WebAssemblyDisassemblerEmitter.cpp 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. //===- WebAssemblyDisassemblerEmitter.cpp - Disassembler tables -*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file is part of the WebAssembly Disassembler Emitter.
  10. // It contains the implementation of the disassembler tables.
  11. // Documentation for the disassembler emitter in general can be found in
  12. // WebAssemblyDisassemblerEmitter.h.
  13. //
  14. //===----------------------------------------------------------------------===//
  15. #include "WebAssemblyDisassemblerEmitter.h"
  16. #include "CodeGenInstruction.h"
  17. #include "llvm/ADT/STLExtras.h"
  18. #include "llvm/Support/raw_ostream.h"
  19. #include "llvm/TableGen/Record.h"
  20. namespace llvm {
  21. static constexpr int WebAssemblyInstructionTableSize = 256;
  22. void emitWebAssemblyDisassemblerTables(
  23. raw_ostream &OS,
  24. const ArrayRef<const CodeGenInstruction *> &NumberedInstructions) {
  25. // First lets organize all opcodes by (prefix) byte. Prefix 0 is the
  26. // starting table.
  27. std::map<unsigned,
  28. std::map<unsigned, std::pair<unsigned, const CodeGenInstruction *>>>
  29. OpcodeTable;
  30. for (unsigned I = 0; I != NumberedInstructions.size(); ++I) {
  31. auto &CGI = *NumberedInstructions[I];
  32. auto &Def = *CGI.TheDef;
  33. if (!Def.getValue("Inst"))
  34. continue;
  35. auto &Inst = *Def.getValueAsBitsInit("Inst");
  36. auto Opc = static_cast<unsigned>(
  37. reinterpret_cast<IntInit *>(Inst.convertInitializerTo(IntRecTy::get()))
  38. ->getValue());
  39. if (Opc == 0xFFFFFFFF)
  40. continue; // No opcode defined.
  41. assert(Opc <= 0xFFFFFF);
  42. unsigned Prefix;
  43. if (Opc <= 0xFFFF) {
  44. Prefix = Opc >> 8;
  45. Opc = Opc & 0xFF;
  46. } else {
  47. Prefix = Opc >> 16;
  48. Opc = Opc & 0xFFFF;
  49. }
  50. auto &CGIP = OpcodeTable[Prefix][Opc];
  51. // All wasm instructions have a StackBased field of type string, we only
  52. // want the instructions for which this is "true".
  53. auto StackString =
  54. Def.getValue("StackBased")->getValue()->getCastTo(StringRecTy::get());
  55. auto IsStackBased =
  56. StackString &&
  57. reinterpret_cast<const StringInit *>(StackString)->getValue() == "true";
  58. if (!IsStackBased)
  59. continue;
  60. if (CGIP.second) {
  61. // We already have an instruction for this slot, so decide which one
  62. // should be the canonical one. This determines which variant gets
  63. // printed in a disassembly. We want e.g. "call" not "i32.call", and
  64. // "end" when we don't know if its "end_loop" or "end_block" etc.
  65. auto IsCanonicalExisting = CGIP.second->TheDef->getValue("IsCanonical")
  66. ->getValue()
  67. ->getAsString() == "1";
  68. // We already have one marked explicitly as canonical, so keep it.
  69. if (IsCanonicalExisting)
  70. continue;
  71. auto IsCanonicalNew =
  72. Def.getValue("IsCanonical")->getValue()->getAsString() == "1";
  73. // If the new one is explicitly marked as canonical, take it.
  74. if (!IsCanonicalNew) {
  75. // Neither the existing or new instruction is canonical.
  76. // Pick the one with the shortest name as heuristic.
  77. // Though ideally IsCanonical is always defined for at least one
  78. // variant so this never has to apply.
  79. if (CGIP.second->AsmString.size() <= CGI.AsmString.size())
  80. continue;
  81. }
  82. }
  83. // Set this instruction as the one to use.
  84. CGIP = std::make_pair(I, &CGI);
  85. }
  86. OS << "#include \"MCTargetDesc/WebAssemblyMCTargetDesc.h\"\n";
  87. OS << "\n";
  88. OS << "namespace llvm {\n\n";
  89. OS << "static constexpr int WebAssemblyInstructionTableSize = ";
  90. OS << WebAssemblyInstructionTableSize << ";\n\n";
  91. OS << "enum EntryType : uint8_t { ";
  92. OS << "ET_Unused, ET_Prefix, ET_Instruction };\n\n";
  93. OS << "struct WebAssemblyInstruction {\n";
  94. OS << " uint16_t Opcode;\n";
  95. OS << " EntryType ET;\n";
  96. OS << " uint8_t NumOperands;\n";
  97. OS << " uint16_t OperandStart;\n";
  98. OS << "};\n\n";
  99. std::vector<std::string> OperandTable, CurOperandList;
  100. // Output one table per prefix.
  101. for (auto &PrefixPair : OpcodeTable) {
  102. if (PrefixPair.second.empty())
  103. continue;
  104. OS << "WebAssemblyInstruction InstructionTable" << PrefixPair.first;
  105. OS << "[] = {\n";
  106. for (unsigned I = 0; I < WebAssemblyInstructionTableSize; I++) {
  107. auto InstIt = PrefixPair.second.find(I);
  108. if (InstIt != PrefixPair.second.end()) {
  109. // Regular instruction.
  110. assert(InstIt->second.second);
  111. auto &CGI = *InstIt->second.second;
  112. OS << " // 0x";
  113. OS.write_hex(static_cast<unsigned long long>(I));
  114. OS << ": " << CGI.AsmString << "\n";
  115. OS << " { " << InstIt->second.first << ", ET_Instruction, ";
  116. OS << CGI.Operands.OperandList.size() << ", ";
  117. // Collect operand types for storage in a shared list.
  118. CurOperandList.clear();
  119. for (auto &Op : CGI.Operands.OperandList) {
  120. assert(Op.OperandType != "MCOI::OPERAND_UNKNOWN");
  121. CurOperandList.push_back(Op.OperandType);
  122. }
  123. // See if we already have stored this sequence before. This is not
  124. // strictly necessary but makes the table really small.
  125. size_t OperandStart = OperandTable.size();
  126. if (CurOperandList.size() <= OperandTable.size()) {
  127. for (size_t J = 0; J <= OperandTable.size() - CurOperandList.size();
  128. ++J) {
  129. size_t K = 0;
  130. for (; K < CurOperandList.size(); ++K) {
  131. if (OperandTable[J + K] != CurOperandList[K]) break;
  132. }
  133. if (K == CurOperandList.size()) {
  134. OperandStart = J;
  135. break;
  136. }
  137. }
  138. }
  139. // Store operands if no prior occurrence.
  140. if (OperandStart == OperandTable.size()) {
  141. llvm::append_range(OperandTable, CurOperandList);
  142. }
  143. OS << OperandStart;
  144. } else {
  145. auto PrefixIt = OpcodeTable.find(I);
  146. // If we have a non-empty table for it that's not 0, this is a prefix.
  147. if (PrefixIt != OpcodeTable.end() && I && !PrefixPair.first) {
  148. OS << " { 0, ET_Prefix, 0, 0";
  149. } else {
  150. OS << " { 0, ET_Unused, 0, 0";
  151. }
  152. }
  153. OS << " },\n";
  154. }
  155. OS << "};\n\n";
  156. }
  157. // Create a table of all operands:
  158. OS << "const uint8_t OperandTable[] = {\n";
  159. for (auto &Op : OperandTable) {
  160. OS << " " << Op << ",\n";
  161. }
  162. OS << "};\n\n";
  163. // Create a table of all extension tables:
  164. OS << "struct { uint8_t Prefix; const WebAssemblyInstruction *Table; }\n";
  165. OS << "PrefixTable[] = {\n";
  166. for (auto &PrefixPair : OpcodeTable) {
  167. if (PrefixPair.second.empty() || !PrefixPair.first)
  168. continue;
  169. OS << " { " << PrefixPair.first << ", InstructionTable"
  170. << PrefixPair.first;
  171. OS << " },\n";
  172. }
  173. OS << " { 0, nullptr }\n};\n\n";
  174. OS << "} // end namespace llvm\n";
  175. }
  176. } // namespace llvm