windows: works on Intel and ARM in both 32- and 64-bit
- return (uintptr_t)NtCurrentTeb();
- }
- #elif defined(__GNUC__) && \
- (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))
- // TLS register on x86 is in the FS or GS register, see: https://akkadia.org/drepper/tls.pdf
- static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept {
- void* res;
- const size_t ofs = (slot*sizeof(void*));
- #if defined(__i386__)
- __asm__("movl %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // 32-bit always uses GS
- #elif defined(__APPLE__) && defined(__x86_64__)
- __asm__("movq %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 macOSX uses GS
- #elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
- __asm__("movl %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x32 ABI
- #elif defined(__x86_64__)
- __asm__("movq %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 Linux, BSD uses FS
- #elif defined(__arm__)
- void** tcb; UNUSED(ofs);
- __asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
- res = tcb[slot];
- #elif defined(__aarch64__)
- void** tcb; UNUSED(ofs);
- #if defined(__APPLE__) // M1, issue #343
- __asm__ volatile ("mrs %0, tpidrro_el0" : "=r" (tcb));
- tcb = (void**)((uintptr_t)tcb & ~0x07UL); // clear lower 3 bits
- #else
- __asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
- #endif
- res = tcb[slot];
- #endif
- return res;
- }
- // setting is only used on macOSX for now
- static inline void mi_tls_slot_set(size_t slot, void* value) mi_attr_noexcept {
- const size_t ofs = (slot*sizeof(void*));
- #if defined(__i386__)
- __asm__("movl %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // 32-bit always uses GS
- #elif defined(__APPLE__) && defined(__x86_64__)
- __asm__("movq %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 macOSX uses GS
- #elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
- __asm__("movl %1,%%fs:%1" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x32 ABI
- #elif defined(__x86_64__)
- __asm__("movq %1,%%fs:%1" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 Linux, BSD uses FS
- #elif defined(__arm__)
- void** tcb; UNUSED(ofs);
- __asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
- tcb[slot] = value;
- #elif defined(__aarch64__)
- void** tcb; UNUSED(ofs);
- #if defined(__APPLE__) // M1, issue #343
- __asm__ volatile ("mrs %0, tpidrro_el0" : "=r" (tcb));
- tcb = (void**)((uintptr_t)tcb & ~0x07UL); // clear lower 3 bits
- #else
- __asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
- #endif
- tcb[slot] = value;
- #endif
- }
- static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
- #if defined(__BIONIC__) && (defined(__arm__) || defined(__aarch64__))
- // on Android, slot 1 is the thread ID (pointer to pthread internal struct)
- return (uintptr_t)mi_tls_slot(1);
- #else
- // in all our other targets, slot 0 is the pointer to the thread control block
- return (uintptr_t)mi_tls_slot(0);
- #endif
- }
- #else
- // otherwise use standard C
- static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
- return (uintptr_t)&_mi_heap_default;
- }
- #endif
- // -----------------------------------------------------------------------
- // Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero)
- // -----------------------------------------------------------------------
- #if defined(__GNUC__)
- #include <limits.h> // LONG_MAX
- #define MI_HAVE_FAST_BITSCAN
- static inline size_t mi_clz(uintptr_t x) {
- if (x==0) return MI_INTPTR_BITS;
- #if (INTPTR_MAX == LONG_MAX)
- return __builtin_clzl(x);
- #else
- return __builtin_clzll(x);
- #endif
- }
- static inline size_t mi_ctz(uintptr_t x) {
- if (x==0) return MI_INTPTR_BITS;
- #if (INTPTR_MAX == LONG_MAX)
- return __builtin_ctzl(x);
- #else
- return __builtin_ctzll(x);
- #endif
- }
- #elif defined(_MSC_VER)
- #include <limits.h> // LONG_MAX
- #define MI_HAVE_FAST_BITSCAN
- static inline size_t mi_clz(uintptr_t x) {
- if (x==0) return MI_INTPTR_BITS;
- unsigned long idx;
- #if (INTPTR_MAX == LONG_MAX)
- _BitScanReverse(&idx, x);
- #else
- _BitScanReverse64(&idx, x);
- #endif
- return ((MI_INTPTR_BITS - 1) - idx);
- }
- static inline size_t mi_ctz(uintptr_t x) {
- if (x==0) return MI_INTPTR_BITS;
- unsigned long idx;
- #if (INTPTR_MAX == LONG_MAX)
- _BitScanForward(&idx, x);
- #else
- _BitScanForward64(&idx, x);
- #endif
- return idx;
- }
- #else
- static inline size_t mi_ctz32(uint32_t x) {
- // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
- static const unsigned char debruijn[32] = {
- 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
- 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
- };
- if (x==0) return 32;
- return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27];
- }
- static inline size_t mi_clz32(uint32_t x) {
- // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
- static const uint8_t debruijn[32] = {
- 31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,
- 23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0
- };
- if (x==0) return 32;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
- return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27];
- }
- static inline size_t mi_clz(uintptr_t x) {
- if (x==0) return MI_INTPTR_BITS;
- #if (MI_INTPTR_BITS <= 32)
- return mi_clz32((uint32_t)x);
- #else
- size_t count = mi_clz32((uint32_t)(x >> 32));
- if (count < 32) return count;
- return (32 + mi_clz32((uint32_t)x));
- #endif
- }
- static inline size_t mi_ctz(uintptr_t x) {
- if (x==0) return MI_INTPTR_BITS;
- #if (MI_INTPTR_BITS <= 32)
- return mi_ctz32((uint32_t)x);
- #else
- size_t count = mi_ctz32((uint32_t)x);
- if (count < 32) return count;
- return (32 + mi_ctz32((uint32_t)(x>>32)));
- #endif
- }
- #endif
- // "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero)
- static inline size_t mi_bsr(uintptr_t x) {
- return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x));
- }
- // ---------------------------------------------------------------------------------
- // Provide our own `_mi_memcpy` for potential performance optimizations.
- //
- // For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if
- // we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support
- // (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253.
- // ---------------------------------------------------------------------------------
- #if defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
- #include <intrin.h>
- #include <string.h>
- extern bool _mi_cpu_has_fsrm;
- static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
- if (_mi_cpu_has_fsrm) {
- __movsb((unsigned char*)dst, (const unsigned char*)src, n);
- }
- else {
- memcpy(dst, src, n); // todo: use noinline?
- }
- }
- #else
- #include <string.h>
- static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
- memcpy(dst, src, n);
- }
- #endif
- // -------------------------------------------------------------------------------
- // The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned
- // This is used for example in `mi_realloc`.
- // -------------------------------------------------------------------------------
- #if (__GNUC__ >= 4) || defined(__clang__)
- // On GCC/CLang we provide a hint that the pointers are word aligned.
- #include <string.h>
- static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
- mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
- void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
- const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE);
- memcpy(adst, asrc, n);
- }
- #else
- // Default fallback on `_mi_memcpy`
- static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
- mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
- _mi_memcpy(dst, src, n);
- }
- #endif
- #endif
|