123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990 |
- # Originally contributed by Sjoerd Mullender.
- # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
- """Fraction, infinite-precision, rational numbers."""
- from decimal import Decimal
- import functools
- import math
- import numbers
- import operator
- import re
- import sys
- __all__ = ['Fraction']
- # Constants related to the hash implementation; hash(x) is based
- # on the reduction of x modulo the prime _PyHASH_MODULUS.
- _PyHASH_MODULUS = sys.hash_info.modulus
- # Value to be used for rationals that reduce to infinity modulo
- # _PyHASH_MODULUS.
- _PyHASH_INF = sys.hash_info.inf
- @functools.lru_cache(maxsize = 1 << 14)
- def _hash_algorithm(numerator, denominator):
- # To make sure that the hash of a Fraction agrees with the hash
- # of a numerically equal integer, float or Decimal instance, we
- # follow the rules for numeric hashes outlined in the
- # documentation. (See library docs, 'Built-in Types').
- try:
- dinv = pow(denominator, -1, _PyHASH_MODULUS)
- except ValueError:
- # ValueError means there is no modular inverse.
- hash_ = _PyHASH_INF
- else:
- # The general algorithm now specifies that the absolute value of
- # the hash is
- # (|N| * dinv) % P
- # where N is self._numerator and P is _PyHASH_MODULUS. That's
- # optimized here in two ways: first, for a non-negative int i,
- # hash(i) == i % P, but the int hash implementation doesn't need
- # to divide, and is faster than doing % P explicitly. So we do
- # hash(|N| * dinv)
- # instead. Second, N is unbounded, so its product with dinv may
- # be arbitrarily expensive to compute. The final answer is the
- # same if we use the bounded |N| % P instead, which can again
- # be done with an int hash() call. If 0 <= i < P, hash(i) == i,
- # so this nested hash() call wastes a bit of time making a
- # redundant copy when |N| < P, but can save an arbitrarily large
- # amount of computation for large |N|.
- hash_ = hash(hash(abs(numerator)) * dinv)
- result = hash_ if numerator >= 0 else -hash_
- return -2 if result == -1 else result
- _RATIONAL_FORMAT = re.compile(r"""
- \A\s* # optional whitespace at the start,
- (?P<sign>[-+]?) # an optional sign, then
- (?=\d|\.\d) # lookahead for digit or .digit
- (?P<num>\d*|\d+(_\d+)*) # numerator (possibly empty)
- (?: # followed by
- (?:\s*/\s*(?P<denom>\d+(_\d+)*))? # an optional denominator
- | # or
- (?:\.(?P<decimal>\d*|\d+(_\d+)*))? # an optional fractional part
- (?:E(?P<exp>[-+]?\d+(_\d+)*))? # and optional exponent
- )
- \s*\Z # and optional whitespace to finish
- """, re.VERBOSE | re.IGNORECASE)
- # Helpers for formatting
- def _round_to_exponent(n, d, exponent, no_neg_zero=False):
- """Round a rational number to the nearest multiple of a given power of 10.
- Rounds the rational number n/d to the nearest integer multiple of
- 10**exponent, rounding to the nearest even integer multiple in the case of
- a tie. Returns a pair (sign: bool, significand: int) representing the
- rounded value (-1)**sign * significand * 10**exponent.
- If no_neg_zero is true, then the returned sign will always be False when
- the significand is zero. Otherwise, the sign reflects the sign of the
- input.
- d must be positive, but n and d need not be relatively prime.
- """
- if exponent >= 0:
- d *= 10**exponent
- else:
- n *= 10**-exponent
- # The divmod quotient is correct for round-ties-towards-positive-infinity;
- # In the case of a tie, we zero out the least significant bit of q.
- q, r = divmod(n + (d >> 1), d)
- if r == 0 and d & 1 == 0:
- q &= -2
- sign = q < 0 if no_neg_zero else n < 0
- return sign, abs(q)
- def _round_to_figures(n, d, figures):
- """Round a rational number to a given number of significant figures.
- Rounds the rational number n/d to the given number of significant figures
- using the round-ties-to-even rule, and returns a triple
- (sign: bool, significand: int, exponent: int) representing the rounded
- value (-1)**sign * significand * 10**exponent.
- In the special case where n = 0, returns a significand of zero and
- an exponent of 1 - figures, for compatibility with formatting.
- Otherwise, the returned significand satisfies
- 10**(figures - 1) <= significand < 10**figures.
- d must be positive, but n and d need not be relatively prime.
- figures must be positive.
- """
- # Special case for n == 0.
- if n == 0:
- return False, 0, 1 - figures
- # Find integer m satisfying 10**(m - 1) <= abs(n)/d <= 10**m. (If abs(n)/d
- # is a power of 10, either of the two possible values for m is fine.)
- str_n, str_d = str(abs(n)), str(d)
- m = len(str_n) - len(str_d) + (str_d <= str_n)
- # Round to a multiple of 10**(m - figures). The significand we get
- # satisfies 10**(figures - 1) <= significand <= 10**figures.
- exponent = m - figures
- sign, significand = _round_to_exponent(n, d, exponent)
- # Adjust in the case where significand == 10**figures, to ensure that
- # 10**(figures - 1) <= significand < 10**figures.
- if len(str(significand)) == figures + 1:
- significand //= 10
- exponent += 1
- return sign, significand, exponent
- # Pattern for matching float-style format specifications;
- # supports 'e', 'E', 'f', 'F', 'g', 'G' and '%' presentation types.
- _FLOAT_FORMAT_SPECIFICATION_MATCHER = re.compile(r"""
- (?:
- (?P<fill>.)?
- (?P<align>[<>=^])
- )?
- (?P<sign>[-+ ]?)
- (?P<no_neg_zero>z)?
- (?P<alt>\#)?
- # A '0' that's *not* followed by another digit is parsed as a minimum width
- # rather than a zeropad flag.
- (?P<zeropad>0(?=[0-9]))?
- (?P<minimumwidth>0|[1-9][0-9]*)?
- (?P<thousands_sep>[,_])?
- (?:\.(?P<precision>0|[1-9][0-9]*))?
- (?P<presentation_type>[eEfFgG%])
- """, re.DOTALL | re.VERBOSE).fullmatch
- class Fraction(numbers.Rational):
- """This class implements rational numbers.
- In the two-argument form of the constructor, Fraction(8, 6) will
- produce a rational number equivalent to 4/3. Both arguments must
- be Rational. The numerator defaults to 0 and the denominator
- defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.
- Fractions can also be constructed from:
- - numeric strings similar to those accepted by the
- float constructor (for example, '-2.3' or '1e10')
- - strings of the form '123/456'
- - float and Decimal instances
- - other Rational instances (including integers)
- """
- __slots__ = ('_numerator', '_denominator')
- # We're immutable, so use __new__ not __init__
- def __new__(cls, numerator=0, denominator=None):
- """Constructs a Rational.
- Takes a string like '3/2' or '1.5', another Rational instance, a
- numerator/denominator pair, or a float.
- Examples
- --------
- >>> Fraction(10, -8)
- Fraction(-5, 4)
- >>> Fraction(Fraction(1, 7), 5)
- Fraction(1, 35)
- >>> Fraction(Fraction(1, 7), Fraction(2, 3))
- Fraction(3, 14)
- >>> Fraction('314')
- Fraction(314, 1)
- >>> Fraction('-35/4')
- Fraction(-35, 4)
- >>> Fraction('3.1415') # conversion from numeric string
- Fraction(6283, 2000)
- >>> Fraction('-47e-2') # string may include a decimal exponent
- Fraction(-47, 100)
- >>> Fraction(1.47) # direct construction from float (exact conversion)
- Fraction(6620291452234629, 4503599627370496)
- >>> Fraction(2.25)
- Fraction(9, 4)
- >>> Fraction(Decimal('1.47'))
- Fraction(147, 100)
- """
- self = super(Fraction, cls).__new__(cls)
- if denominator is None:
- if type(numerator) is int:
- self._numerator = numerator
- self._denominator = 1
- return self
- elif isinstance(numerator, numbers.Rational):
- self._numerator = numerator.numerator
- self._denominator = numerator.denominator
- return self
- elif isinstance(numerator, (float, Decimal)):
- # Exact conversion
- self._numerator, self._denominator = numerator.as_integer_ratio()
- return self
- elif isinstance(numerator, str):
- # Handle construction from strings.
- m = _RATIONAL_FORMAT.match(numerator)
- if m is None:
- raise ValueError('Invalid literal for Fraction: %r' %
- numerator)
- numerator = int(m.group('num') or '0')
- denom = m.group('denom')
- if denom:
- denominator = int(denom)
- else:
- denominator = 1
- decimal = m.group('decimal')
- if decimal:
- decimal = decimal.replace('_', '')
- scale = 10**len(decimal)
- numerator = numerator * scale + int(decimal)
- denominator *= scale
- exp = m.group('exp')
- if exp:
- exp = int(exp)
- if exp >= 0:
- numerator *= 10**exp
- else:
- denominator *= 10**-exp
- if m.group('sign') == '-':
- numerator = -numerator
- else:
- raise TypeError("argument should be a string "
- "or a Rational instance")
- elif type(numerator) is int is type(denominator):
- pass # *very* normal case
- elif (isinstance(numerator, numbers.Rational) and
- isinstance(denominator, numbers.Rational)):
- numerator, denominator = (
- numerator.numerator * denominator.denominator,
- denominator.numerator * numerator.denominator
- )
- else:
- raise TypeError("both arguments should be "
- "Rational instances")
- if denominator == 0:
- raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
- g = math.gcd(numerator, denominator)
- if denominator < 0:
- g = -g
- numerator //= g
- denominator //= g
- self._numerator = numerator
- self._denominator = denominator
- return self
- @classmethod
- def from_float(cls, f):
- """Converts a finite float to a rational number, exactly.
- Beware that Fraction.from_float(0.3) != Fraction(3, 10).
- """
- if isinstance(f, numbers.Integral):
- return cls(f)
- elif not isinstance(f, float):
- raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
- (cls.__name__, f, type(f).__name__))
- return cls._from_coprime_ints(*f.as_integer_ratio())
- @classmethod
- def from_decimal(cls, dec):
- """Converts a finite Decimal instance to a rational number, exactly."""
- from decimal import Decimal
- if isinstance(dec, numbers.Integral):
- dec = Decimal(int(dec))
- elif not isinstance(dec, Decimal):
- raise TypeError(
- "%s.from_decimal() only takes Decimals, not %r (%s)" %
- (cls.__name__, dec, type(dec).__name__))
- return cls._from_coprime_ints(*dec.as_integer_ratio())
- @classmethod
- def _from_coprime_ints(cls, numerator, denominator, /):
- """Convert a pair of ints to a rational number, for internal use.
- The ratio of integers should be in lowest terms and the denominator
- should be positive.
- """
- obj = super(Fraction, cls).__new__(cls)
- obj._numerator = numerator
- obj._denominator = denominator
- return obj
- def is_integer(self):
- """Return True if the Fraction is an integer."""
- return self._denominator == 1
- def as_integer_ratio(self):
- """Return a pair of integers, whose ratio is equal to the original Fraction.
- The ratio is in lowest terms and has a positive denominator.
- """
- return (self._numerator, self._denominator)
- def limit_denominator(self, max_denominator=1000000):
- """Closest Fraction to self with denominator at most max_denominator.
- >>> Fraction('3.141592653589793').limit_denominator(10)
- Fraction(22, 7)
- >>> Fraction('3.141592653589793').limit_denominator(100)
- Fraction(311, 99)
- >>> Fraction(4321, 8765).limit_denominator(10000)
- Fraction(4321, 8765)
- """
- # Algorithm notes: For any real number x, define a *best upper
- # approximation* to x to be a rational number p/q such that:
- #
- # (1) p/q >= x, and
- # (2) if p/q > r/s >= x then s > q, for any rational r/s.
- #
- # Define *best lower approximation* similarly. Then it can be
- # proved that a rational number is a best upper or lower
- # approximation to x if, and only if, it is a convergent or
- # semiconvergent of the (unique shortest) continued fraction
- # associated to x.
- #
- # To find a best rational approximation with denominator <= M,
- # we find the best upper and lower approximations with
- # denominator <= M and take whichever of these is closer to x.
- # In the event of a tie, the bound with smaller denominator is
- # chosen. If both denominators are equal (which can happen
- # only when max_denominator == 1 and self is midway between
- # two integers) the lower bound---i.e., the floor of self, is
- # taken.
- if max_denominator < 1:
- raise ValueError("max_denominator should be at least 1")
- if self._denominator <= max_denominator:
- return Fraction(self)
- p0, q0, p1, q1 = 0, 1, 1, 0
- n, d = self._numerator, self._denominator
- while True:
- a = n//d
- q2 = q0+a*q1
- if q2 > max_denominator:
- break
- p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
- n, d = d, n-a*d
- k = (max_denominator-q0)//q1
- # Determine which of the candidates (p0+k*p1)/(q0+k*q1) and p1/q1 is
- # closer to self. The distance between them is 1/(q1*(q0+k*q1)), while
- # the distance from p1/q1 to self is d/(q1*self._denominator). So we
- # need to compare 2*(q0+k*q1) with self._denominator/d.
- if 2*d*(q0+k*q1) <= self._denominator:
- return Fraction._from_coprime_ints(p1, q1)
- else:
- return Fraction._from_coprime_ints(p0+k*p1, q0+k*q1)
- @property
- def numerator(a):
- return a._numerator
- @property
- def denominator(a):
- return a._denominator
- def __repr__(self):
- """repr(self)"""
- return '%s(%s, %s)' % (self.__class__.__name__,
- self._numerator, self._denominator)
- def __str__(self):
- """str(self)"""
- if self._denominator == 1:
- return str(self._numerator)
- else:
- return '%s/%s' % (self._numerator, self._denominator)
- def __format__(self, format_spec, /):
- """Format this fraction according to the given format specification."""
- # Backwards compatiblility with existing formatting.
- if not format_spec:
- return str(self)
- # Validate and parse the format specifier.
- match = _FLOAT_FORMAT_SPECIFICATION_MATCHER(format_spec)
- if match is None:
- raise ValueError(
- f"Invalid format specifier {format_spec!r} "
- f"for object of type {type(self).__name__!r}"
- )
- elif match["align"] is not None and match["zeropad"] is not None:
- # Avoid the temptation to guess.
- raise ValueError(
- f"Invalid format specifier {format_spec!r} "
- f"for object of type {type(self).__name__!r}; "
- "can't use explicit alignment when zero-padding"
- )
- fill = match["fill"] or " "
- align = match["align"] or ">"
- pos_sign = "" if match["sign"] == "-" else match["sign"]
- no_neg_zero = bool(match["no_neg_zero"])
- alternate_form = bool(match["alt"])
- zeropad = bool(match["zeropad"])
- minimumwidth = int(match["minimumwidth"] or "0")
- thousands_sep = match["thousands_sep"]
- precision = int(match["precision"] or "6")
- presentation_type = match["presentation_type"]
- trim_zeros = presentation_type in "gG" and not alternate_form
- trim_point = not alternate_form
- exponent_indicator = "E" if presentation_type in "EFG" else "e"
- # Round to get the digits we need, figure out where to place the point,
- # and decide whether to use scientific notation. 'point_pos' is the
- # relative to the _end_ of the digit string: that is, it's the number
- # of digits that should follow the point.
- if presentation_type in "fF%":
- exponent = -precision
- if presentation_type == "%":
- exponent -= 2
- negative, significand = _round_to_exponent(
- self._numerator, self._denominator, exponent, no_neg_zero)
- scientific = False
- point_pos = precision
- else: # presentation_type in "eEgG"
- figures = (
- max(precision, 1)
- if presentation_type in "gG"
- else precision + 1
- )
- negative, significand, exponent = _round_to_figures(
- self._numerator, self._denominator, figures)
- scientific = (
- presentation_type in "eE"
- or exponent > 0
- or exponent + figures <= -4
- )
- point_pos = figures - 1 if scientific else -exponent
- # Get the suffix - the part following the digits, if any.
- if presentation_type == "%":
- suffix = "%"
- elif scientific:
- suffix = f"{exponent_indicator}{exponent + point_pos:+03d}"
- else:
- suffix = ""
- # String of output digits, padded sufficiently with zeros on the left
- # so that we'll have at least one digit before the decimal point.
- digits = f"{significand:0{point_pos + 1}d}"
- # Before padding, the output has the form f"{sign}{leading}{trailing}",
- # where `leading` includes thousands separators if necessary and
- # `trailing` includes the decimal separator where appropriate.
- sign = "-" if negative else pos_sign
- leading = digits[: len(digits) - point_pos]
- frac_part = digits[len(digits) - point_pos :]
- if trim_zeros:
- frac_part = frac_part.rstrip("0")
- separator = "" if trim_point and not frac_part else "."
- trailing = separator + frac_part + suffix
- # Do zero padding if required.
- if zeropad:
- min_leading = minimumwidth - len(sign) - len(trailing)
- # When adding thousands separators, they'll be added to the
- # zero-padded portion too, so we need to compensate.
- leading = leading.zfill(
- 3 * min_leading // 4 + 1 if thousands_sep else min_leading
- )
- # Insert thousands separators if required.
- if thousands_sep:
- first_pos = 1 + (len(leading) - 1) % 3
- leading = leading[:first_pos] + "".join(
- thousands_sep + leading[pos : pos + 3]
- for pos in range(first_pos, len(leading), 3)
- )
- # We now have a sign and a body. Pad with fill character if necessary
- # and return.
- body = leading + trailing
- padding = fill * (minimumwidth - len(sign) - len(body))
- if align == ">":
- return padding + sign + body
- elif align == "<":
- return sign + body + padding
- elif align == "^":
- half = len(padding) // 2
- return padding[:half] + sign + body + padding[half:]
- else: # align == "="
- return sign + padding + body
- def _operator_fallbacks(monomorphic_operator, fallback_operator):
- """Generates forward and reverse operators given a purely-rational
- operator and a function from the operator module.
- Use this like:
- __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
- In general, we want to implement the arithmetic operations so
- that mixed-mode operations either call an implementation whose
- author knew about the types of both arguments, or convert both
- to the nearest built in type and do the operation there. In
- Fraction, that means that we define __add__ and __radd__ as:
- def __add__(self, other):
- # Both types have numerators/denominator attributes,
- # so do the operation directly
- if isinstance(other, (int, Fraction)):
- return Fraction(self.numerator * other.denominator +
- other.numerator * self.denominator,
- self.denominator * other.denominator)
- # float and complex don't have those operations, but we
- # know about those types, so special case them.
- elif isinstance(other, float):
- return float(self) + other
- elif isinstance(other, complex):
- return complex(self) + other
- # Let the other type take over.
- return NotImplemented
- def __radd__(self, other):
- # radd handles more types than add because there's
- # nothing left to fall back to.
- if isinstance(other, numbers.Rational):
- return Fraction(self.numerator * other.denominator +
- other.numerator * self.denominator,
- self.denominator * other.denominator)
- elif isinstance(other, Real):
- return float(other) + float(self)
- elif isinstance(other, Complex):
- return complex(other) + complex(self)
- return NotImplemented
- There are 5 different cases for a mixed-type addition on
- Fraction. I'll refer to all of the above code that doesn't
- refer to Fraction, float, or complex as "boilerplate". 'r'
- will be an instance of Fraction, which is a subtype of
- Rational (r : Fraction <: Rational), and b : B <:
- Complex. The first three involve 'r + b':
- 1. If B <: Fraction, int, float, or complex, we handle
- that specially, and all is well.
- 2. If Fraction falls back to the boilerplate code, and it
- were to return a value from __add__, we'd miss the
- possibility that B defines a more intelligent __radd__,
- so the boilerplate should return NotImplemented from
- __add__. In particular, we don't handle Rational
- here, even though we could get an exact answer, in case
- the other type wants to do something special.
- 3. If B <: Fraction, Python tries B.__radd__ before
- Fraction.__add__. This is ok, because it was
- implemented with knowledge of Fraction, so it can
- handle those instances before delegating to Real or
- Complex.
- The next two situations describe 'b + r'. We assume that b
- didn't know about Fraction in its implementation, and that it
- uses similar boilerplate code:
- 4. If B <: Rational, then __radd_ converts both to the
- builtin rational type (hey look, that's us) and
- proceeds.
- 5. Otherwise, __radd__ tries to find the nearest common
- base ABC, and fall back to its builtin type. Since this
- class doesn't subclass a concrete type, there's no
- implementation to fall back to, so we need to try as
- hard as possible to return an actual value, or the user
- will get a TypeError.
- """
- def forward(a, b):
- if isinstance(b, Fraction):
- return monomorphic_operator(a, b)
- elif isinstance(b, int):
- return monomorphic_operator(a, Fraction(b))
- elif isinstance(b, float):
- return fallback_operator(float(a), b)
- elif isinstance(b, complex):
- return fallback_operator(complex(a), b)
- else:
- return NotImplemented
- forward.__name__ = '__' + fallback_operator.__name__ + '__'
- forward.__doc__ = monomorphic_operator.__doc__
- def reverse(b, a):
- if isinstance(a, numbers.Rational):
- # Includes ints.
- return monomorphic_operator(Fraction(a), b)
- elif isinstance(a, numbers.Real):
- return fallback_operator(float(a), float(b))
- elif isinstance(a, numbers.Complex):
- return fallback_operator(complex(a), complex(b))
- else:
- return NotImplemented
- reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
- reverse.__doc__ = monomorphic_operator.__doc__
- return forward, reverse
- # Rational arithmetic algorithms: Knuth, TAOCP, Volume 2, 4.5.1.
- #
- # Assume input fractions a and b are normalized.
- #
- # 1) Consider addition/subtraction.
- #
- # Let g = gcd(da, db). Then
- #
- # na nb na*db ± nb*da
- # a ± b == -- ± -- == ------------- ==
- # da db da*db
- #
- # na*(db//g) ± nb*(da//g) t
- # == ----------------------- == -
- # (da*db)//g d
- #
- # Now, if g > 1, we're working with smaller integers.
- #
- # Note, that t, (da//g) and (db//g) are pairwise coprime.
- #
- # Indeed, (da//g) and (db//g) share no common factors (they were
- # removed) and da is coprime with na (since input fractions are
- # normalized), hence (da//g) and na are coprime. By symmetry,
- # (db//g) and nb are coprime too. Then,
- #
- # gcd(t, da//g) == gcd(na*(db//g), da//g) == 1
- # gcd(t, db//g) == gcd(nb*(da//g), db//g) == 1
- #
- # Above allows us optimize reduction of the result to lowest
- # terms. Indeed,
- #
- # g2 = gcd(t, d) == gcd(t, (da//g)*(db//g)*g) == gcd(t, g)
- #
- # t//g2 t//g2
- # a ± b == ----------------------- == ----------------
- # (da//g)*(db//g)*(g//g2) (da//g)*(db//g2)
- #
- # is a normalized fraction. This is useful because the unnormalized
- # denominator d could be much larger than g.
- #
- # We should special-case g == 1 (and g2 == 1), since 60.8% of
- # randomly-chosen integers are coprime:
- # https://en.wikipedia.org/wiki/Coprime_integers#Probability_of_coprimality
- # Note, that g2 == 1 always for fractions, obtained from floats: here
- # g is a power of 2 and the unnormalized numerator t is an odd integer.
- #
- # 2) Consider multiplication
- #
- # Let g1 = gcd(na, db) and g2 = gcd(nb, da), then
- #
- # na*nb na*nb (na//g1)*(nb//g2)
- # a*b == ----- == ----- == -----------------
- # da*db db*da (db//g1)*(da//g2)
- #
- # Note, that after divisions we're multiplying smaller integers.
- #
- # Also, the resulting fraction is normalized, because each of
- # two factors in the numerator is coprime to each of the two factors
- # in the denominator.
- #
- # Indeed, pick (na//g1). It's coprime with (da//g2), because input
- # fractions are normalized. It's also coprime with (db//g1), because
- # common factors are removed by g1 == gcd(na, db).
- #
- # As for addition/subtraction, we should special-case g1 == 1
- # and g2 == 1 for same reason. That happens also for multiplying
- # rationals, obtained from floats.
- def _add(a, b):
- """a + b"""
- na, da = a._numerator, a._denominator
- nb, db = b._numerator, b._denominator
- g = math.gcd(da, db)
- if g == 1:
- return Fraction._from_coprime_ints(na * db + da * nb, da * db)
- s = da // g
- t = na * (db // g) + nb * s
- g2 = math.gcd(t, g)
- if g2 == 1:
- return Fraction._from_coprime_ints(t, s * db)
- return Fraction._from_coprime_ints(t // g2, s * (db // g2))
- __add__, __radd__ = _operator_fallbacks(_add, operator.add)
- def _sub(a, b):
- """a - b"""
- na, da = a._numerator, a._denominator
- nb, db = b._numerator, b._denominator
- g = math.gcd(da, db)
- if g == 1:
- return Fraction._from_coprime_ints(na * db - da * nb, da * db)
- s = da // g
- t = na * (db // g) - nb * s
- g2 = math.gcd(t, g)
- if g2 == 1:
- return Fraction._from_coprime_ints(t, s * db)
- return Fraction._from_coprime_ints(t // g2, s * (db // g2))
- __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
- def _mul(a, b):
- """a * b"""
- na, da = a._numerator, a._denominator
- nb, db = b._numerator, b._denominator
- g1 = math.gcd(na, db)
- if g1 > 1:
- na //= g1
- db //= g1
- g2 = math.gcd(nb, da)
- if g2 > 1:
- nb //= g2
- da //= g2
- return Fraction._from_coprime_ints(na * nb, db * da)
- __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
- def _div(a, b):
- """a / b"""
- # Same as _mul(), with inversed b.
- nb, db = b._numerator, b._denominator
- if nb == 0:
- raise ZeroDivisionError('Fraction(%s, 0)' % db)
- na, da = a._numerator, a._denominator
- g1 = math.gcd(na, nb)
- if g1 > 1:
- na //= g1
- nb //= g1
- g2 = math.gcd(db, da)
- if g2 > 1:
- da //= g2
- db //= g2
- n, d = na * db, nb * da
- if d < 0:
- n, d = -n, -d
- return Fraction._from_coprime_ints(n, d)
- __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
- def _floordiv(a, b):
- """a // b"""
- return (a.numerator * b.denominator) // (a.denominator * b.numerator)
- __floordiv__, __rfloordiv__ = _operator_fallbacks(_floordiv, operator.floordiv)
- def _divmod(a, b):
- """(a // b, a % b)"""
- da, db = a.denominator, b.denominator
- div, n_mod = divmod(a.numerator * db, da * b.numerator)
- return div, Fraction(n_mod, da * db)
- __divmod__, __rdivmod__ = _operator_fallbacks(_divmod, divmod)
- def _mod(a, b):
- """a % b"""
- da, db = a.denominator, b.denominator
- return Fraction((a.numerator * db) % (b.numerator * da), da * db)
- __mod__, __rmod__ = _operator_fallbacks(_mod, operator.mod)
- def __pow__(a, b):
- """a ** b
- If b is not an integer, the result will be a float or complex
- since roots are generally irrational. If b is an integer, the
- result will be rational.
- """
- if isinstance(b, numbers.Rational):
- if b.denominator == 1:
- power = b.numerator
- if power >= 0:
- return Fraction._from_coprime_ints(a._numerator ** power,
- a._denominator ** power)
- elif a._numerator > 0:
- return Fraction._from_coprime_ints(a._denominator ** -power,
- a._numerator ** -power)
- elif a._numerator == 0:
- raise ZeroDivisionError('Fraction(%s, 0)' %
- a._denominator ** -power)
- else:
- return Fraction._from_coprime_ints((-a._denominator) ** -power,
- (-a._numerator) ** -power)
- else:
- # A fractional power will generally produce an
- # irrational number.
- return float(a) ** float(b)
- elif isinstance(b, (float, complex)):
- return float(a) ** b
- else:
- return NotImplemented
- def __rpow__(b, a):
- """a ** b"""
- if b._denominator == 1 and b._numerator >= 0:
- # If a is an int, keep it that way if possible.
- return a ** b._numerator
- if isinstance(a, numbers.Rational):
- return Fraction(a.numerator, a.denominator) ** b
- if b._denominator == 1:
- return a ** b._numerator
- return a ** float(b)
- def __pos__(a):
- """+a: Coerces a subclass instance to Fraction"""
- return Fraction._from_coprime_ints(a._numerator, a._denominator)
- def __neg__(a):
- """-a"""
- return Fraction._from_coprime_ints(-a._numerator, a._denominator)
- def __abs__(a):
- """abs(a)"""
- return Fraction._from_coprime_ints(abs(a._numerator), a._denominator)
- def __int__(a, _index=operator.index):
- """int(a)"""
- if a._numerator < 0:
- return _index(-(-a._numerator // a._denominator))
- else:
- return _index(a._numerator // a._denominator)
- def __trunc__(a):
- """math.trunc(a)"""
- if a._numerator < 0:
- return -(-a._numerator // a._denominator)
- else:
- return a._numerator // a._denominator
- def __floor__(a):
- """math.floor(a)"""
- return a._numerator // a._denominator
- def __ceil__(a):
- """math.ceil(a)"""
- # The negations cleverly convince floordiv to return the ceiling.
- return -(-a._numerator // a._denominator)
- def __round__(self, ndigits=None):
- """round(self, ndigits)
- Rounds half toward even.
- """
- if ndigits is None:
- d = self._denominator
- floor, remainder = divmod(self._numerator, d)
- if remainder * 2 < d:
- return floor
- elif remainder * 2 > d:
- return floor + 1
- # Deal with the half case:
- elif floor % 2 == 0:
- return floor
- else:
- return floor + 1
- shift = 10**abs(ndigits)
- # See _operator_fallbacks.forward to check that the results of
- # these operations will always be Fraction and therefore have
- # round().
- if ndigits > 0:
- return Fraction(round(self * shift), shift)
- else:
- return Fraction(round(self / shift) * shift)
- def __hash__(self):
- """hash(self)"""
- return _hash_algorithm(self._numerator, self._denominator)
- def __eq__(a, b):
- """a == b"""
- if type(b) is int:
- return a._numerator == b and a._denominator == 1
- if isinstance(b, numbers.Rational):
- return (a._numerator == b.numerator and
- a._denominator == b.denominator)
- if isinstance(b, numbers.Complex) and b.imag == 0:
- b = b.real
- if isinstance(b, float):
- if math.isnan(b) or math.isinf(b):
- # comparisons with an infinity or nan should behave in
- # the same way for any finite a, so treat a as zero.
- return 0.0 == b
- else:
- return a == a.from_float(b)
- else:
- # Since a doesn't know how to compare with b, let's give b
- # a chance to compare itself with a.
- return NotImplemented
- def _richcmp(self, other, op):
- """Helper for comparison operators, for internal use only.
- Implement comparison between a Rational instance `self`, and
- either another Rational instance or a float `other`. If
- `other` is not a Rational instance or a float, return
- NotImplemented. `op` should be one of the six standard
- comparison operators.
- """
- # convert other to a Rational instance where reasonable.
- if isinstance(other, numbers.Rational):
- return op(self._numerator * other.denominator,
- self._denominator * other.numerator)
- if isinstance(other, float):
- if math.isnan(other) or math.isinf(other):
- return op(0.0, other)
- else:
- return op(self, self.from_float(other))
- else:
- return NotImplemented
- def __lt__(a, b):
- """a < b"""
- return a._richcmp(b, operator.lt)
- def __gt__(a, b):
- """a > b"""
- return a._richcmp(b, operator.gt)
- def __le__(a, b):
- """a <= b"""
- return a._richcmp(b, operator.le)
- def __ge__(a, b):
- """a >= b"""
- return a._richcmp(b, operator.ge)
- def __bool__(a):
- """a != 0"""
- # bpo-39274: Use bool() because (a._numerator != 0) can return an
- # object which is not a bool.
- return bool(a._numerator)
- # support for pickling, copy, and deepcopy
- def __reduce__(self):
- return (self.__class__, (self._numerator, self._denominator))
- def __copy__(self):
- if type(self) == Fraction:
- return self # I'm immutable; therefore I am my own clone
- return self.__class__(self._numerator, self._denominator)
- def __deepcopy__(self, memo):
- if type(self) == Fraction:
- return self # My components are also immutable
- return self.__class__(self._numerator, self._denominator)
|