123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948 |
- //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------===//
- //
- // This file implements the PredicateInfo class.
- //
- //===----------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/PredicateInfo.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/IR/AssemblyAnnotationWriter.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/DebugCounter.h"
- #include "llvm/Support/FormattedStream.h"
- #include <algorithm>
- #define DEBUG_TYPE "predicateinfo"
- using namespace llvm;
- using namespace PatternMatch;
- INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
- "PredicateInfo Printer", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
- "PredicateInfo Printer", false, false)
- static cl::opt<bool> VerifyPredicateInfo(
- "verify-predicateinfo", cl::init(false), cl::Hidden,
- cl::desc("Verify PredicateInfo in legacy printer pass."));
- DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
- "Controls which variables are renamed with predicateinfo");
- // Maximum number of conditions considered for renaming for each branch/assume.
- // This limits renaming of deep and/or chains.
- static const unsigned MaxCondsPerBranch = 8;
- namespace {
- // Given a predicate info that is a type of branching terminator, get the
- // branching block.
- const BasicBlock *getBranchBlock(const PredicateBase *PB) {
- assert(isa<PredicateWithEdge>(PB) &&
- "Only branches and switches should have PHIOnly defs that "
- "require branch blocks.");
- return cast<PredicateWithEdge>(PB)->From;
- }
- // Given a predicate info that is a type of branching terminator, get the
- // branching terminator.
- static Instruction *getBranchTerminator(const PredicateBase *PB) {
- assert(isa<PredicateWithEdge>(PB) &&
- "Not a predicate info type we know how to get a terminator from.");
- return cast<PredicateWithEdge>(PB)->From->getTerminator();
- }
- // Given a predicate info that is a type of branching terminator, get the
- // edge this predicate info represents
- std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
- assert(isa<PredicateWithEdge>(PB) &&
- "Not a predicate info type we know how to get an edge from.");
- const auto *PEdge = cast<PredicateWithEdge>(PB);
- return std::make_pair(PEdge->From, PEdge->To);
- }
- }
- namespace llvm {
- enum LocalNum {
- // Operations that must appear first in the block.
- LN_First,
- // Operations that are somewhere in the middle of the block, and are sorted on
- // demand.
- LN_Middle,
- // Operations that must appear last in a block, like successor phi node uses.
- LN_Last
- };
- // Associate global and local DFS info with defs and uses, so we can sort them
- // into a global domination ordering.
- struct ValueDFS {
- int DFSIn = 0;
- int DFSOut = 0;
- unsigned int LocalNum = LN_Middle;
- // Only one of Def or Use will be set.
- Value *Def = nullptr;
- Use *U = nullptr;
- // Neither PInfo nor EdgeOnly participate in the ordering
- PredicateBase *PInfo = nullptr;
- bool EdgeOnly = false;
- };
- // Perform a strict weak ordering on instructions and arguments.
- static bool valueComesBefore(const Value *A, const Value *B) {
- auto *ArgA = dyn_cast_or_null<Argument>(A);
- auto *ArgB = dyn_cast_or_null<Argument>(B);
- if (ArgA && !ArgB)
- return true;
- if (ArgB && !ArgA)
- return false;
- if (ArgA && ArgB)
- return ArgA->getArgNo() < ArgB->getArgNo();
- return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
- }
- // This compares ValueDFS structures. Doing so allows us to walk the minimum
- // number of instructions necessary to compute our def/use ordering.
- struct ValueDFS_Compare {
- DominatorTree &DT;
- ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
- bool operator()(const ValueDFS &A, const ValueDFS &B) const {
- if (&A == &B)
- return false;
- // The only case we can't directly compare them is when they in the same
- // block, and both have localnum == middle. In that case, we have to use
- // comesbefore to see what the real ordering is, because they are in the
- // same basic block.
- assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
- "Equal DFS-in numbers imply equal out numbers");
- bool SameBlock = A.DFSIn == B.DFSIn;
- // We want to put the def that will get used for a given set of phi uses,
- // before those phi uses.
- // So we sort by edge, then by def.
- // Note that only phi nodes uses and defs can come last.
- if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
- return comparePHIRelated(A, B);
- bool isADef = A.Def;
- bool isBDef = B.Def;
- if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
- return std::tie(A.DFSIn, A.LocalNum, isADef) <
- std::tie(B.DFSIn, B.LocalNum, isBDef);
- return localComesBefore(A, B);
- }
- // For a phi use, or a non-materialized def, return the edge it represents.
- std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
- if (!VD.Def && VD.U) {
- auto *PHI = cast<PHINode>(VD.U->getUser());
- return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
- }
- // This is really a non-materialized def.
- return ::getBlockEdge(VD.PInfo);
- }
- // For two phi related values, return the ordering.
- bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
- BasicBlock *ASrc, *ADest, *BSrc, *BDest;
- std::tie(ASrc, ADest) = getBlockEdge(A);
- std::tie(BSrc, BDest) = getBlockEdge(B);
- #ifndef NDEBUG
- // This function should only be used for values in the same BB, check that.
- DomTreeNode *DomASrc = DT.getNode(ASrc);
- DomTreeNode *DomBSrc = DT.getNode(BSrc);
- assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
- "DFS numbers for A should match the ones of the source block");
- assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
- "DFS numbers for B should match the ones of the source block");
- assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
- #endif
- (void)ASrc;
- (void)BSrc;
- // Use DFS numbers to compare destination blocks, to guarantee a
- // deterministic order.
- DomTreeNode *DomADest = DT.getNode(ADest);
- DomTreeNode *DomBDest = DT.getNode(BDest);
- unsigned AIn = DomADest->getDFSNumIn();
- unsigned BIn = DomBDest->getDFSNumIn();
- bool isADef = A.Def;
- bool isBDef = B.Def;
- assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
- "Def and U cannot be set at the same time");
- // Now sort by edge destination and then defs before uses.
- return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
- }
- // Get the definition of an instruction that occurs in the middle of a block.
- Value *getMiddleDef(const ValueDFS &VD) const {
- if (VD.Def)
- return VD.Def;
- // It's possible for the defs and uses to be null. For branches, the local
- // numbering will say the placed predicaeinfos should go first (IE
- // LN_beginning), so we won't be in this function. For assumes, we will end
- // up here, beause we need to order the def we will place relative to the
- // assume. So for the purpose of ordering, we pretend the def is right
- // after the assume, because that is where we will insert the info.
- if (!VD.U) {
- assert(VD.PInfo &&
- "No def, no use, and no predicateinfo should not occur");
- assert(isa<PredicateAssume>(VD.PInfo) &&
- "Middle of block should only occur for assumes");
- return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
- }
- return nullptr;
- }
- // Return either the Def, if it's not null, or the user of the Use, if the def
- // is null.
- const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
- if (Def)
- return cast<Instruction>(Def);
- return cast<Instruction>(U->getUser());
- }
- // This performs the necessary local basic block ordering checks to tell
- // whether A comes before B, where both are in the same basic block.
- bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
- auto *ADef = getMiddleDef(A);
- auto *BDef = getMiddleDef(B);
- // See if we have real values or uses. If we have real values, we are
- // guaranteed they are instructions or arguments. No matter what, we are
- // guaranteed they are in the same block if they are instructions.
- auto *ArgA = dyn_cast_or_null<Argument>(ADef);
- auto *ArgB = dyn_cast_or_null<Argument>(BDef);
- if (ArgA || ArgB)
- return valueComesBefore(ArgA, ArgB);
- auto *AInst = getDefOrUser(ADef, A.U);
- auto *BInst = getDefOrUser(BDef, B.U);
- return valueComesBefore(AInst, BInst);
- }
- };
- class PredicateInfoBuilder {
- // Used to store information about each value we might rename.
- struct ValueInfo {
- SmallVector<PredicateBase *, 4> Infos;
- };
- PredicateInfo &PI;
- Function &F;
- DominatorTree &DT;
- AssumptionCache &AC;
- // This stores info about each operand or comparison result we make copies
- // of. The real ValueInfos start at index 1, index 0 is unused so that we
- // can more easily detect invalid indexing.
- SmallVector<ValueInfo, 32> ValueInfos;
- // This gives the index into the ValueInfos array for a given Value. Because
- // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
- // whether it returned a valid result.
- DenseMap<Value *, unsigned int> ValueInfoNums;
- // The set of edges along which we can only handle phi uses, due to critical
- // edges.
- DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
- ValueInfo &getOrCreateValueInfo(Value *);
- const ValueInfo &getValueInfo(Value *) const;
- void processAssume(IntrinsicInst *, BasicBlock *,
- SmallVectorImpl<Value *> &OpsToRename);
- void processBranch(BranchInst *, BasicBlock *,
- SmallVectorImpl<Value *> &OpsToRename);
- void processSwitch(SwitchInst *, BasicBlock *,
- SmallVectorImpl<Value *> &OpsToRename);
- void renameUses(SmallVectorImpl<Value *> &OpsToRename);
- void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
- PredicateBase *PB);
- typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
- void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
- Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
- bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
- void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
- public:
- PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
- AssumptionCache &AC)
- : PI(PI), F(F), DT(DT), AC(AC) {
- // Push an empty operand info so that we can detect 0 as not finding one
- ValueInfos.resize(1);
- }
- void buildPredicateInfo();
- };
- bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
- const ValueDFS &VDUse) const {
- if (Stack.empty())
- return false;
- // If it's a phi only use, make sure it's for this phi node edge, and that the
- // use is in a phi node. If it's anything else, and the top of the stack is
- // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
- // the defs they must go with so that we can know it's time to pop the stack
- // when we hit the end of the phi uses for a given def.
- if (Stack.back().EdgeOnly) {
- if (!VDUse.U)
- return false;
- auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
- if (!PHI)
- return false;
- // Check edge
- BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
- if (EdgePred != getBranchBlock(Stack.back().PInfo))
- return false;
- // Use dominates, which knows how to handle edge dominance.
- return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
- }
- return (VDUse.DFSIn >= Stack.back().DFSIn &&
- VDUse.DFSOut <= Stack.back().DFSOut);
- }
- void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
- const ValueDFS &VD) {
- while (!Stack.empty() && !stackIsInScope(Stack, VD))
- Stack.pop_back();
- }
- // Convert the uses of Op into a vector of uses, associating global and local
- // DFS info with each one.
- void PredicateInfoBuilder::convertUsesToDFSOrdered(
- Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
- for (auto &U : Op->uses()) {
- if (auto *I = dyn_cast<Instruction>(U.getUser())) {
- ValueDFS VD;
- // Put the phi node uses in the incoming block.
- BasicBlock *IBlock;
- if (auto *PN = dyn_cast<PHINode>(I)) {
- IBlock = PN->getIncomingBlock(U);
- // Make phi node users appear last in the incoming block
- // they are from.
- VD.LocalNum = LN_Last;
- } else {
- // If it's not a phi node use, it is somewhere in the middle of the
- // block.
- IBlock = I->getParent();
- VD.LocalNum = LN_Middle;
- }
- DomTreeNode *DomNode = DT.getNode(IBlock);
- // It's possible our use is in an unreachable block. Skip it if so.
- if (!DomNode)
- continue;
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.U = &U;
- DFSOrderedSet.push_back(VD);
- }
- }
- }
- bool shouldRename(Value *V) {
- // Only want real values, not constants. Additionally, operands with one use
- // are only being used in the comparison, which means they will not be useful
- // for us to consider for predicateinfo.
- return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
- }
- // Collect relevant operations from Comparison that we may want to insert copies
- // for.
- void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
- auto *Op0 = Comparison->getOperand(0);
- auto *Op1 = Comparison->getOperand(1);
- if (Op0 == Op1)
- return;
- CmpOperands.push_back(Op0);
- CmpOperands.push_back(Op1);
- }
- // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
- void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
- Value *Op, PredicateBase *PB) {
- auto &OperandInfo = getOrCreateValueInfo(Op);
- if (OperandInfo.Infos.empty())
- OpsToRename.push_back(Op);
- PI.AllInfos.push_back(PB);
- OperandInfo.Infos.push_back(PB);
- }
- // Process an assume instruction and place relevant operations we want to rename
- // into OpsToRename.
- void PredicateInfoBuilder::processAssume(
- IntrinsicInst *II, BasicBlock *AssumeBB,
- SmallVectorImpl<Value *> &OpsToRename) {
- SmallVector<Value *, 4> Worklist;
- SmallPtrSet<Value *, 4> Visited;
- Worklist.push_back(II->getOperand(0));
- while (!Worklist.empty()) {
- Value *Cond = Worklist.pop_back_val();
- if (!Visited.insert(Cond).second)
- continue;
- if (Visited.size() > MaxCondsPerBranch)
- break;
- Value *Op0, *Op1;
- if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
- Worklist.push_back(Op1);
- Worklist.push_back(Op0);
- }
- SmallVector<Value *, 4> Values;
- Values.push_back(Cond);
- if (auto *Cmp = dyn_cast<CmpInst>(Cond))
- collectCmpOps(Cmp, Values);
- for (Value *V : Values) {
- if (shouldRename(V)) {
- auto *PA = new PredicateAssume(V, II, Cond);
- addInfoFor(OpsToRename, V, PA);
- }
- }
- }
- }
- // Process a block terminating branch, and place relevant operations to be
- // renamed into OpsToRename.
- void PredicateInfoBuilder::processBranch(
- BranchInst *BI, BasicBlock *BranchBB,
- SmallVectorImpl<Value *> &OpsToRename) {
- BasicBlock *FirstBB = BI->getSuccessor(0);
- BasicBlock *SecondBB = BI->getSuccessor(1);
- for (BasicBlock *Succ : {FirstBB, SecondBB}) {
- bool TakenEdge = Succ == FirstBB;
- // Don't try to insert on a self-edge. This is mainly because we will
- // eliminate during renaming anyway.
- if (Succ == BranchBB)
- continue;
- SmallVector<Value *, 4> Worklist;
- SmallPtrSet<Value *, 4> Visited;
- Worklist.push_back(BI->getCondition());
- while (!Worklist.empty()) {
- Value *Cond = Worklist.pop_back_val();
- if (!Visited.insert(Cond).second)
- continue;
- if (Visited.size() > MaxCondsPerBranch)
- break;
- Value *Op0, *Op1;
- if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
- : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
- Worklist.push_back(Op1);
- Worklist.push_back(Op0);
- }
- SmallVector<Value *, 4> Values;
- Values.push_back(Cond);
- if (auto *Cmp = dyn_cast<CmpInst>(Cond))
- collectCmpOps(Cmp, Values);
- for (Value *V : Values) {
- if (shouldRename(V)) {
- PredicateBase *PB =
- new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
- addInfoFor(OpsToRename, V, PB);
- if (!Succ->getSinglePredecessor())
- EdgeUsesOnly.insert({BranchBB, Succ});
- }
- }
- }
- }
- }
- // Process a block terminating switch, and place relevant operations to be
- // renamed into OpsToRename.
- void PredicateInfoBuilder::processSwitch(
- SwitchInst *SI, BasicBlock *BranchBB,
- SmallVectorImpl<Value *> &OpsToRename) {
- Value *Op = SI->getCondition();
- if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
- return;
- // Remember how many outgoing edges there are to every successor.
- SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
- for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
- BasicBlock *TargetBlock = SI->getSuccessor(i);
- ++SwitchEdges[TargetBlock];
- }
- // Now propagate info for each case value
- for (auto C : SI->cases()) {
- BasicBlock *TargetBlock = C.getCaseSuccessor();
- if (SwitchEdges.lookup(TargetBlock) == 1) {
- PredicateSwitch *PS = new PredicateSwitch(
- Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
- addInfoFor(OpsToRename, Op, PS);
- if (!TargetBlock->getSinglePredecessor())
- EdgeUsesOnly.insert({BranchBB, TargetBlock});
- }
- }
- }
- // Build predicate info for our function
- void PredicateInfoBuilder::buildPredicateInfo() {
- DT.updateDFSNumbers();
- // Collect operands to rename from all conditional branch terminators, as well
- // as assume statements.
- SmallVector<Value *, 8> OpsToRename;
- for (auto *DTN : depth_first(DT.getRootNode())) {
- BasicBlock *BranchBB = DTN->getBlock();
- if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
- if (!BI->isConditional())
- continue;
- // Can't insert conditional information if they all go to the same place.
- if (BI->getSuccessor(0) == BI->getSuccessor(1))
- continue;
- processBranch(BI, BranchBB, OpsToRename);
- } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
- processSwitch(SI, BranchBB, OpsToRename);
- }
- }
- for (auto &Assume : AC.assumptions()) {
- if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
- if (DT.isReachableFromEntry(II->getParent()))
- processAssume(II, II->getParent(), OpsToRename);
- }
- // Now rename all our operations.
- renameUses(OpsToRename);
- }
- // Given the renaming stack, make all the operands currently on the stack real
- // by inserting them into the IR. Return the last operation's value.
- Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
- ValueDFSStack &RenameStack,
- Value *OrigOp) {
- // Find the first thing we have to materialize
- auto RevIter = RenameStack.rbegin();
- for (; RevIter != RenameStack.rend(); ++RevIter)
- if (RevIter->Def)
- break;
- size_t Start = RevIter - RenameStack.rbegin();
- // The maximum number of things we should be trying to materialize at once
- // right now is 4, depending on if we had an assume, a branch, and both used
- // and of conditions.
- for (auto RenameIter = RenameStack.end() - Start;
- RenameIter != RenameStack.end(); ++RenameIter) {
- auto *Op =
- RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
- ValueDFS &Result = *RenameIter;
- auto *ValInfo = Result.PInfo;
- ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
- ? OrigOp
- : (RenameStack.end() - Start - 1)->Def;
- // For edge predicates, we can just place the operand in the block before
- // the terminator. For assume, we have to place it right before the assume
- // to ensure we dominate all of our uses. Always insert right before the
- // relevant instruction (terminator, assume), so that we insert in proper
- // order in the case of multiple predicateinfo in the same block.
- // The number of named values is used to detect if a new declaration was
- // added. If so, that declaration is tracked so that it can be removed when
- // the analysis is done. The corner case were a new declaration results in
- // a name clash and the old name being renamed is not considered as that
- // represents an invalid module.
- if (isa<PredicateWithEdge>(ValInfo)) {
- IRBuilder<> B(getBranchTerminator(ValInfo));
- auto NumDecls = F.getParent()->getNumNamedValues();
- Function *IF = Intrinsic::getDeclaration(
- F.getParent(), Intrinsic::ssa_copy, Op->getType());
- if (NumDecls != F.getParent()->getNumNamedValues())
- PI.CreatedDeclarations.insert(IF);
- CallInst *PIC =
- B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
- PI.PredicateMap.insert({PIC, ValInfo});
- Result.Def = PIC;
- } else {
- auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
- assert(PAssume &&
- "Should not have gotten here without it being an assume");
- // Insert the predicate directly after the assume. While it also holds
- // directly before it, assume(i1 true) is not a useful fact.
- IRBuilder<> B(PAssume->AssumeInst->getNextNode());
- auto NumDecls = F.getParent()->getNumNamedValues();
- Function *IF = Intrinsic::getDeclaration(
- F.getParent(), Intrinsic::ssa_copy, Op->getType());
- if (NumDecls != F.getParent()->getNumNamedValues())
- PI.CreatedDeclarations.insert(IF);
- CallInst *PIC = B.CreateCall(IF, Op);
- PI.PredicateMap.insert({PIC, ValInfo});
- Result.Def = PIC;
- }
- }
- return RenameStack.back().Def;
- }
- // Instead of the standard SSA renaming algorithm, which is O(Number of
- // instructions), and walks the entire dominator tree, we walk only the defs +
- // uses. The standard SSA renaming algorithm does not really rely on the
- // dominator tree except to order the stack push/pops of the renaming stacks, so
- // that defs end up getting pushed before hitting the correct uses. This does
- // not require the dominator tree, only the *order* of the dominator tree. The
- // complete and correct ordering of the defs and uses, in dominator tree is
- // contained in the DFS numbering of the dominator tree. So we sort the defs and
- // uses into the DFS ordering, and then just use the renaming stack as per
- // normal, pushing when we hit a def (which is a predicateinfo instruction),
- // popping when we are out of the dfs scope for that def, and replacing any uses
- // with top of stack if it exists. In order to handle liveness without
- // propagating liveness info, we don't actually insert the predicateinfo
- // instruction def until we see a use that it would dominate. Once we see such
- // a use, we materialize the predicateinfo instruction in the right place and
- // use it.
- //
- // TODO: Use this algorithm to perform fast single-variable renaming in
- // promotememtoreg and memoryssa.
- void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
- ValueDFS_Compare Compare(DT);
- // Compute liveness, and rename in O(uses) per Op.
- for (auto *Op : OpsToRename) {
- LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
- unsigned Counter = 0;
- SmallVector<ValueDFS, 16> OrderedUses;
- const auto &ValueInfo = getValueInfo(Op);
- // Insert the possible copies into the def/use list.
- // They will become real copies if we find a real use for them, and never
- // created otherwise.
- for (const auto &PossibleCopy : ValueInfo.Infos) {
- ValueDFS VD;
- // Determine where we are going to place the copy by the copy type.
- // The predicate info for branches always come first, they will get
- // materialized in the split block at the top of the block.
- // The predicate info for assumes will be somewhere in the middle,
- // it will get materialized in front of the assume.
- if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
- VD.LocalNum = LN_Middle;
- DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
- if (!DomNode)
- continue;
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.PInfo = PossibleCopy;
- OrderedUses.push_back(VD);
- } else if (isa<PredicateWithEdge>(PossibleCopy)) {
- // If we can only do phi uses, we treat it like it's in the branch
- // block, and handle it specially. We know that it goes last, and only
- // dominate phi uses.
- auto BlockEdge = getBlockEdge(PossibleCopy);
- if (EdgeUsesOnly.count(BlockEdge)) {
- VD.LocalNum = LN_Last;
- auto *DomNode = DT.getNode(BlockEdge.first);
- if (DomNode) {
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.PInfo = PossibleCopy;
- VD.EdgeOnly = true;
- OrderedUses.push_back(VD);
- }
- } else {
- // Otherwise, we are in the split block (even though we perform
- // insertion in the branch block).
- // Insert a possible copy at the split block and before the branch.
- VD.LocalNum = LN_First;
- auto *DomNode = DT.getNode(BlockEdge.second);
- if (DomNode) {
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.PInfo = PossibleCopy;
- OrderedUses.push_back(VD);
- }
- }
- }
- }
- convertUsesToDFSOrdered(Op, OrderedUses);
- // Here we require a stable sort because we do not bother to try to
- // assign an order to the operands the uses represent. Thus, two
- // uses in the same instruction do not have a strict sort order
- // currently and will be considered equal. We could get rid of the
- // stable sort by creating one if we wanted.
- llvm::stable_sort(OrderedUses, Compare);
- SmallVector<ValueDFS, 8> RenameStack;
- // For each use, sorted into dfs order, push values and replaces uses with
- // top of stack, which will represent the reaching def.
- for (auto &VD : OrderedUses) {
- // We currently do not materialize copy over copy, but we should decide if
- // we want to.
- bool PossibleCopy = VD.PInfo != nullptr;
- if (RenameStack.empty()) {
- LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
- } else {
- LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
- << RenameStack.back().DFSIn << ","
- << RenameStack.back().DFSOut << ")\n");
- }
- LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
- << VD.DFSOut << ")\n");
- bool ShouldPush = (VD.Def || PossibleCopy);
- bool OutOfScope = !stackIsInScope(RenameStack, VD);
- if (OutOfScope || ShouldPush) {
- // Sync to our current scope.
- popStackUntilDFSScope(RenameStack, VD);
- if (ShouldPush) {
- RenameStack.push_back(VD);
- }
- }
- // If we get to this point, and the stack is empty we must have a use
- // with no renaming needed, just skip it.
- if (RenameStack.empty())
- continue;
- // Skip values, only want to rename the uses
- if (VD.Def || PossibleCopy)
- continue;
- if (!DebugCounter::shouldExecute(RenameCounter)) {
- LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
- continue;
- }
- ValueDFS &Result = RenameStack.back();
- // If the possible copy dominates something, materialize our stack up to
- // this point. This ensures every comparison that affects our operation
- // ends up with predicateinfo.
- if (!Result.Def)
- Result.Def = materializeStack(Counter, RenameStack, Op);
- LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
- << *VD.U->get() << " in " << *(VD.U->getUser())
- << "\n");
- assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
- "Predicateinfo def should have dominated this use");
- VD.U->set(Result.Def);
- }
- }
- }
- PredicateInfoBuilder::ValueInfo &
- PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
- auto OIN = ValueInfoNums.find(Operand);
- if (OIN == ValueInfoNums.end()) {
- // This will grow it
- ValueInfos.resize(ValueInfos.size() + 1);
- // This will use the new size and give us a 0 based number of the info
- auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
- assert(InsertResult.second && "Value info number already existed?");
- return ValueInfos[InsertResult.first->second];
- }
- return ValueInfos[OIN->second];
- }
- const PredicateInfoBuilder::ValueInfo &
- PredicateInfoBuilder::getValueInfo(Value *Operand) const {
- auto OINI = ValueInfoNums.lookup(Operand);
- assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
- assert(OINI < ValueInfos.size() &&
- "Value Info Number greater than size of Value Info Table");
- return ValueInfos[OINI];
- }
- PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
- AssumptionCache &AC)
- : F(F) {
- PredicateInfoBuilder Builder(*this, F, DT, AC);
- Builder.buildPredicateInfo();
- }
- // Remove all declarations we created . The PredicateInfo consumers are
- // responsible for remove the ssa_copy calls created.
- PredicateInfo::~PredicateInfo() {
- // Collect function pointers in set first, as SmallSet uses a SmallVector
- // internally and we have to remove the asserting value handles first.
- SmallPtrSet<Function *, 20> FunctionPtrs;
- for (const auto &F : CreatedDeclarations)
- FunctionPtrs.insert(&*F);
- CreatedDeclarations.clear();
- for (Function *F : FunctionPtrs) {
- assert(F->user_begin() == F->user_end() &&
- "PredicateInfo consumer did not remove all SSA copies.");
- F->eraseFromParent();
- }
- }
- std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
- switch (Type) {
- case PT_Assume:
- case PT_Branch: {
- bool TrueEdge = true;
- if (auto *PBranch = dyn_cast<PredicateBranch>(this))
- TrueEdge = PBranch->TrueEdge;
- if (Condition == RenamedOp) {
- return {{CmpInst::ICMP_EQ,
- TrueEdge ? ConstantInt::getTrue(Condition->getType())
- : ConstantInt::getFalse(Condition->getType())}};
- }
- CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
- if (!Cmp) {
- // TODO: Make this an assertion once RenamedOp is fully accurate.
- return std::nullopt;
- }
- CmpInst::Predicate Pred;
- Value *OtherOp;
- if (Cmp->getOperand(0) == RenamedOp) {
- Pred = Cmp->getPredicate();
- OtherOp = Cmp->getOperand(1);
- } else if (Cmp->getOperand(1) == RenamedOp) {
- Pred = Cmp->getSwappedPredicate();
- OtherOp = Cmp->getOperand(0);
- } else {
- // TODO: Make this an assertion once RenamedOp is fully accurate.
- return std::nullopt;
- }
- // Invert predicate along false edge.
- if (!TrueEdge)
- Pred = CmpInst::getInversePredicate(Pred);
- return {{Pred, OtherOp}};
- }
- case PT_Switch:
- if (Condition != RenamedOp) {
- // TODO: Make this an assertion once RenamedOp is fully accurate.
- return std::nullopt;
- }
- return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
- }
- llvm_unreachable("Unknown predicate type");
- }
- void PredicateInfo::verifyPredicateInfo() const {}
- char PredicateInfoPrinterLegacyPass::ID = 0;
- PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
- : FunctionPass(ID) {
- initializePredicateInfoPrinterLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- }
- // Replace ssa_copy calls created by PredicateInfo with their operand.
- static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
- for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
- const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
- auto *II = dyn_cast<IntrinsicInst>(&Inst);
- if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
- continue;
- Inst.replaceAllUsesWith(II->getOperand(0));
- Inst.eraseFromParent();
- }
- }
- bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
- PredInfo->print(dbgs());
- if (VerifyPredicateInfo)
- PredInfo->verifyPredicateInfo();
- replaceCreatedSSACopys(*PredInfo, F);
- return false;
- }
- PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- OS << "PredicateInfo for function: " << F.getName() << "\n";
- auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
- PredInfo->print(OS);
- replaceCreatedSSACopys(*PredInfo, F);
- return PreservedAnalyses::all();
- }
- /// An assembly annotator class to print PredicateInfo information in
- /// comments.
- class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
- friend class PredicateInfo;
- const PredicateInfo *PredInfo;
- public:
- PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
- void emitBasicBlockStartAnnot(const BasicBlock *BB,
- formatted_raw_ostream &OS) override {}
- void emitInstructionAnnot(const Instruction *I,
- formatted_raw_ostream &OS) override {
- if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
- OS << "; Has predicate info\n";
- if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
- OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
- << " Comparison:" << *PB->Condition << " Edge: [";
- PB->From->printAsOperand(OS);
- OS << ",";
- PB->To->printAsOperand(OS);
- OS << "]";
- } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
- OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
- << " Switch:" << *PS->Switch << " Edge: [";
- PS->From->printAsOperand(OS);
- OS << ",";
- PS->To->printAsOperand(OS);
- OS << "]";
- } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
- OS << "; assume predicate info {"
- << " Comparison:" << *PA->Condition;
- }
- OS << ", RenamedOp: ";
- PI->RenamedOp->printAsOperand(OS, false);
- OS << " }\n";
- }
- }
- };
- void PredicateInfo::print(raw_ostream &OS) const {
- PredicateInfoAnnotatedWriter Writer(this);
- F.print(OS, &Writer);
- }
- void PredicateInfo::dump() const {
- PredicateInfoAnnotatedWriter Writer(this);
- F.print(dbgs(), &Writer);
- }
- PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
- return PreservedAnalyses::all();
- }
- }
|