123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416 |
- // Copyright 2011 Google Inc. All Rights Reserved.
- //
- // Use of this source code is governed by a BSD-style license
- // that can be found in the COPYING file in the root of the source
- // tree. An additional intellectual property rights grant can be found
- // in the file PATENTS. All contributing project authors may
- // be found in the AUTHORS file in the root of the source tree.
- // -----------------------------------------------------------------------------
- //
- // Author: Jyrki Alakuijala (jyrki@google.com)
- //
- // Entropy encoding (Huffman) for webp lossless.
- #include <assert.h>
- #include <stdlib.h>
- #include <string.h>
- #include "./huffman_encode_utils.h"
- #include "./utils.h"
- #include "../webp/format_constants.h"
- // -----------------------------------------------------------------------------
- // Util function to optimize the symbol map for RLE coding
- // Heuristics for selecting the stride ranges to collapse.
- static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
- return abs(a - b) < 4;
- }
- // Change the population counts in a way that the consequent
- // Huffman tree compression, especially its RLE-part, give smaller output.
- static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
- uint32_t* const counts) {
- // 1) Let's make the Huffman code more compatible with rle encoding.
- int i;
- for (; length >= 0; --length) {
- if (length == 0) {
- return; // All zeros.
- }
- if (counts[length - 1] != 0) {
- // Now counts[0..length - 1] does not have trailing zeros.
- break;
- }
- }
- // 2) Let's mark all population counts that already can be encoded
- // with an rle code.
- {
- // Let's not spoil any of the existing good rle codes.
- // Mark any seq of 0's that is longer as 5 as a good_for_rle.
- // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
- uint32_t symbol = counts[0];
- int stride = 0;
- for (i = 0; i < length + 1; ++i) {
- if (i == length || counts[i] != symbol) {
- if ((symbol == 0 && stride >= 5) ||
- (symbol != 0 && stride >= 7)) {
- int k;
- for (k = 0; k < stride; ++k) {
- good_for_rle[i - k - 1] = 1;
- }
- }
- stride = 1;
- if (i != length) {
- symbol = counts[i];
- }
- } else {
- ++stride;
- }
- }
- }
- // 3) Let's replace those population counts that lead to more rle codes.
- {
- uint32_t stride = 0;
- uint32_t limit = counts[0];
- uint32_t sum = 0;
- for (i = 0; i < length + 1; ++i) {
- if (i == length || good_for_rle[i] ||
- (i != 0 && good_for_rle[i - 1]) ||
- !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
- if (stride >= 4 || (stride >= 3 && sum == 0)) {
- uint32_t k;
- // The stride must end, collapse what we have, if we have enough (4).
- uint32_t count = (sum + stride / 2) / stride;
- if (count < 1) {
- count = 1;
- }
- if (sum == 0) {
- // Don't make an all zeros stride to be upgraded to ones.
- count = 0;
- }
- for (k = 0; k < stride; ++k) {
- // We don't want to change value at counts[i],
- // that is already belonging to the next stride. Thus - 1.
- counts[i - k - 1] = count;
- }
- }
- stride = 0;
- sum = 0;
- if (i < length - 3) {
- // All interesting strides have a count of at least 4,
- // at least when non-zeros.
- limit = (counts[i] + counts[i + 1] +
- counts[i + 2] + counts[i + 3] + 2) / 4;
- } else if (i < length) {
- limit = counts[i];
- } else {
- limit = 0;
- }
- }
- ++stride;
- if (i != length) {
- sum += counts[i];
- if (stride >= 4) {
- limit = (sum + stride / 2) / stride;
- }
- }
- }
- }
- }
- // A comparer function for two Huffman trees: sorts first by 'total count'
- // (more comes first), and then by 'value' (more comes first).
- static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
- const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
- const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
- if (t1->total_count_ > t2->total_count_) {
- return -1;
- } else if (t1->total_count_ < t2->total_count_) {
- return 1;
- } else {
- assert(t1->value_ != t2->value_);
- return (t1->value_ < t2->value_) ? -1 : 1;
- }
- }
- static void SetBitDepths(const HuffmanTree* const tree,
- const HuffmanTree* const pool,
- uint8_t* const bit_depths, int level) {
- if (tree->pool_index_left_ >= 0) {
- SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
- SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
- } else {
- bit_depths[tree->value_] = level;
- }
- }
- // Create an optimal Huffman tree.
- //
- // (data,length): population counts.
- // tree_limit: maximum bit depth (inclusive) of the codes.
- // bit_depths[]: how many bits are used for the symbol.
- //
- // Returns 0 when an error has occurred.
- //
- // The catch here is that the tree cannot be arbitrarily deep
- //
- // count_limit is the value that is to be faked as the minimum value
- // and this minimum value is raised until the tree matches the
- // maximum length requirement.
- //
- // This algorithm is not of excellent performance for very long data blocks,
- // especially when population counts are longer than 2**tree_limit, but
- // we are not planning to use this with extremely long blocks.
- //
- // See https://en.wikipedia.org/wiki/Huffman_coding
- static void GenerateOptimalTree(const uint32_t* const histogram,
- int histogram_size,
- HuffmanTree* tree, int tree_depth_limit,
- uint8_t* const bit_depths) {
- uint32_t count_min;
- HuffmanTree* tree_pool;
- int tree_size_orig = 0;
- int i;
- for (i = 0; i < histogram_size; ++i) {
- if (histogram[i] != 0) {
- ++tree_size_orig;
- }
- }
- if (tree_size_orig == 0) { // pretty optimal already!
- return;
- }
- tree_pool = tree + tree_size_orig;
- // For block sizes with less than 64k symbols we never need to do a
- // second iteration of this loop.
- // If we actually start running inside this loop a lot, we would perhaps
- // be better off with the Katajainen algorithm.
- assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
- for (count_min = 1; ; count_min *= 2) {
- int tree_size = tree_size_orig;
- // We need to pack the Huffman tree in tree_depth_limit bits.
- // So, we try by faking histogram entries to be at least 'count_min'.
- int idx = 0;
- int j;
- for (j = 0; j < histogram_size; ++j) {
- if (histogram[j] != 0) {
- const uint32_t count =
- (histogram[j] < count_min) ? count_min : histogram[j];
- tree[idx].total_count_ = count;
- tree[idx].value_ = j;
- tree[idx].pool_index_left_ = -1;
- tree[idx].pool_index_right_ = -1;
- ++idx;
- }
- }
- // Build the Huffman tree.
- qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
- if (tree_size > 1) { // Normal case.
- int tree_pool_size = 0;
- while (tree_size > 1) { // Finish when we have only one root.
- uint32_t count;
- tree_pool[tree_pool_size++] = tree[tree_size - 1];
- tree_pool[tree_pool_size++] = tree[tree_size - 2];
- count = tree_pool[tree_pool_size - 1].total_count_ +
- tree_pool[tree_pool_size - 2].total_count_;
- tree_size -= 2;
- {
- // Search for the insertion point.
- int k;
- for (k = 0; k < tree_size; ++k) {
- if (tree[k].total_count_ <= count) {
- break;
- }
- }
- memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
- tree[k].total_count_ = count;
- tree[k].value_ = -1;
- tree[k].pool_index_left_ = tree_pool_size - 1;
- tree[k].pool_index_right_ = tree_pool_size - 2;
- tree_size = tree_size + 1;
- }
- }
- SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
- } else if (tree_size == 1) { // Trivial case: only one element.
- bit_depths[tree[0].value_] = 1;
- }
- {
- // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
- int max_depth = bit_depths[0];
- for (j = 1; j < histogram_size; ++j) {
- if (max_depth < bit_depths[j]) {
- max_depth = bit_depths[j];
- }
- }
- if (max_depth <= tree_depth_limit) {
- break;
- }
- }
- }
- }
- // -----------------------------------------------------------------------------
- // Coding of the Huffman tree values
- static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
- HuffmanTreeToken* tokens,
- int value, int prev_value) {
- assert(value <= MAX_ALLOWED_CODE_LENGTH);
- if (value != prev_value) {
- tokens->code = value;
- tokens->extra_bits = 0;
- ++tokens;
- --repetitions;
- }
- while (repetitions >= 1) {
- if (repetitions < 3) {
- int i;
- for (i = 0; i < repetitions; ++i) {
- tokens->code = value;
- tokens->extra_bits = 0;
- ++tokens;
- }
- break;
- } else if (repetitions < 7) {
- tokens->code = 16;
- tokens->extra_bits = repetitions - 3;
- ++tokens;
- break;
- } else {
- tokens->code = 16;
- tokens->extra_bits = 3;
- ++tokens;
- repetitions -= 6;
- }
- }
- return tokens;
- }
- static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
- HuffmanTreeToken* tokens) {
- while (repetitions >= 1) {
- if (repetitions < 3) {
- int i;
- for (i = 0; i < repetitions; ++i) {
- tokens->code = 0; // 0-value
- tokens->extra_bits = 0;
- ++tokens;
- }
- break;
- } else if (repetitions < 11) {
- tokens->code = 17;
- tokens->extra_bits = repetitions - 3;
- ++tokens;
- break;
- } else if (repetitions < 139) {
- tokens->code = 18;
- tokens->extra_bits = repetitions - 11;
- ++tokens;
- break;
- } else {
- tokens->code = 18;
- tokens->extra_bits = 0x7f; // 138 repeated 0s
- ++tokens;
- repetitions -= 138;
- }
- }
- return tokens;
- }
- int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
- HuffmanTreeToken* tokens, int max_tokens) {
- HuffmanTreeToken* const starting_token = tokens;
- HuffmanTreeToken* const ending_token = tokens + max_tokens;
- const int depth_size = tree->num_symbols;
- int prev_value = 8; // 8 is the initial value for rle.
- int i = 0;
- assert(tokens != NULL);
- while (i < depth_size) {
- const int value = tree->code_lengths[i];
- int k = i + 1;
- int runs;
- while (k < depth_size && tree->code_lengths[k] == value) ++k;
- runs = k - i;
- if (value == 0) {
- tokens = CodeRepeatedZeros(runs, tokens);
- } else {
- tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
- prev_value = value;
- }
- i += runs;
- assert(tokens <= ending_token);
- }
- (void)ending_token; // suppress 'unused variable' warning
- return (int)(tokens - starting_token);
- }
- // -----------------------------------------------------------------------------
- // Pre-reversed 4-bit values.
- static const uint8_t kReversedBits[16] = {
- 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
- 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
- };
- static uint32_t ReverseBits(int num_bits, uint32_t bits) {
- uint32_t retval = 0;
- int i = 0;
- while (i < num_bits) {
- i += 4;
- retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
- bits >>= 4;
- }
- retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
- return retval;
- }
- // Get the actual bit values for a tree of bit depths.
- static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
- // 0 bit-depth means that the symbol does not exist.
- int i;
- int len;
- uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
- int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
- assert(tree != NULL);
- len = tree->num_symbols;
- for (i = 0; i < len; ++i) {
- const int code_length = tree->code_lengths[i];
- assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
- ++depth_count[code_length];
- }
- depth_count[0] = 0; // ignore unused symbol
- next_code[0] = 0;
- {
- uint32_t code = 0;
- for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
- code = (code + depth_count[i - 1]) << 1;
- next_code[i] = code;
- }
- }
- for (i = 0; i < len; ++i) {
- const int code_length = tree->code_lengths[i];
- tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
- }
- }
- // -----------------------------------------------------------------------------
- // Main entry point
- void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit,
- uint8_t* const buf_rle, HuffmanTree* const huff_tree,
- HuffmanTreeCode* const huff_code) {
- const int num_symbols = huff_code->num_symbols;
- memset(buf_rle, 0, num_symbols * sizeof(*buf_rle));
- OptimizeHuffmanForRle(num_symbols, buf_rle, histogram);
- GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit,
- huff_code->code_lengths);
- // Create the actual bit codes for the bit lengths.
- ConvertBitDepthsToSymbols(huff_code);
- }
|