12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518 |
- //===- Local.cpp - Functions to perform local transformations -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This family of functions perform various local transformations to the
- // program.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumeBundleQueries.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/BinaryFormat/Dwarf.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/GlobalObject.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicsWebAssembly.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ProfDataUtils.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <map>
- #include <optional>
- #include <utility>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "local"
- STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
- STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
- static cl::opt<bool> PHICSEDebugHash(
- "phicse-debug-hash",
- #ifdef EXPENSIVE_CHECKS
- cl::init(true),
- #else
- cl::init(false),
- #endif
- cl::Hidden,
- cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
- "function is well-behaved w.r.t. its isEqual predicate"));
- static cl::opt<unsigned> PHICSENumPHISmallSize(
- "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
- cl::desc(
- "When the basic block contains not more than this number of PHI nodes, "
- "perform a (faster!) exhaustive search instead of set-driven one."));
- // Max recursion depth for collectBitParts used when detecting bswap and
- // bitreverse idioms.
- static const unsigned BitPartRecursionMaxDepth = 48;
- //===----------------------------------------------------------------------===//
- // Local constant propagation.
- //
- /// ConstantFoldTerminator - If a terminator instruction is predicated on a
- /// constant value, convert it into an unconditional branch to the constant
- /// destination. This is a nontrivial operation because the successors of this
- /// basic block must have their PHI nodes updated.
- /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
- /// conditions and indirectbr addresses this might make dead if
- /// DeleteDeadConditions is true.
- bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
- const TargetLibraryInfo *TLI,
- DomTreeUpdater *DTU) {
- Instruction *T = BB->getTerminator();
- IRBuilder<> Builder(T);
- // Branch - See if we are conditional jumping on constant
- if (auto *BI = dyn_cast<BranchInst>(T)) {
- if (BI->isUnconditional()) return false; // Can't optimize uncond branch
- BasicBlock *Dest1 = BI->getSuccessor(0);
- BasicBlock *Dest2 = BI->getSuccessor(1);
- if (Dest2 == Dest1) { // Conditional branch to same location?
- // This branch matches something like this:
- // br bool %cond, label %Dest, label %Dest
- // and changes it into: br label %Dest
- // Let the basic block know that we are letting go of one copy of it.
- assert(BI->getParent() && "Terminator not inserted in block!");
- Dest1->removePredecessor(BI->getParent());
- // Replace the conditional branch with an unconditional one.
- BranchInst *NewBI = Builder.CreateBr(Dest1);
- // Transfer the metadata to the new branch instruction.
- NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
- LLVMContext::MD_annotation});
- Value *Cond = BI->getCondition();
- BI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- return true;
- }
- if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
- // Are we branching on constant?
- // YES. Change to unconditional branch...
- BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
- BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
- // Let the basic block know that we are letting go of it. Based on this,
- // it will adjust it's PHI nodes.
- OldDest->removePredecessor(BB);
- // Replace the conditional branch with an unconditional one.
- BranchInst *NewBI = Builder.CreateBr(Destination);
- // Transfer the metadata to the new branch instruction.
- NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
- LLVMContext::MD_annotation});
- BI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
- return true;
- }
- return false;
- }
- if (auto *SI = dyn_cast<SwitchInst>(T)) {
- // If we are switching on a constant, we can convert the switch to an
- // unconditional branch.
- auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
- BasicBlock *DefaultDest = SI->getDefaultDest();
- BasicBlock *TheOnlyDest = DefaultDest;
- // If the default is unreachable, ignore it when searching for TheOnlyDest.
- if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
- SI->getNumCases() > 0) {
- TheOnlyDest = SI->case_begin()->getCaseSuccessor();
- }
- bool Changed = false;
- // Figure out which case it goes to.
- for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
- // Found case matching a constant operand?
- if (i->getCaseValue() == CI) {
- TheOnlyDest = i->getCaseSuccessor();
- break;
- }
- // Check to see if this branch is going to the same place as the default
- // dest. If so, eliminate it as an explicit compare.
- if (i->getCaseSuccessor() == DefaultDest) {
- MDNode *MD = getValidBranchWeightMDNode(*SI);
- unsigned NCases = SI->getNumCases();
- // Fold the case metadata into the default if there will be any branches
- // left, unless the metadata doesn't match the switch.
- if (NCases > 1 && MD) {
- // Collect branch weights into a vector.
- SmallVector<uint32_t, 8> Weights;
- extractBranchWeights(MD, Weights);
- // Merge weight of this case to the default weight.
- unsigned idx = i->getCaseIndex();
- // TODO: Add overflow check.
- Weights[0] += Weights[idx+1];
- // Remove weight for this case.
- std::swap(Weights[idx+1], Weights.back());
- Weights.pop_back();
- SI->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext()).
- createBranchWeights(Weights));
- }
- // Remove this entry.
- BasicBlock *ParentBB = SI->getParent();
- DefaultDest->removePredecessor(ParentBB);
- i = SI->removeCase(i);
- e = SI->case_end();
- // Removing this case may have made the condition constant. In that
- // case, update CI and restart iteration through the cases.
- if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
- CI = NewCI;
- i = SI->case_begin();
- }
- Changed = true;
- continue;
- }
- // Otherwise, check to see if the switch only branches to one destination.
- // We do this by reseting "TheOnlyDest" to null when we find two non-equal
- // destinations.
- if (i->getCaseSuccessor() != TheOnlyDest)
- TheOnlyDest = nullptr;
- // Increment this iterator as we haven't removed the case.
- ++i;
- }
- if (CI && !TheOnlyDest) {
- // Branching on a constant, but not any of the cases, go to the default
- // successor.
- TheOnlyDest = SI->getDefaultDest();
- }
- // If we found a single destination that we can fold the switch into, do so
- // now.
- if (TheOnlyDest) {
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- BasicBlock *BB = SI->getParent();
- SmallSet<BasicBlock *, 8> RemovedSuccessors;
- // Remove entries from PHI nodes which we no longer branch to...
- BasicBlock *SuccToKeep = TheOnlyDest;
- for (BasicBlock *Succ : successors(SI)) {
- if (DTU && Succ != TheOnlyDest)
- RemovedSuccessors.insert(Succ);
- // Found case matching a constant operand?
- if (Succ == SuccToKeep) {
- SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
- } else {
- Succ->removePredecessor(BB);
- }
- }
- // Delete the old switch.
- Value *Cond = SI->getCondition();
- SI->eraseFromParent();
- if (DeleteDeadConditions)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
- if (DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- Updates.reserve(RemovedSuccessors.size());
- for (auto *RemovedSuccessor : RemovedSuccessors)
- Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
- DTU->applyUpdates(Updates);
- }
- return true;
- }
- if (SI->getNumCases() == 1) {
- // Otherwise, we can fold this switch into a conditional branch
- // instruction if it has only one non-default destination.
- auto FirstCase = *SI->case_begin();
- Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
- FirstCase.getCaseValue(), "cond");
- // Insert the new branch.
- BranchInst *NewBr = Builder.CreateCondBr(Cond,
- FirstCase.getCaseSuccessor(),
- SI->getDefaultDest());
- SmallVector<uint32_t> Weights;
- if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
- uint32_t DefWeight = Weights[0];
- uint32_t CaseWeight = Weights[1];
- // The TrueWeight should be the weight for the single case of SI.
- NewBr->setMetadata(LLVMContext::MD_prof,
- MDBuilder(BB->getContext())
- .createBranchWeights(CaseWeight, DefWeight));
- }
- // Update make.implicit metadata to the newly-created conditional branch.
- MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
- if (MakeImplicitMD)
- NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
- // Delete the old switch.
- SI->eraseFromParent();
- return true;
- }
- return Changed;
- }
- if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
- // indirectbr blockaddress(@F, @BB) -> br label @BB
- if (auto *BA =
- dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
- BasicBlock *TheOnlyDest = BA->getBasicBlock();
- SmallSet<BasicBlock *, 8> RemovedSuccessors;
- // Insert the new branch.
- Builder.CreateBr(TheOnlyDest);
- BasicBlock *SuccToKeep = TheOnlyDest;
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- BasicBlock *DestBB = IBI->getDestination(i);
- if (DTU && DestBB != TheOnlyDest)
- RemovedSuccessors.insert(DestBB);
- if (IBI->getDestination(i) == SuccToKeep) {
- SuccToKeep = nullptr;
- } else {
- DestBB->removePredecessor(BB);
- }
- }
- Value *Address = IBI->getAddress();
- IBI->eraseFromParent();
- if (DeleteDeadConditions)
- // Delete pointer cast instructions.
- RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
- // Also zap the blockaddress constant if there are no users remaining,
- // otherwise the destination is still marked as having its address taken.
- if (BA->use_empty())
- BA->destroyConstant();
- // If we didn't find our destination in the IBI successor list, then we
- // have undefined behavior. Replace the unconditional branch with an
- // 'unreachable' instruction.
- if (SuccToKeep) {
- BB->getTerminator()->eraseFromParent();
- new UnreachableInst(BB->getContext(), BB);
- }
- if (DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- Updates.reserve(RemovedSuccessors.size());
- for (auto *RemovedSuccessor : RemovedSuccessors)
- Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
- DTU->applyUpdates(Updates);
- }
- return true;
- }
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Local dead code elimination.
- //
- /// isInstructionTriviallyDead - Return true if the result produced by the
- /// instruction is not used, and the instruction has no side effects.
- ///
- bool llvm::isInstructionTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (!I->use_empty())
- return false;
- return wouldInstructionBeTriviallyDead(I, TLI);
- }
- bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
- Instruction *I, const TargetLibraryInfo *TLI) {
- // Instructions that are "markers" and have implied meaning on code around
- // them (without explicit uses), are not dead on unused paths.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- if (II->getIntrinsicID() == Intrinsic::stacksave ||
- II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
- II->isLifetimeStartOrEnd())
- return false;
- return wouldInstructionBeTriviallyDead(I, TLI);
- }
- bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
- const TargetLibraryInfo *TLI) {
- if (I->isTerminator())
- return false;
- // We don't want the landingpad-like instructions removed by anything this
- // general.
- if (I->isEHPad())
- return false;
- // We don't want debug info removed by anything this general, unless
- // debug info is empty.
- if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
- if (DDI->getAddress())
- return false;
- return true;
- }
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
- if (DVI->hasArgList() || DVI->getValue(0))
- return false;
- return true;
- }
- if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
- if (DLI->getLabel())
- return false;
- return true;
- }
- if (auto *CB = dyn_cast<CallBase>(I))
- if (isRemovableAlloc(CB, TLI))
- return true;
- if (!I->willReturn()) {
- auto *II = dyn_cast<IntrinsicInst>(I);
- if (!II)
- return false;
- // TODO: These intrinsics are not safe to remove, because this may remove
- // a well-defined trap.
- switch (II->getIntrinsicID()) {
- case Intrinsic::wasm_trunc_signed:
- case Intrinsic::wasm_trunc_unsigned:
- case Intrinsic::ptrauth_auth:
- case Intrinsic::ptrauth_resign:
- return true;
- default:
- return false;
- }
- }
- if (!I->mayHaveSideEffects())
- return true;
- // Special case intrinsics that "may have side effects" but can be deleted
- // when dead.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // Safe to delete llvm.stacksave and launder.invariant.group if dead.
- if (II->getIntrinsicID() == Intrinsic::stacksave ||
- II->getIntrinsicID() == Intrinsic::launder_invariant_group)
- return true;
- if (II->isLifetimeStartOrEnd()) {
- auto *Arg = II->getArgOperand(1);
- // Lifetime intrinsics are dead when their right-hand is undef.
- if (isa<UndefValue>(Arg))
- return true;
- // If the right-hand is an alloc, global, or argument and the only uses
- // are lifetime intrinsics then the intrinsics are dead.
- if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
- return llvm::all_of(Arg->uses(), [](Use &Use) {
- if (IntrinsicInst *IntrinsicUse =
- dyn_cast<IntrinsicInst>(Use.getUser()))
- return IntrinsicUse->isLifetimeStartOrEnd();
- return false;
- });
- return false;
- }
- // Assumptions are dead if their condition is trivially true. Guards on
- // true are operationally no-ops. In the future we can consider more
- // sophisticated tradeoffs for guards considering potential for check
- // widening, but for now we keep things simple.
- if ((II->getIntrinsicID() == Intrinsic::assume &&
- isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
- II->getIntrinsicID() == Intrinsic::experimental_guard) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
- return !Cond->isZero();
- return false;
- }
- if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
- std::optional<fp::ExceptionBehavior> ExBehavior =
- FPI->getExceptionBehavior();
- return *ExBehavior != fp::ebStrict;
- }
- }
- if (auto *Call = dyn_cast<CallBase>(I)) {
- if (Value *FreedOp = getFreedOperand(Call, TLI))
- if (Constant *C = dyn_cast<Constant>(FreedOp))
- return C->isNullValue() || isa<UndefValue>(C);
- if (isMathLibCallNoop(Call, TLI))
- return true;
- }
- // Non-volatile atomic loads from constants can be removed.
- if (auto *LI = dyn_cast<LoadInst>(I))
- if (auto *GV = dyn_cast<GlobalVariable>(
- LI->getPointerOperand()->stripPointerCasts()))
- if (!LI->isVolatile() && GV->isConstant())
- return true;
- return false;
- }
- /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
- /// trivially dead instruction, delete it. If that makes any of its operands
- /// trivially dead, delete them too, recursively. Return true if any
- /// instructions were deleted.
- bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
- Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
- std::function<void(Value *)> AboutToDeleteCallback) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !isInstructionTriviallyDead(I, TLI))
- return false;
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- DeadInsts.push_back(I);
- RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
- AboutToDeleteCallback);
- return true;
- }
- bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
- SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
- MemorySSAUpdater *MSSAU,
- std::function<void(Value *)> AboutToDeleteCallback) {
- unsigned S = 0, E = DeadInsts.size(), Alive = 0;
- for (; S != E; ++S) {
- auto *I = dyn_cast<Instruction>(DeadInsts[S]);
- if (!I || !isInstructionTriviallyDead(I)) {
- DeadInsts[S] = nullptr;
- ++Alive;
- }
- }
- if (Alive == E)
- return false;
- RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
- AboutToDeleteCallback);
- return true;
- }
- void llvm::RecursivelyDeleteTriviallyDeadInstructions(
- SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
- MemorySSAUpdater *MSSAU,
- std::function<void(Value *)> AboutToDeleteCallback) {
- // Process the dead instruction list until empty.
- while (!DeadInsts.empty()) {
- Value *V = DeadInsts.pop_back_val();
- Instruction *I = cast_or_null<Instruction>(V);
- if (!I)
- continue;
- assert(isInstructionTriviallyDead(I, TLI) &&
- "Live instruction found in dead worklist!");
- assert(I->use_empty() && "Instructions with uses are not dead.");
- // Don't lose the debug info while deleting the instructions.
- salvageDebugInfo(*I);
- if (AboutToDeleteCallback)
- AboutToDeleteCallback(I);
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (Use &OpU : I->operands()) {
- Value *OpV = OpU.get();
- OpU.set(nullptr);
- if (!OpV->use_empty())
- continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- DeadInsts.push_back(OpI);
- }
- if (MSSAU)
- MSSAU->removeMemoryAccess(I);
- I->eraseFromParent();
- }
- }
- bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
- SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
- findDbgUsers(DbgUsers, I);
- for (auto *DII : DbgUsers)
- DII->setKillLocation();
- return !DbgUsers.empty();
- }
- /// areAllUsesEqual - Check whether the uses of a value are all the same.
- /// This is similar to Instruction::hasOneUse() except this will also return
- /// true when there are no uses or multiple uses that all refer to the same
- /// value.
- static bool areAllUsesEqual(Instruction *I) {
- Value::user_iterator UI = I->user_begin();
- Value::user_iterator UE = I->user_end();
- if (UI == UE)
- return true;
- User *TheUse = *UI;
- for (++UI; UI != UE; ++UI) {
- if (*UI != TheUse)
- return false;
- }
- return true;
- }
- /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
- /// dead PHI node, due to being a def-use chain of single-use nodes that
- /// either forms a cycle or is terminated by a trivially dead instruction,
- /// delete it. If that makes any of its operands trivially dead, delete them
- /// too, recursively. Return true if a change was made.
- bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
- const TargetLibraryInfo *TLI,
- llvm::MemorySSAUpdater *MSSAU) {
- SmallPtrSet<Instruction*, 4> Visited;
- for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
- I = cast<Instruction>(*I->user_begin())) {
- if (I->use_empty())
- return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
- // If we find an instruction more than once, we're on a cycle that
- // won't prove fruitful.
- if (!Visited.insert(I).second) {
- // Break the cycle and delete the instruction and its operands.
- I->replaceAllUsesWith(PoisonValue::get(I->getType()));
- (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
- return true;
- }
- }
- return false;
- }
- static bool
- simplifyAndDCEInstruction(Instruction *I,
- SmallSetVector<Instruction *, 16> &WorkList,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- if (isInstructionTriviallyDead(I, TLI)) {
- salvageDebugInfo(*I);
- // Null out all of the instruction's operands to see if any operand becomes
- // dead as we go.
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Value *OpV = I->getOperand(i);
- I->setOperand(i, nullptr);
- if (!OpV->use_empty() || I == OpV)
- continue;
- // If the operand is an instruction that became dead as we nulled out the
- // operand, and if it is 'trivially' dead, delete it in a future loop
- // iteration.
- if (Instruction *OpI = dyn_cast<Instruction>(OpV))
- if (isInstructionTriviallyDead(OpI, TLI))
- WorkList.insert(OpI);
- }
- I->eraseFromParent();
- return true;
- }
- if (Value *SimpleV = simplifyInstruction(I, DL)) {
- // Add the users to the worklist. CAREFUL: an instruction can use itself,
- // in the case of a phi node.
- for (User *U : I->users()) {
- if (U != I) {
- WorkList.insert(cast<Instruction>(U));
- }
- }
- // Replace the instruction with its simplified value.
- bool Changed = false;
- if (!I->use_empty()) {
- I->replaceAllUsesWith(SimpleV);
- Changed = true;
- }
- if (isInstructionTriviallyDead(I, TLI)) {
- I->eraseFromParent();
- Changed = true;
- }
- return Changed;
- }
- return false;
- }
- /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
- /// simplify any instructions in it and recursively delete dead instructions.
- ///
- /// This returns true if it changed the code, note that it can delete
- /// instructions in other blocks as well in this block.
- bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
- const TargetLibraryInfo *TLI) {
- bool MadeChange = false;
- const DataLayout &DL = BB->getModule()->getDataLayout();
- #ifndef NDEBUG
- // In debug builds, ensure that the terminator of the block is never replaced
- // or deleted by these simplifications. The idea of simplification is that it
- // cannot introduce new instructions, and there is no way to replace the
- // terminator of a block without introducing a new instruction.
- AssertingVH<Instruction> TerminatorVH(&BB->back());
- #endif
- SmallSetVector<Instruction *, 16> WorkList;
- // Iterate over the original function, only adding insts to the worklist
- // if they actually need to be revisited. This avoids having to pre-init
- // the worklist with the entire function's worth of instructions.
- for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
- BI != E;) {
- assert(!BI->isTerminator());
- Instruction *I = &*BI;
- ++BI;
- // We're visiting this instruction now, so make sure it's not in the
- // worklist from an earlier visit.
- if (!WorkList.count(I))
- MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
- }
- while (!WorkList.empty()) {
- Instruction *I = WorkList.pop_back_val();
- MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Control Flow Graph Restructuring.
- //
- void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
- DomTreeUpdater *DTU) {
- // If BB has single-entry PHI nodes, fold them.
- while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
- Value *NewVal = PN->getIncomingValue(0);
- // Replace self referencing PHI with poison, it must be dead.
- if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
- PN->replaceAllUsesWith(NewVal);
- PN->eraseFromParent();
- }
- BasicBlock *PredBB = DestBB->getSinglePredecessor();
- assert(PredBB && "Block doesn't have a single predecessor!");
- bool ReplaceEntryBB = PredBB->isEntryBlock();
- // DTU updates: Collect all the edges that enter
- // PredBB. These dominator edges will be redirected to DestBB.
- SmallVector<DominatorTree::UpdateType, 32> Updates;
- if (DTU) {
- // To avoid processing the same predecessor more than once.
- SmallPtrSet<BasicBlock *, 2> SeenPreds;
- Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
- for (BasicBlock *PredOfPredBB : predecessors(PredBB))
- // This predecessor of PredBB may already have DestBB as a successor.
- if (PredOfPredBB != PredBB)
- if (SeenPreds.insert(PredOfPredBB).second)
- Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
- SeenPreds.clear();
- for (BasicBlock *PredOfPredBB : predecessors(PredBB))
- if (SeenPreds.insert(PredOfPredBB).second)
- Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
- Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
- }
- // Zap anything that took the address of DestBB. Not doing this will give the
- // address an invalid value.
- if (DestBB->hasAddressTaken()) {
- BlockAddress *BA = BlockAddress::get(DestBB);
- Constant *Replacement =
- ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
- BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
- BA->getType()));
- BA->destroyConstant();
- }
- // Anything that branched to PredBB now branches to DestBB.
- PredBB->replaceAllUsesWith(DestBB);
- // Splice all the instructions from PredBB to DestBB.
- PredBB->getTerminator()->eraseFromParent();
- DestBB->splice(DestBB->begin(), PredBB);
- new UnreachableInst(PredBB->getContext(), PredBB);
- // If the PredBB is the entry block of the function, move DestBB up to
- // become the entry block after we erase PredBB.
- if (ReplaceEntryBB)
- DestBB->moveAfter(PredBB);
- if (DTU) {
- assert(PredBB->size() == 1 &&
- isa<UnreachableInst>(PredBB->getTerminator()) &&
- "The successor list of PredBB isn't empty before "
- "applying corresponding DTU updates.");
- DTU->applyUpdatesPermissive(Updates);
- DTU->deleteBB(PredBB);
- // Recalculation of DomTree is needed when updating a forward DomTree and
- // the Entry BB is replaced.
- if (ReplaceEntryBB && DTU->hasDomTree()) {
- // The entry block was removed and there is no external interface for
- // the dominator tree to be notified of this change. In this corner-case
- // we recalculate the entire tree.
- DTU->recalculate(*(DestBB->getParent()));
- }
- }
- else {
- PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
- }
- }
- /// Return true if we can choose one of these values to use in place of the
- /// other. Note that we will always choose the non-undef value to keep.
- static bool CanMergeValues(Value *First, Value *Second) {
- return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
- }
- /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
- /// branch to Succ, into Succ.
- ///
- /// Assumption: Succ is the single successor for BB.
- static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
- assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
- LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
- << Succ->getName() << "\n");
- // Shortcut, if there is only a single predecessor it must be BB and merging
- // is always safe
- if (Succ->getSinglePredecessor()) return true;
- // Make a list of the predecessors of BB
- SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
- // Look at all the phi nodes in Succ, to see if they present a conflict when
- // merging these blocks
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // If the incoming value from BB is again a PHINode in
- // BB which has the same incoming value for *PI as PN does, we can
- // merge the phi nodes and then the blocks can still be merged
- PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
- if (BBPN && BBPN->getParent() == BB) {
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
- PN->getIncomingValue(PI))) {
- LLVM_DEBUG(dbgs()
- << "Can't fold, phi node " << PN->getName() << " in "
- << Succ->getName() << " is conflicting with "
- << BBPN->getName() << " with regard to common predecessor "
- << IBB->getName() << "\n");
- return false;
- }
- }
- } else {
- Value* Val = PN->getIncomingValueForBlock(BB);
- for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
- // See if the incoming value for the common predecessor is equal to the
- // one for BB, in which case this phi node will not prevent the merging
- // of the block.
- BasicBlock *IBB = PN->getIncomingBlock(PI);
- if (BBPreds.count(IBB) &&
- !CanMergeValues(Val, PN->getIncomingValue(PI))) {
- LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
- << " in " << Succ->getName()
- << " is conflicting with regard to common "
- << "predecessor " << IBB->getName() << "\n");
- return false;
- }
- }
- }
- }
- return true;
- }
- using PredBlockVector = SmallVector<BasicBlock *, 16>;
- using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
- /// Determines the value to use as the phi node input for a block.
- ///
- /// Select between \p OldVal any value that we know flows from \p BB
- /// to a particular phi on the basis of which one (if either) is not
- /// undef. Update IncomingValues based on the selected value.
- ///
- /// \param OldVal The value we are considering selecting.
- /// \param BB The block that the value flows in from.
- /// \param IncomingValues A map from block-to-value for other phi inputs
- /// that we have examined.
- ///
- /// \returns the selected value.
- static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
- IncomingValueMap &IncomingValues) {
- if (!isa<UndefValue>(OldVal)) {
- assert((!IncomingValues.count(BB) ||
- IncomingValues.find(BB)->second == OldVal) &&
- "Expected OldVal to match incoming value from BB!");
- IncomingValues.insert(std::make_pair(BB, OldVal));
- return OldVal;
- }
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- if (It != IncomingValues.end()) return It->second;
- return OldVal;
- }
- /// Create a map from block to value for the operands of a
- /// given phi.
- ///
- /// Create a map from block to value for each non-undef value flowing
- /// into \p PN.
- ///
- /// \param PN The phi we are collecting the map for.
- /// \param IncomingValues [out] The map from block to value for this phi.
- static void gatherIncomingValuesToPhi(PHINode *PN,
- IncomingValueMap &IncomingValues) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *BB = PN->getIncomingBlock(i);
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V))
- IncomingValues.insert(std::make_pair(BB, V));
- }
- }
- /// Replace the incoming undef values to a phi with the values
- /// from a block-to-value map.
- ///
- /// \param PN The phi we are replacing the undefs in.
- /// \param IncomingValues A map from block to value.
- static void replaceUndefValuesInPhi(PHINode *PN,
- const IncomingValueMap &IncomingValues) {
- SmallVector<unsigned> TrueUndefOps;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (!isa<UndefValue>(V)) continue;
- BasicBlock *BB = PN->getIncomingBlock(i);
- IncomingValueMap::const_iterator It = IncomingValues.find(BB);
- // Keep track of undef/poison incoming values. Those must match, so we fix
- // them up below if needed.
- // Note: this is conservatively correct, but we could try harder and group
- // the undef values per incoming basic block.
- if (It == IncomingValues.end()) {
- TrueUndefOps.push_back(i);
- continue;
- }
- // There is a defined value for this incoming block, so map this undef
- // incoming value to the defined value.
- PN->setIncomingValue(i, It->second);
- }
- // If there are both undef and poison values incoming, then convert those
- // values to undef. It is invalid to have different values for the same
- // incoming block.
- unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
- return isa<PoisonValue>(PN->getIncomingValue(i));
- });
- if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
- for (unsigned i : TrueUndefOps)
- PN->setIncomingValue(i, UndefValue::get(PN->getType()));
- }
- }
- /// Replace a value flowing from a block to a phi with
- /// potentially multiple instances of that value flowing from the
- /// block's predecessors to the phi.
- ///
- /// \param BB The block with the value flowing into the phi.
- /// \param BBPreds The predecessors of BB.
- /// \param PN The phi that we are updating.
- static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
- const PredBlockVector &BBPreds,
- PHINode *PN) {
- Value *OldVal = PN->removeIncomingValue(BB, false);
- assert(OldVal && "No entry in PHI for Pred BB!");
- IncomingValueMap IncomingValues;
- // We are merging two blocks - BB, and the block containing PN - and
- // as a result we need to redirect edges from the predecessors of BB
- // to go to the block containing PN, and update PN
- // accordingly. Since we allow merging blocks in the case where the
- // predecessor and successor blocks both share some predecessors,
- // and where some of those common predecessors might have undef
- // values flowing into PN, we want to rewrite those values to be
- // consistent with the non-undef values.
- gatherIncomingValuesToPhi(PN, IncomingValues);
- // If this incoming value is one of the PHI nodes in BB, the new entries
- // in the PHI node are the entries from the old PHI.
- if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
- PHINode *OldValPN = cast<PHINode>(OldVal);
- for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
- // Note that, since we are merging phi nodes and BB and Succ might
- // have common predecessors, we could end up with a phi node with
- // identical incoming branches. This will be cleaned up later (and
- // will trigger asserts if we try to clean it up now, without also
- // simplifying the corresponding conditional branch).
- BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
- Value *PredVal = OldValPN->getIncomingValue(i);
- Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- } else {
- for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
- // Update existing incoming values in PN for this
- // predecessor of BB.
- BasicBlock *PredBB = BBPreds[i];
- Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
- IncomingValues);
- // And add a new incoming value for this predecessor for the
- // newly retargeted branch.
- PN->addIncoming(Selected, PredBB);
- }
- }
- replaceUndefValuesInPhi(PN, IncomingValues);
- }
- bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
- DomTreeUpdater *DTU) {
- assert(BB != &BB->getParent()->getEntryBlock() &&
- "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
- // We can't eliminate infinite loops.
- BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
- if (BB == Succ) return false;
- // Check to see if merging these blocks would cause conflicts for any of the
- // phi nodes in BB or Succ. If not, we can safely merge.
- if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
- // Check for cases where Succ has multiple predecessors and a PHI node in BB
- // has uses which will not disappear when the PHI nodes are merged. It is
- // possible to handle such cases, but difficult: it requires checking whether
- // BB dominates Succ, which is non-trivial to calculate in the case where
- // Succ has multiple predecessors. Also, it requires checking whether
- // constructing the necessary self-referential PHI node doesn't introduce any
- // conflicts; this isn't too difficult, but the previous code for doing this
- // was incorrect.
- //
- // Note that if this check finds a live use, BB dominates Succ, so BB is
- // something like a loop pre-header (or rarely, a part of an irreducible CFG);
- // folding the branch isn't profitable in that case anyway.
- if (!Succ->getSinglePredecessor()) {
- BasicBlock::iterator BBI = BB->begin();
- while (isa<PHINode>(*BBI)) {
- for (Use &U : BBI->uses()) {
- if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
- if (PN->getIncomingBlock(U) != BB)
- return false;
- } else {
- return false;
- }
- }
- ++BBI;
- }
- }
- // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
- // metadata.
- //
- // FIXME: This is a stop-gap solution to preserve inner-loop metadata given
- // current status (that loop metadata is implemented as metadata attached to
- // the branch instruction in the loop latch block). To quote from review
- // comments, "the current representation of loop metadata (using a loop latch
- // terminator attachment) is known to be fundamentally broken. Loop latches
- // are not uniquely associated with loops (both in that a latch can be part of
- // multiple loops and a loop may have multiple latches). Loop headers are. The
- // solution to this problem is also known: Add support for basic block
- // metadata, and attach loop metadata to the loop header."
- //
- // Why bail out:
- // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
- // the latch for inner-loop (see reason below), so bail out to prerserve
- // inner-loop metadata rather than eliminating 'BB' and attaching its metadata
- // to this inner-loop.
- // - The reason we believe 'BB' and 'BB->Pred' have different inner-most
- // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
- // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
- // one self-looping basic block, which is contradictory with the assumption.
- //
- // To illustrate how inner-loop metadata is dropped:
- //
- // CFG Before
- //
- // BB is while.cond.exit, attached with loop metdata md2.
- // BB->Pred is for.body, attached with loop metadata md1.
- //
- // entry
- // |
- // v
- // ---> while.cond -------------> while.end
- // | |
- // | v
- // | while.body
- // | |
- // | v
- // | for.body <---- (md1)
- // | | |______|
- // | v
- // | while.cond.exit (md2)
- // | |
- // |_______|
- //
- // CFG After
- //
- // while.cond1 is the merge of while.cond.exit and while.cond above.
- // for.body is attached with md2, and md1 is dropped.
- // If LoopSimplify runs later (as a part of loop pass), it could create
- // dedicated exits for inner-loop (essentially adding `while.cond.exit`
- // back), but won't it won't see 'md1' nor restore it for the inner-loop.
- //
- // entry
- // |
- // v
- // ---> while.cond1 -------------> while.end
- // | |
- // | v
- // | while.body
- // | |
- // | v
- // | for.body <---- (md2)
- // |_______| |______|
- if (Instruction *TI = BB->getTerminator())
- if (TI->hasMetadata(LLVMContext::MD_loop))
- for (BasicBlock *Pred : predecessors(BB))
- if (Instruction *PredTI = Pred->getTerminator())
- if (PredTI->hasMetadata(LLVMContext::MD_loop))
- return false;
- LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
- SmallVector<DominatorTree::UpdateType, 32> Updates;
- if (DTU) {
- // To avoid processing the same predecessor more than once.
- SmallPtrSet<BasicBlock *, 8> SeenPreds;
- // All predecessors of BB will be moved to Succ.
- SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
- Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
- for (auto *PredOfBB : predecessors(BB))
- // This predecessor of BB may already have Succ as a successor.
- if (!PredsOfSucc.contains(PredOfBB))
- if (SeenPreds.insert(PredOfBB).second)
- Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
- SeenPreds.clear();
- for (auto *PredOfBB : predecessors(BB))
- if (SeenPreds.insert(PredOfBB).second)
- Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
- Updates.push_back({DominatorTree::Delete, BB, Succ});
- }
- if (isa<PHINode>(Succ->begin())) {
- // If there is more than one pred of succ, and there are PHI nodes in
- // the successor, then we need to add incoming edges for the PHI nodes
- //
- const PredBlockVector BBPreds(predecessors(BB));
- // Loop over all of the PHI nodes in the successor of BB.
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
- }
- }
- if (Succ->getSinglePredecessor()) {
- // BB is the only predecessor of Succ, so Succ will end up with exactly
- // the same predecessors BB had.
- // Copy over any phi, debug or lifetime instruction.
- BB->getTerminator()->eraseFromParent();
- Succ->splice(Succ->getFirstNonPHI()->getIterator(), BB);
- } else {
- while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
- // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
- assert(PN->use_empty() && "There shouldn't be any uses here!");
- PN->eraseFromParent();
- }
- }
- // If the unconditional branch we replaced contains llvm.loop metadata, we
- // add the metadata to the branch instructions in the predecessors.
- unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
- Instruction *TI = BB->getTerminator();
- if (TI)
- if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
- for (BasicBlock *Pred : predecessors(BB))
- Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
- // Everything that jumped to BB now goes to Succ.
- BB->replaceAllUsesWith(Succ);
- if (!Succ->hasName()) Succ->takeName(BB);
- // Clear the successor list of BB to match updates applying to DTU later.
- if (BB->getTerminator())
- BB->back().eraseFromParent();
- new UnreachableInst(BB->getContext(), BB);
- assert(succ_empty(BB) && "The successor list of BB isn't empty before "
- "applying corresponding DTU updates.");
- if (DTU)
- DTU->applyUpdates(Updates);
- DeleteDeadBlock(BB, DTU);
- return true;
- }
- static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
- // This implementation doesn't currently consider undef operands
- // specially. Theoretically, two phis which are identical except for
- // one having an undef where the other doesn't could be collapsed.
- bool Changed = false;
- // Examine each PHI.
- // Note that increment of I must *NOT* be in the iteration_expression, since
- // we don't want to immediately advance when we restart from the beginning.
- for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
- ++I;
- // Is there an identical PHI node in this basic block?
- // Note that we only look in the upper square's triangle,
- // we already checked that the lower triangle PHI's aren't identical.
- for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
- if (!DuplicatePN->isIdenticalToWhenDefined(PN))
- continue;
- // A duplicate. Replace this PHI with the base PHI.
- ++NumPHICSEs;
- DuplicatePN->replaceAllUsesWith(PN);
- DuplicatePN->eraseFromParent();
- Changed = true;
- // The RAUW can change PHIs that we already visited.
- I = BB->begin();
- break; // Start over from the beginning.
- }
- }
- return Changed;
- }
- static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
- // This implementation doesn't currently consider undef operands
- // specially. Theoretically, two phis which are identical except for
- // one having an undef where the other doesn't could be collapsed.
- struct PHIDenseMapInfo {
- static PHINode *getEmptyKey() {
- return DenseMapInfo<PHINode *>::getEmptyKey();
- }
- static PHINode *getTombstoneKey() {
- return DenseMapInfo<PHINode *>::getTombstoneKey();
- }
- static bool isSentinel(PHINode *PN) {
- return PN == getEmptyKey() || PN == getTombstoneKey();
- }
- // WARNING: this logic must be kept in sync with
- // Instruction::isIdenticalToWhenDefined()!
- static unsigned getHashValueImpl(PHINode *PN) {
- // Compute a hash value on the operands. Instcombine will likely have
- // sorted them, which helps expose duplicates, but we have to check all
- // the operands to be safe in case instcombine hasn't run.
- return static_cast<unsigned>(hash_combine(
- hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
- hash_combine_range(PN->block_begin(), PN->block_end())));
- }
- static unsigned getHashValue(PHINode *PN) {
- #ifndef NDEBUG
- // If -phicse-debug-hash was specified, return a constant -- this
- // will force all hashing to collide, so we'll exhaustively search
- // the table for a match, and the assertion in isEqual will fire if
- // there's a bug causing equal keys to hash differently.
- if (PHICSEDebugHash)
- return 0;
- #endif
- return getHashValueImpl(PN);
- }
- static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
- if (isSentinel(LHS) || isSentinel(RHS))
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- static bool isEqual(PHINode *LHS, PHINode *RHS) {
- // These comparisons are nontrivial, so assert that equality implies
- // hash equality (DenseMap demands this as an invariant).
- bool Result = isEqualImpl(LHS, RHS);
- assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
- getHashValueImpl(LHS) == getHashValueImpl(RHS));
- return Result;
- }
- };
- // Set of unique PHINodes.
- DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
- PHISet.reserve(4 * PHICSENumPHISmallSize);
- // Examine each PHI.
- bool Changed = false;
- for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
- auto Inserted = PHISet.insert(PN);
- if (!Inserted.second) {
- // A duplicate. Replace this PHI with its duplicate.
- ++NumPHICSEs;
- PN->replaceAllUsesWith(*Inserted.first);
- PN->eraseFromParent();
- Changed = true;
- // The RAUW can change PHIs that we already visited. Start over from the
- // beginning.
- PHISet.clear();
- I = BB->begin();
- }
- }
- return Changed;
- }
- bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
- if (
- #ifndef NDEBUG
- !PHICSEDebugHash &&
- #endif
- hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
- return EliminateDuplicatePHINodesNaiveImpl(BB);
- return EliminateDuplicatePHINodesSetBasedImpl(BB);
- }
- /// If the specified pointer points to an object that we control, try to modify
- /// the object's alignment to PrefAlign. Returns a minimum known alignment of
- /// the value after the operation, which may be lower than PrefAlign.
- ///
- /// Increating value alignment isn't often possible though. If alignment is
- /// important, a more reliable approach is to simply align all global variables
- /// and allocation instructions to their preferred alignment from the beginning.
- static Align tryEnforceAlignment(Value *V, Align PrefAlign,
- const DataLayout &DL) {
- V = V->stripPointerCasts();
- if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- // TODO: Ideally, this function would not be called if PrefAlign is smaller
- // than the current alignment, as the known bits calculation should have
- // already taken it into account. However, this is not always the case,
- // as computeKnownBits() has a depth limit, while stripPointerCasts()
- // doesn't.
- Align CurrentAlign = AI->getAlign();
- if (PrefAlign <= CurrentAlign)
- return CurrentAlign;
- // If the preferred alignment is greater than the natural stack alignment
- // then don't round up. This avoids dynamic stack realignment.
- if (DL.exceedsNaturalStackAlignment(PrefAlign))
- return CurrentAlign;
- AI->setAlignment(PrefAlign);
- return PrefAlign;
- }
- if (auto *GO = dyn_cast<GlobalObject>(V)) {
- // TODO: as above, this shouldn't be necessary.
- Align CurrentAlign = GO->getPointerAlignment(DL);
- if (PrefAlign <= CurrentAlign)
- return CurrentAlign;
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global. If the memory we set aside for the global may not be the
- // memory used by the final program then it is impossible for us to reliably
- // enforce the preferred alignment.
- if (!GO->canIncreaseAlignment())
- return CurrentAlign;
- GO->setAlignment(PrefAlign);
- return PrefAlign;
- }
- return Align(1);
- }
- Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
- const DataLayout &DL,
- const Instruction *CxtI,
- AssumptionCache *AC,
- const DominatorTree *DT) {
- assert(V->getType()->isPointerTy() &&
- "getOrEnforceKnownAlignment expects a pointer!");
- KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
- unsigned TrailZ = Known.countMinTrailingZeros();
- // Avoid trouble with ridiculously large TrailZ values, such as
- // those computed from a null pointer.
- // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
- TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
- Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
- if (PrefAlign && *PrefAlign > Alignment)
- Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
- // We don't need to make any adjustment.
- return Alignment;
- }
- ///===---------------------------------------------------------------------===//
- /// Dbg Intrinsic utilities
- ///
- /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
- static bool PhiHasDebugValue(DILocalVariable *DIVar,
- DIExpression *DIExpr,
- PHINode *APN) {
- // Since we can't guarantee that the original dbg.declare intrinsic
- // is removed by LowerDbgDeclare(), we need to make sure that we are
- // not inserting the same dbg.value intrinsic over and over.
- SmallVector<DbgValueInst *, 1> DbgValues;
- findDbgValues(DbgValues, APN);
- for (auto *DVI : DbgValues) {
- assert(is_contained(DVI->getValues(), APN));
- if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
- return true;
- }
- return false;
- }
- /// Check if the alloc size of \p ValTy is large enough to cover the variable
- /// (or fragment of the variable) described by \p DII.
- ///
- /// This is primarily intended as a helper for the different
- /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
- /// converted describes an alloca'd variable, so we need to use the
- /// alloc size of the value when doing the comparison. E.g. an i1 value will be
- /// identified as covering an n-bit fragment, if the store size of i1 is at
- /// least n bits.
- static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
- const DataLayout &DL = DII->getModule()->getDataLayout();
- TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
- if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
- assert(!ValueSize.isScalable() &&
- "Fragments don't work on scalable types.");
- return ValueSize.getFixedValue() >= *FragmentSize;
- }
- // We can't always calculate the size of the DI variable (e.g. if it is a
- // VLA). Try to use the size of the alloca that the dbg intrinsic describes
- // intead.
- if (DII->isAddressOfVariable()) {
- // DII should have exactly 1 location when it is an address.
- assert(DII->getNumVariableLocationOps() == 1 &&
- "address of variable must have exactly 1 location operand.");
- if (auto *AI =
- dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
- if (std::optional<TypeSize> FragmentSize =
- AI->getAllocationSizeInBits(DL)) {
- return TypeSize::isKnownGE(ValueSize, *FragmentSize);
- }
- }
- }
- // Could not determine size of variable. Conservatively return false.
- return false;
- }
- /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
- /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
- StoreInst *SI, DIBuilder &Builder) {
- assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
- auto *DIVar = DII->getVariable();
- assert(DIVar && "Missing variable");
- auto *DIExpr = DII->getExpression();
- Value *DV = SI->getValueOperand();
- DebugLoc NewLoc = getDebugValueLoc(DII);
- if (!valueCoversEntireFragment(DV->getType(), DII)) {
- // FIXME: If storing to a part of the variable described by the dbg.declare,
- // then we want to insert a dbg.value for the corresponding fragment.
- LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
- << *DII << '\n');
- // For now, when there is a store to parts of the variable (but we do not
- // know which part) we insert an dbg.value intrinsic to indicate that we
- // know nothing about the variable's content.
- DV = UndefValue::get(DV->getType());
- Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
- return;
- }
- Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
- }
- /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
- /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
- LoadInst *LI, DIBuilder &Builder) {
- auto *DIVar = DII->getVariable();
- auto *DIExpr = DII->getExpression();
- assert(DIVar && "Missing variable");
- if (!valueCoversEntireFragment(LI->getType(), DII)) {
- // FIXME: If only referring to a part of the variable described by the
- // dbg.declare, then we want to insert a dbg.value for the corresponding
- // fragment.
- LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
- << *DII << '\n');
- return;
- }
- DebugLoc NewLoc = getDebugValueLoc(DII);
- // We are now tracking the loaded value instead of the address. In the
- // future if multi-location support is added to the IR, it might be
- // preferable to keep tracking both the loaded value and the original
- // address in case the alloca can not be elided.
- Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
- LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
- DbgValue->insertAfter(LI);
- }
- /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
- /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
- void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
- PHINode *APN, DIBuilder &Builder) {
- auto *DIVar = DII->getVariable();
- auto *DIExpr = DII->getExpression();
- assert(DIVar && "Missing variable");
- if (PhiHasDebugValue(DIVar, DIExpr, APN))
- return;
- if (!valueCoversEntireFragment(APN->getType(), DII)) {
- // FIXME: If only referring to a part of the variable described by the
- // dbg.declare, then we want to insert a dbg.value for the corresponding
- // fragment.
- LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
- << *DII << '\n');
- return;
- }
- BasicBlock *BB = APN->getParent();
- auto InsertionPt = BB->getFirstInsertionPt();
- DebugLoc NewLoc = getDebugValueLoc(DII);
- // The block may be a catchswitch block, which does not have a valid
- // insertion point.
- // FIXME: Insert dbg.value markers in the successors when appropriate.
- if (InsertionPt != BB->end())
- Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
- }
- /// Determine whether this alloca is either a VLA or an array.
- static bool isArray(AllocaInst *AI) {
- return AI->isArrayAllocation() ||
- (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
- }
- /// Determine whether this alloca is a structure.
- static bool isStructure(AllocaInst *AI) {
- return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
- }
- /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
- /// of llvm.dbg.value intrinsics.
- bool llvm::LowerDbgDeclare(Function &F) {
- bool Changed = false;
- DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
- SmallVector<DbgDeclareInst *, 4> Dbgs;
- for (auto &FI : F)
- for (Instruction &BI : FI)
- if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
- Dbgs.push_back(DDI);
- if (Dbgs.empty())
- return Changed;
- for (auto &I : Dbgs) {
- DbgDeclareInst *DDI = I;
- AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
- // If this is an alloca for a scalar variable, insert a dbg.value
- // at each load and store to the alloca and erase the dbg.declare.
- // The dbg.values allow tracking a variable even if it is not
- // stored on the stack, while the dbg.declare can only describe
- // the stack slot (and at a lexical-scope granularity). Later
- // passes will attempt to elide the stack slot.
- if (!AI || isArray(AI) || isStructure(AI))
- continue;
- // A volatile load/store means that the alloca can't be elided anyway.
- if (llvm::any_of(AI->users(), [](User *U) -> bool {
- if (LoadInst *LI = dyn_cast<LoadInst>(U))
- return LI->isVolatile();
- if (StoreInst *SI = dyn_cast<StoreInst>(U))
- return SI->isVolatile();
- return false;
- }))
- continue;
- SmallVector<const Value *, 8> WorkList;
- WorkList.push_back(AI);
- while (!WorkList.empty()) {
- const Value *V = WorkList.pop_back_val();
- for (const auto &AIUse : V->uses()) {
- User *U = AIUse.getUser();
- if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (AIUse.getOperandNo() == 1)
- ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
- } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
- } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
- // This is a call by-value or some other instruction that takes a
- // pointer to the variable. Insert a *value* intrinsic that describes
- // the variable by dereferencing the alloca.
- if (!CI->isLifetimeStartOrEnd()) {
- DebugLoc NewLoc = getDebugValueLoc(DDI);
- auto *DerefExpr =
- DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
- DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
- NewLoc, CI);
- }
- } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
- if (BI->getType()->isPointerTy())
- WorkList.push_back(BI);
- }
- }
- }
- DDI->eraseFromParent();
- Changed = true;
- }
- if (Changed)
- for (BasicBlock &BB : F)
- RemoveRedundantDbgInstrs(&BB);
- return Changed;
- }
- /// Propagate dbg.value intrinsics through the newly inserted PHIs.
- void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
- SmallVectorImpl<PHINode *> &InsertedPHIs) {
- assert(BB && "No BasicBlock to clone dbg.value(s) from.");
- if (InsertedPHIs.size() == 0)
- return;
- // Map existing PHI nodes to their dbg.values.
- ValueToValueMapTy DbgValueMap;
- for (auto &I : *BB) {
- if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
- for (Value *V : DbgII->location_ops())
- if (auto *Loc = dyn_cast_or_null<PHINode>(V))
- DbgValueMap.insert({Loc, DbgII});
- }
- }
- if (DbgValueMap.size() == 0)
- return;
- // Map a pair of the destination BB and old dbg.value to the new dbg.value,
- // so that if a dbg.value is being rewritten to use more than one of the
- // inserted PHIs in the same destination BB, we can update the same dbg.value
- // with all the new PHIs instead of creating one copy for each.
- MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
- DbgVariableIntrinsic *>
- NewDbgValueMap;
- // Then iterate through the new PHIs and look to see if they use one of the
- // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
- // propagate the info through the new PHI. If we use more than one new PHI in
- // a single destination BB with the same old dbg.value, merge the updates so
- // that we get a single new dbg.value with all the new PHIs.
- for (auto *PHI : InsertedPHIs) {
- BasicBlock *Parent = PHI->getParent();
- // Avoid inserting an intrinsic into an EH block.
- if (Parent->getFirstNonPHI()->isEHPad())
- continue;
- for (auto *VI : PHI->operand_values()) {
- auto V = DbgValueMap.find(VI);
- if (V != DbgValueMap.end()) {
- auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
- auto NewDI = NewDbgValueMap.find({Parent, DbgII});
- if (NewDI == NewDbgValueMap.end()) {
- auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
- NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
- }
- DbgVariableIntrinsic *NewDbgII = NewDI->second;
- // If PHI contains VI as an operand more than once, we may
- // replaced it in NewDbgII; confirm that it is present.
- if (is_contained(NewDbgII->location_ops(), VI))
- NewDbgII->replaceVariableLocationOp(VI, PHI);
- }
- }
- }
- // Insert thew new dbg.values into their destination blocks.
- for (auto DI : NewDbgValueMap) {
- BasicBlock *Parent = DI.first.first;
- auto *NewDbgII = DI.second;
- auto InsertionPt = Parent->getFirstInsertionPt();
- assert(InsertionPt != Parent->end() && "Ill-formed basic block");
- NewDbgII->insertBefore(&*InsertionPt);
- }
- }
- bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
- DIBuilder &Builder, uint8_t DIExprFlags,
- int Offset) {
- auto DbgAddrs = FindDbgAddrUses(Address);
- for (DbgVariableIntrinsic *DII : DbgAddrs) {
- const DebugLoc &Loc = DII->getDebugLoc();
- auto *DIVar = DII->getVariable();
- auto *DIExpr = DII->getExpression();
- assert(DIVar && "Missing variable");
- DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
- // Insert llvm.dbg.declare immediately before DII, and remove old
- // llvm.dbg.declare.
- Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
- DII->eraseFromParent();
- }
- return !DbgAddrs.empty();
- }
- static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
- DIBuilder &Builder, int Offset) {
- const DebugLoc &Loc = DVI->getDebugLoc();
- auto *DIVar = DVI->getVariable();
- auto *DIExpr = DVI->getExpression();
- assert(DIVar && "Missing variable");
- // This is an alloca-based llvm.dbg.value. The first thing it should do with
- // the alloca pointer is dereference it. Otherwise we don't know how to handle
- // it and give up.
- if (!DIExpr || DIExpr->getNumElements() < 1 ||
- DIExpr->getElement(0) != dwarf::DW_OP_deref)
- return;
- // Insert the offset before the first deref.
- // We could just change the offset argument of dbg.value, but it's unsigned...
- if (Offset)
- DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
- Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
- DVI->eraseFromParent();
- }
- void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
- DIBuilder &Builder, int Offset) {
- if (auto *L = LocalAsMetadata::getIfExists(AI))
- if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
- for (Use &U : llvm::make_early_inc_range(MDV->uses()))
- if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
- replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
- }
- /// Where possible to salvage debug information for \p I do so.
- /// If not possible mark undef.
- void llvm::salvageDebugInfo(Instruction &I) {
- SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
- findDbgUsers(DbgUsers, &I);
- salvageDebugInfoForDbgValues(I, DbgUsers);
- }
- /// Salvage the address component of \p DAI.
- static void salvageDbgAssignAddress(DbgAssignIntrinsic *DAI) {
- Instruction *I = dyn_cast<Instruction>(DAI->getAddress());
- // Only instructions can be salvaged at the moment.
- if (!I)
- return;
- assert(!DAI->getAddressExpression()->getFragmentInfo().has_value() &&
- "address-expression shouldn't have fragment info");
- // The address component of a dbg.assign cannot be variadic.
- uint64_t CurrentLocOps = 0;
- SmallVector<Value *, 4> AdditionalValues;
- SmallVector<uint64_t, 16> Ops;
- Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
- // Check if the salvage failed.
- if (!NewV)
- return;
- DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
- DAI->getAddressExpression(), Ops, 0, /*StackValue=*/false);
- assert(!SalvagedExpr->getFragmentInfo().has_value() &&
- "address-expression shouldn't have fragment info");
- // Salvage succeeds if no additional values are required.
- if (AdditionalValues.empty()) {
- DAI->setAddress(NewV);
- DAI->setAddressExpression(SalvagedExpr);
- } else {
- DAI->setKillAddress();
- }
- }
- void llvm::salvageDebugInfoForDbgValues(
- Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
- // These are arbitrary chosen limits on the maximum number of values and the
- // maximum size of a debug expression we can salvage up to, used for
- // performance reasons.
- const unsigned MaxDebugArgs = 16;
- const unsigned MaxExpressionSize = 128;
- bool Salvaged = false;
- for (auto *DII : DbgUsers) {
- if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
- if (DAI->getAddress() == &I) {
- salvageDbgAssignAddress(DAI);
- Salvaged = true;
- }
- if (DAI->getValue() != &I)
- continue;
- }
- // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
- // are implicitly pointing out the value as a DWARF memory location
- // description.
- bool StackValue = isa<DbgValueInst>(DII);
- auto DIILocation = DII->location_ops();
- assert(
- is_contained(DIILocation, &I) &&
- "DbgVariableIntrinsic must use salvaged instruction as its location");
- SmallVector<Value *, 4> AdditionalValues;
- // `I` may appear more than once in DII's location ops, and each use of `I`
- // must be updated in the DIExpression and potentially have additional
- // values added; thus we call salvageDebugInfoImpl for each `I` instance in
- // DIILocation.
- Value *Op0 = nullptr;
- DIExpression *SalvagedExpr = DII->getExpression();
- auto LocItr = find(DIILocation, &I);
- while (SalvagedExpr && LocItr != DIILocation.end()) {
- SmallVector<uint64_t, 16> Ops;
- unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
- uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
- Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
- if (!Op0)
- break;
- SalvagedExpr =
- DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
- LocItr = std::find(++LocItr, DIILocation.end(), &I);
- }
- // salvageDebugInfoImpl should fail on examining the first element of
- // DbgUsers, or none of them.
- if (!Op0)
- break;
- DII->replaceVariableLocationOp(&I, Op0);
- bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
- if (AdditionalValues.empty() && IsValidSalvageExpr) {
- DII->setExpression(SalvagedExpr);
- } else if (isa<DbgValueInst>(DII) && !isa<DbgAssignIntrinsic>(DII) &&
- IsValidSalvageExpr &&
- DII->getNumVariableLocationOps() + AdditionalValues.size() <=
- MaxDebugArgs) {
- DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
- } else {
- // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
- // not currently supported in those instructions. Do not salvage using
- // DIArgList for dbg.assign yet. FIXME: support this.
- // Also do not salvage if the resulting DIArgList would contain an
- // unreasonably large number of values.
- DII->setKillLocation();
- }
- LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
- Salvaged = true;
- }
- if (Salvaged)
- return;
- for (auto *DII : DbgUsers)
- DII->setKillLocation();
- }
- Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
- uint64_t CurrentLocOps,
- SmallVectorImpl<uint64_t> &Opcodes,
- SmallVectorImpl<Value *> &AdditionalValues) {
- unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
- // Rewrite a GEP into a DIExpression.
- MapVector<Value *, APInt> VariableOffsets;
- APInt ConstantOffset(BitWidth, 0);
- if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
- return nullptr;
- if (!VariableOffsets.empty() && !CurrentLocOps) {
- Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
- CurrentLocOps = 1;
- }
- for (auto Offset : VariableOffsets) {
- AdditionalValues.push_back(Offset.first);
- assert(Offset.second.isStrictlyPositive() &&
- "Expected strictly positive multiplier for offset.");
- Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
- Offset.second.getZExtValue(), dwarf::DW_OP_mul,
- dwarf::DW_OP_plus});
- }
- DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
- return GEP->getOperand(0);
- }
- uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
- switch (Opcode) {
- case Instruction::Add:
- return dwarf::DW_OP_plus;
- case Instruction::Sub:
- return dwarf::DW_OP_minus;
- case Instruction::Mul:
- return dwarf::DW_OP_mul;
- case Instruction::SDiv:
- return dwarf::DW_OP_div;
- case Instruction::SRem:
- return dwarf::DW_OP_mod;
- case Instruction::Or:
- return dwarf::DW_OP_or;
- case Instruction::And:
- return dwarf::DW_OP_and;
- case Instruction::Xor:
- return dwarf::DW_OP_xor;
- case Instruction::Shl:
- return dwarf::DW_OP_shl;
- case Instruction::LShr:
- return dwarf::DW_OP_shr;
- case Instruction::AShr:
- return dwarf::DW_OP_shra;
- default:
- // TODO: Salvage from each kind of binop we know about.
- return 0;
- }
- }
- Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
- SmallVectorImpl<uint64_t> &Opcodes,
- SmallVectorImpl<Value *> &AdditionalValues) {
- // Handle binary operations with constant integer operands as a special case.
- auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
- // Values wider than 64 bits cannot be represented within a DIExpression.
- if (ConstInt && ConstInt->getBitWidth() > 64)
- return nullptr;
- Instruction::BinaryOps BinOpcode = BI->getOpcode();
- // Push any Constant Int operand onto the expression stack.
- if (ConstInt) {
- uint64_t Val = ConstInt->getSExtValue();
- // Add or Sub Instructions with a constant operand can potentially be
- // simplified.
- if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
- uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
- DIExpression::appendOffset(Opcodes, Offset);
- return BI->getOperand(0);
- }
- Opcodes.append({dwarf::DW_OP_constu, Val});
- } else {
- if (!CurrentLocOps) {
- Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
- CurrentLocOps = 1;
- }
- Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
- AdditionalValues.push_back(BI->getOperand(1));
- }
- // Add salvaged binary operator to expression stack, if it has a valid
- // representation in a DIExpression.
- uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
- if (!DwarfBinOp)
- return nullptr;
- Opcodes.push_back(DwarfBinOp);
- return BI->getOperand(0);
- }
- Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
- SmallVectorImpl<uint64_t> &Ops,
- SmallVectorImpl<Value *> &AdditionalValues) {
- auto &M = *I.getModule();
- auto &DL = M.getDataLayout();
- if (auto *CI = dyn_cast<CastInst>(&I)) {
- Value *FromValue = CI->getOperand(0);
- // No-op casts are irrelevant for debug info.
- if (CI->isNoopCast(DL)) {
- return FromValue;
- }
- Type *Type = CI->getType();
- if (Type->isPointerTy())
- Type = DL.getIntPtrType(Type);
- // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
- if (Type->isVectorTy() ||
- !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
- isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
- return nullptr;
- llvm::Type *FromType = FromValue->getType();
- if (FromType->isPointerTy())
- FromType = DL.getIntPtrType(FromType);
- unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
- unsigned ToTypeBitSize = Type->getScalarSizeInBits();
- auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
- isa<SExtInst>(&I));
- Ops.append(ExtOps.begin(), ExtOps.end());
- return FromValue;
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
- return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
- if (auto *BI = dyn_cast<BinaryOperator>(&I))
- return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
- // *Not* to do: we should not attempt to salvage load instructions,
- // because the validity and lifetime of a dbg.value containing
- // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
- return nullptr;
- }
- /// A replacement for a dbg.value expression.
- using DbgValReplacement = std::optional<DIExpression *>;
- /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
- /// possibly moving/undefing users to prevent use-before-def. Returns true if
- /// changes are made.
- static bool rewriteDebugUsers(
- Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
- function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
- // Find debug users of From.
- SmallVector<DbgVariableIntrinsic *, 1> Users;
- findDbgUsers(Users, &From);
- if (Users.empty())
- return false;
- // Prevent use-before-def of To.
- bool Changed = false;
- SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
- if (isa<Instruction>(&To)) {
- bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
- for (auto *DII : Users) {
- // It's common to see a debug user between From and DomPoint. Move it
- // after DomPoint to preserve the variable update without any reordering.
- if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
- LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
- DII->moveAfter(&DomPoint);
- Changed = true;
- // Users which otherwise aren't dominated by the replacement value must
- // be salvaged or deleted.
- } else if (!DT.dominates(&DomPoint, DII)) {
- UndefOrSalvage.insert(DII);
- }
- }
- }
- // Update debug users without use-before-def risk.
- for (auto *DII : Users) {
- if (UndefOrSalvage.count(DII))
- continue;
- DbgValReplacement DVR = RewriteExpr(*DII);
- if (!DVR)
- continue;
- DII->replaceVariableLocationOp(&From, &To);
- DII->setExpression(*DVR);
- LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
- Changed = true;
- }
- if (!UndefOrSalvage.empty()) {
- // Try to salvage the remaining debug users.
- salvageDebugInfo(From);
- Changed = true;
- }
- return Changed;
- }
- /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
- /// losslessly preserve the bits and semantics of the value. This predicate is
- /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
- ///
- /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
- /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
- /// and also does not allow lossless pointer <-> integer conversions.
- static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
- Type *ToTy) {
- // Trivially compatible types.
- if (FromTy == ToTy)
- return true;
- // Handle compatible pointer <-> integer conversions.
- if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
- bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
- bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
- !DL.isNonIntegralPointerType(ToTy);
- return SameSize && LosslessConversion;
- }
- // TODO: This is not exhaustive.
- return false;
- }
- bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
- Instruction &DomPoint, DominatorTree &DT) {
- // Exit early if From has no debug users.
- if (!From.isUsedByMetadata())
- return false;
- assert(&From != &To && "Can't replace something with itself");
- Type *FromTy = From.getType();
- Type *ToTy = To.getType();
- auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
- return DII.getExpression();
- };
- // Handle no-op conversions.
- Module &M = *From.getModule();
- const DataLayout &DL = M.getDataLayout();
- if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
- return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
- // Handle integer-to-integer widening and narrowing.
- // FIXME: Use DW_OP_convert when it's available everywhere.
- if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
- uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
- uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
- assert(FromBits != ToBits && "Unexpected no-op conversion");
- // When the width of the result grows, assume that a debugger will only
- // access the low `FromBits` bits when inspecting the source variable.
- if (FromBits < ToBits)
- return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
- // The width of the result has shrunk. Use sign/zero extension to describe
- // the source variable's high bits.
- auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
- DILocalVariable *Var = DII.getVariable();
- // Without knowing signedness, sign/zero extension isn't possible.
- auto Signedness = Var->getSignedness();
- if (!Signedness)
- return std::nullopt;
- bool Signed = *Signedness == DIBasicType::Signedness::Signed;
- return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
- Signed);
- };
- return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
- }
- // TODO: Floating-point conversions, vectors.
- return false;
- }
- std::pair<unsigned, unsigned>
- llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
- unsigned NumDeadInst = 0;
- unsigned NumDeadDbgInst = 0;
- // Delete the instructions backwards, as it has a reduced likelihood of
- // having to update as many def-use and use-def chains.
- Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
- while (EndInst != &BB->front()) {
- // Delete the next to last instruction.
- Instruction *Inst = &*--EndInst->getIterator();
- if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
- Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
- if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
- EndInst = Inst;
- continue;
- }
- if (isa<DbgInfoIntrinsic>(Inst))
- ++NumDeadDbgInst;
- else
- ++NumDeadInst;
- Inst->eraseFromParent();
- }
- return {NumDeadInst, NumDeadDbgInst};
- }
- unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
- DomTreeUpdater *DTU,
- MemorySSAUpdater *MSSAU) {
- BasicBlock *BB = I->getParent();
- if (MSSAU)
- MSSAU->changeToUnreachable(I);
- SmallSet<BasicBlock *, 8> UniqueSuccessors;
- // Loop over all of the successors, removing BB's entry from any PHI
- // nodes.
- for (BasicBlock *Successor : successors(BB)) {
- Successor->removePredecessor(BB, PreserveLCSSA);
- if (DTU)
- UniqueSuccessors.insert(Successor);
- }
- auto *UI = new UnreachableInst(I->getContext(), I);
- UI->setDebugLoc(I->getDebugLoc());
- // All instructions after this are dead.
- unsigned NumInstrsRemoved = 0;
- BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
- while (BBI != BBE) {
- if (!BBI->use_empty())
- BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
- BBI++->eraseFromParent();
- ++NumInstrsRemoved;
- }
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- Updates.reserve(UniqueSuccessors.size());
- for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
- Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
- DTU->applyUpdates(Updates);
- }
- return NumInstrsRemoved;
- }
- CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
- SmallVector<Value *, 8> Args(II->args());
- SmallVector<OperandBundleDef, 1> OpBundles;
- II->getOperandBundlesAsDefs(OpBundles);
- CallInst *NewCall = CallInst::Create(II->getFunctionType(),
- II->getCalledOperand(), Args, OpBundles);
- NewCall->setCallingConv(II->getCallingConv());
- NewCall->setAttributes(II->getAttributes());
- NewCall->setDebugLoc(II->getDebugLoc());
- NewCall->copyMetadata(*II);
- // If the invoke had profile metadata, try converting them for CallInst.
- uint64_t TotalWeight;
- if (NewCall->extractProfTotalWeight(TotalWeight)) {
- // Set the total weight if it fits into i32, otherwise reset.
- MDBuilder MDB(NewCall->getContext());
- auto NewWeights = uint32_t(TotalWeight) != TotalWeight
- ? nullptr
- : MDB.createBranchWeights({uint32_t(TotalWeight)});
- NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
- }
- return NewCall;
- }
- // changeToCall - Convert the specified invoke into a normal call.
- CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
- CallInst *NewCall = createCallMatchingInvoke(II);
- NewCall->takeName(II);
- NewCall->insertBefore(II);
- II->replaceAllUsesWith(NewCall);
- // Follow the call by a branch to the normal destination.
- BasicBlock *NormalDestBB = II->getNormalDest();
- BranchInst::Create(NormalDestBB, II);
- // Update PHI nodes in the unwind destination
- BasicBlock *BB = II->getParent();
- BasicBlock *UnwindDestBB = II->getUnwindDest();
- UnwindDestBB->removePredecessor(BB);
- II->eraseFromParent();
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
- return NewCall;
- }
- BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
- BasicBlock *UnwindEdge,
- DomTreeUpdater *DTU) {
- BasicBlock *BB = CI->getParent();
- // Convert this function call into an invoke instruction. First, split the
- // basic block.
- BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
- CI->getName() + ".noexc");
- // Delete the unconditional branch inserted by SplitBlock
- BB->back().eraseFromParent();
- // Create the new invoke instruction.
- SmallVector<Value *, 8> InvokeArgs(CI->args());
- SmallVector<OperandBundleDef, 1> OpBundles;
- CI->getOperandBundlesAsDefs(OpBundles);
- // Note: we're round tripping operand bundles through memory here, and that
- // can potentially be avoided with a cleverer API design that we do not have
- // as of this time.
- InvokeInst *II =
- InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
- UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
- II->setDebugLoc(CI->getDebugLoc());
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
- II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
- // Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakTrackingVH.
- CI->replaceAllUsesWith(II);
- // Delete the original call
- Split->front().eraseFromParent();
- return Split;
- }
- static bool markAliveBlocks(Function &F,
- SmallPtrSetImpl<BasicBlock *> &Reachable,
- DomTreeUpdater *DTU = nullptr) {
- SmallVector<BasicBlock*, 128> Worklist;
- BasicBlock *BB = &F.front();
- Worklist.push_back(BB);
- Reachable.insert(BB);
- bool Changed = false;
- do {
- BB = Worklist.pop_back_val();
- // Do a quick scan of the basic block, turning any obviously unreachable
- // instructions into LLVM unreachable insts. The instruction combining pass
- // canonicalizes unreachable insts into stores to null or undef.
- for (Instruction &I : *BB) {
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- Value *Callee = CI->getCalledOperand();
- // Handle intrinsic calls.
- if (Function *F = dyn_cast<Function>(Callee)) {
- auto IntrinsicID = F->getIntrinsicID();
- // Assumptions that are known to be false are equivalent to
- // unreachable. Also, if the condition is undefined, then we make the
- // choice most beneficial to the optimizer, and choose that to also be
- // unreachable.
- if (IntrinsicID == Intrinsic::assume) {
- if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(CI, false, DTU);
- Changed = true;
- break;
- }
- } else if (IntrinsicID == Intrinsic::experimental_guard) {
- // A call to the guard intrinsic bails out of the current
- // compilation unit if the predicate passed to it is false. If the
- // predicate is a constant false, then we know the guard will bail
- // out of the current compile unconditionally, so all code following
- // it is dead.
- //
- // Note: unlike in llvm.assume, it is not "obviously profitable" for
- // guards to treat `undef` as `false` since a guard on `undef` can
- // still be useful for widening.
- if (match(CI->getArgOperand(0), m_Zero()))
- if (!isa<UnreachableInst>(CI->getNextNode())) {
- changeToUnreachable(CI->getNextNode(), false, DTU);
- Changed = true;
- break;
- }
- }
- } else if ((isa<ConstantPointerNull>(Callee) &&
- !NullPointerIsDefined(CI->getFunction(),
- cast<PointerType>(Callee->getType())
- ->getAddressSpace())) ||
- isa<UndefValue>(Callee)) {
- changeToUnreachable(CI, false, DTU);
- Changed = true;
- break;
- }
- if (CI->doesNotReturn() && !CI->isMustTailCall()) {
- // If we found a call to a no-return function, insert an unreachable
- // instruction after it. Make sure there isn't *already* one there
- // though.
- if (!isa<UnreachableInst>(CI->getNextNode())) {
- // Don't insert a call to llvm.trap right before the unreachable.
- changeToUnreachable(CI->getNextNode(), false, DTU);
- Changed = true;
- }
- break;
- }
- } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
- // Store to undef and store to null are undefined and used to signal
- // that they should be changed to unreachable by passes that can't
- // modify the CFG.
- // Don't touch volatile stores.
- if (SI->isVolatile()) continue;
- Value *Ptr = SI->getOperand(1);
- if (isa<UndefValue>(Ptr) ||
- (isa<ConstantPointerNull>(Ptr) &&
- !NullPointerIsDefined(SI->getFunction(),
- SI->getPointerAddressSpace()))) {
- changeToUnreachable(SI, false, DTU);
- Changed = true;
- break;
- }
- }
- }
- Instruction *Terminator = BB->getTerminator();
- if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
- // Turn invokes that call 'nounwind' functions into ordinary calls.
- Value *Callee = II->getCalledOperand();
- if ((isa<ConstantPointerNull>(Callee) &&
- !NullPointerIsDefined(BB->getParent())) ||
- isa<UndefValue>(Callee)) {
- changeToUnreachable(II, false, DTU);
- Changed = true;
- } else {
- if (II->doesNotReturn() &&
- !isa<UnreachableInst>(II->getNormalDest()->front())) {
- // If we found an invoke of a no-return function,
- // create a new empty basic block with an `unreachable` terminator,
- // and set it as the normal destination for the invoke,
- // unless that is already the case.
- // Note that the original normal destination could have other uses.
- BasicBlock *OrigNormalDest = II->getNormalDest();
- OrigNormalDest->removePredecessor(II->getParent());
- LLVMContext &Ctx = II->getContext();
- BasicBlock *UnreachableNormalDest = BasicBlock::Create(
- Ctx, OrigNormalDest->getName() + ".unreachable",
- II->getFunction(), OrigNormalDest);
- new UnreachableInst(Ctx, UnreachableNormalDest);
- II->setNormalDest(UnreachableNormalDest);
- if (DTU)
- DTU->applyUpdates(
- {{DominatorTree::Delete, BB, OrigNormalDest},
- {DominatorTree::Insert, BB, UnreachableNormalDest}});
- Changed = true;
- }
- if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
- if (II->use_empty() && !II->mayHaveSideEffects()) {
- // jump to the normal destination branch.
- BasicBlock *NormalDestBB = II->getNormalDest();
- BasicBlock *UnwindDestBB = II->getUnwindDest();
- BranchInst::Create(NormalDestBB, II);
- UnwindDestBB->removePredecessor(II->getParent());
- II->eraseFromParent();
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
- } else
- changeToCall(II, DTU);
- Changed = true;
- }
- }
- } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
- // Remove catchpads which cannot be reached.
- struct CatchPadDenseMapInfo {
- static CatchPadInst *getEmptyKey() {
- return DenseMapInfo<CatchPadInst *>::getEmptyKey();
- }
- static CatchPadInst *getTombstoneKey() {
- return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
- }
- static unsigned getHashValue(CatchPadInst *CatchPad) {
- return static_cast<unsigned>(hash_combine_range(
- CatchPad->value_op_begin(), CatchPad->value_op_end()));
- }
- static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
- if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
- RHS == getEmptyKey() || RHS == getTombstoneKey())
- return LHS == RHS;
- return LHS->isIdenticalTo(RHS);
- }
- };
- SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
- // Set of unique CatchPads.
- SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
- CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
- HandlerSet;
- detail::DenseSetEmpty Empty;
- for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
- E = CatchSwitch->handler_end();
- I != E; ++I) {
- BasicBlock *HandlerBB = *I;
- if (DTU)
- ++NumPerSuccessorCases[HandlerBB];
- auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
- if (!HandlerSet.insert({CatchPad, Empty}).second) {
- if (DTU)
- --NumPerSuccessorCases[HandlerBB];
- CatchSwitch->removeHandler(I);
- --I;
- --E;
- Changed = true;
- }
- }
- if (DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
- if (I.second == 0)
- Updates.push_back({DominatorTree::Delete, BB, I.first});
- DTU->applyUpdates(Updates);
- }
- }
- Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
- for (BasicBlock *Successor : successors(BB))
- if (Reachable.insert(Successor).second)
- Worklist.push_back(Successor);
- } while (!Worklist.empty());
- return Changed;
- }
- Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
- Instruction *TI = BB->getTerminator();
- if (auto *II = dyn_cast<InvokeInst>(TI))
- return changeToCall(II, DTU);
- Instruction *NewTI;
- BasicBlock *UnwindDest;
- if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
- NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
- UnwindDest = CRI->getUnwindDest();
- } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
- auto *NewCatchSwitch = CatchSwitchInst::Create(
- CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
- CatchSwitch->getName(), CatchSwitch);
- for (BasicBlock *PadBB : CatchSwitch->handlers())
- NewCatchSwitch->addHandler(PadBB);
- NewTI = NewCatchSwitch;
- UnwindDest = CatchSwitch->getUnwindDest();
- } else {
- llvm_unreachable("Could not find unwind successor");
- }
- NewTI->takeName(TI);
- NewTI->setDebugLoc(TI->getDebugLoc());
- UnwindDest->removePredecessor(BB);
- TI->replaceAllUsesWith(NewTI);
- TI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
- return NewTI;
- }
- /// removeUnreachableBlocks - Remove blocks that are not reachable, even
- /// if they are in a dead cycle. Return true if a change was made, false
- /// otherwise.
- bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
- MemorySSAUpdater *MSSAU) {
- SmallPtrSet<BasicBlock *, 16> Reachable;
- bool Changed = markAliveBlocks(F, Reachable, DTU);
- // If there are unreachable blocks in the CFG...
- if (Reachable.size() == F.size())
- return Changed;
- assert(Reachable.size() < F.size());
- // Are there any blocks left to actually delete?
- SmallSetVector<BasicBlock *, 8> BlocksToRemove;
- for (BasicBlock &BB : F) {
- // Skip reachable basic blocks
- if (Reachable.count(&BB))
- continue;
- // Skip already-deleted blocks
- if (DTU && DTU->isBBPendingDeletion(&BB))
- continue;
- BlocksToRemove.insert(&BB);
- }
- if (BlocksToRemove.empty())
- return Changed;
- Changed = true;
- NumRemoved += BlocksToRemove.size();
- if (MSSAU)
- MSSAU->removeBlocks(BlocksToRemove);
- DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
- return Changed;
- }
- void llvm::combineMetadata(Instruction *K, const Instruction *J,
- ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
- K->dropUnknownNonDebugMetadata(KnownIDs);
- K->getAllMetadataOtherThanDebugLoc(Metadata);
- for (const auto &MD : Metadata) {
- unsigned Kind = MD.first;
- MDNode *JMD = J->getMetadata(Kind);
- MDNode *KMD = MD.second;
- switch (Kind) {
- default:
- K->setMetadata(Kind, nullptr); // Remove unknown metadata
- break;
- case LLVMContext::MD_dbg:
- llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
- case LLVMContext::MD_DIAssignID:
- K->mergeDIAssignID(J);
- break;
- case LLVMContext::MD_tbaa:
- K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
- break;
- case LLVMContext::MD_alias_scope:
- K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
- break;
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_mem_parallel_loop_access:
- K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
- break;
- case LLVMContext::MD_access_group:
- K->setMetadata(LLVMContext::MD_access_group,
- intersectAccessGroups(K, J));
- break;
- case LLVMContext::MD_range:
- // If K does move, use most generic range. Otherwise keep the range of
- // K.
- if (DoesKMove)
- // FIXME: If K does move, we should drop the range info and nonnull.
- // Currently this function is used with DoesKMove in passes
- // doing hoisting/sinking and the current behavior of using the
- // most generic range is correct in those cases.
- K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
- break;
- case LLVMContext::MD_fpmath:
- K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
- break;
- case LLVMContext::MD_invariant_load:
- // Only set the !invariant.load if it is present in both instructions.
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_nonnull:
- // If K does move, keep nonull if it is present in both instructions.
- if (DoesKMove)
- K->setMetadata(Kind, JMD);
- break;
- case LLVMContext::MD_invariant_group:
- // Preserve !invariant.group in K.
- break;
- case LLVMContext::MD_align:
- K->setMetadata(Kind,
- MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
- break;
- case LLVMContext::MD_dereferenceable:
- case LLVMContext::MD_dereferenceable_or_null:
- K->setMetadata(Kind,
- MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
- break;
- case LLVMContext::MD_preserve_access_index:
- // Preserve !preserve.access.index in K.
- break;
- }
- }
- // Set !invariant.group from J if J has it. If both instructions have it
- // then we will just pick it from J - even when they are different.
- // Also make sure that K is load or store - f.e. combining bitcast with load
- // could produce bitcast with invariant.group metadata, which is invalid.
- // FIXME: we should try to preserve both invariant.group md if they are
- // different, but right now instruction can only have one invariant.group.
- if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
- if (isa<LoadInst>(K) || isa<StoreInst>(K))
- K->setMetadata(LLVMContext::MD_invariant_group, JMD);
- }
- void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
- bool KDominatesJ) {
- unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias, LLVMContext::MD_range,
- LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
- LLVMContext::MD_invariant_group, LLVMContext::MD_align,
- LLVMContext::MD_dereferenceable,
- LLVMContext::MD_dereferenceable_or_null,
- LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
- combineMetadata(K, J, KnownIDs, KDominatesJ);
- }
- void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
- SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
- Source.getAllMetadata(MD);
- MDBuilder MDB(Dest.getContext());
- Type *NewType = Dest.getType();
- const DataLayout &DL = Source.getModule()->getDataLayout();
- for (const auto &MDPair : MD) {
- unsigned ID = MDPair.first;
- MDNode *N = MDPair.second;
- // Note, essentially every kind of metadata should be preserved here! This
- // routine is supposed to clone a load instruction changing *only its type*.
- // The only metadata it makes sense to drop is metadata which is invalidated
- // when the pointer type changes. This should essentially never be the case
- // in LLVM, but we explicitly switch over only known metadata to be
- // conservatively correct. If you are adding metadata to LLVM which pertains
- // to loads, you almost certainly want to add it here.
- switch (ID) {
- case LLVMContext::MD_dbg:
- case LLVMContext::MD_tbaa:
- case LLVMContext::MD_prof:
- case LLVMContext::MD_fpmath:
- case LLVMContext::MD_tbaa_struct:
- case LLVMContext::MD_invariant_load:
- case LLVMContext::MD_alias_scope:
- case LLVMContext::MD_noalias:
- case LLVMContext::MD_nontemporal:
- case LLVMContext::MD_mem_parallel_loop_access:
- case LLVMContext::MD_access_group:
- case LLVMContext::MD_noundef:
- // All of these directly apply.
- Dest.setMetadata(ID, N);
- break;
- case LLVMContext::MD_nonnull:
- copyNonnullMetadata(Source, N, Dest);
- break;
- case LLVMContext::MD_align:
- case LLVMContext::MD_dereferenceable:
- case LLVMContext::MD_dereferenceable_or_null:
- // These only directly apply if the new type is also a pointer.
- if (NewType->isPointerTy())
- Dest.setMetadata(ID, N);
- break;
- case LLVMContext::MD_range:
- copyRangeMetadata(DL, Source, N, Dest);
- break;
- }
- }
- }
- void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
- auto *ReplInst = dyn_cast<Instruction>(Repl);
- if (!ReplInst)
- return;
- // Patch the replacement so that it is not more restrictive than the value
- // being replaced.
- // Note that if 'I' is a load being replaced by some operation,
- // for example, by an arithmetic operation, then andIRFlags()
- // would just erase all math flags from the original arithmetic
- // operation, which is clearly not wanted and not needed.
- if (!isa<LoadInst>(I))
- ReplInst->andIRFlags(I);
- // FIXME: If both the original and replacement value are part of the
- // same control-flow region (meaning that the execution of one
- // guarantees the execution of the other), then we can combine the
- // noalias scopes here and do better than the general conservative
- // answer used in combineMetadata().
- // In general, GVN unifies expressions over different control-flow
- // regions, and so we need a conservative combination of the noalias
- // scopes.
- static const unsigned KnownIDs[] = {
- LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
- LLVMContext::MD_noalias, LLVMContext::MD_range,
- LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
- LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
- LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
- combineMetadata(ReplInst, I, KnownIDs, false);
- }
- template <typename RootType, typename DominatesFn>
- static unsigned replaceDominatedUsesWith(Value *From, Value *To,
- const RootType &Root,
- const DominatesFn &Dominates) {
- assert(From->getType() == To->getType());
- unsigned Count = 0;
- for (Use &U : llvm::make_early_inc_range(From->uses())) {
- if (!Dominates(Root, U))
- continue;
- U.set(To);
- LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
- << "' as " << *To << " in " << *U << "\n");
- ++Count;
- }
- return Count;
- }
- unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
- assert(From->getType() == To->getType());
- auto *BB = From->getParent();
- unsigned Count = 0;
- for (Use &U : llvm::make_early_inc_range(From->uses())) {
- auto *I = cast<Instruction>(U.getUser());
- if (I->getParent() == BB)
- continue;
- U.set(To);
- ++Count;
- }
- return Count;
- }
- unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
- DominatorTree &DT,
- const BasicBlockEdge &Root) {
- auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
- return DT.dominates(Root, U);
- };
- return ::replaceDominatedUsesWith(From, To, Root, Dominates);
- }
- unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
- DominatorTree &DT,
- const BasicBlock *BB) {
- auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
- return DT.dominates(BB, U);
- };
- return ::replaceDominatedUsesWith(From, To, BB, Dominates);
- }
- bool llvm::callsGCLeafFunction(const CallBase *Call,
- const TargetLibraryInfo &TLI) {
- // Check if the function is specifically marked as a gc leaf function.
- if (Call->hasFnAttr("gc-leaf-function"))
- return true;
- if (const Function *F = Call->getCalledFunction()) {
- if (F->hasFnAttribute("gc-leaf-function"))
- return true;
- if (auto IID = F->getIntrinsicID()) {
- // Most LLVM intrinsics do not take safepoints.
- return IID != Intrinsic::experimental_gc_statepoint &&
- IID != Intrinsic::experimental_deoptimize &&
- IID != Intrinsic::memcpy_element_unordered_atomic &&
- IID != Intrinsic::memmove_element_unordered_atomic;
- }
- }
- // Lib calls can be materialized by some passes, and won't be
- // marked as 'gc-leaf-function.' All available Libcalls are
- // GC-leaf.
- LibFunc LF;
- if (TLI.getLibFunc(*Call, LF)) {
- return TLI.has(LF);
- }
- return false;
- }
- void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
- LoadInst &NewLI) {
- auto *NewTy = NewLI.getType();
- // This only directly applies if the new type is also a pointer.
- if (NewTy->isPointerTy()) {
- NewLI.setMetadata(LLVMContext::MD_nonnull, N);
- return;
- }
- // The only other translation we can do is to integral loads with !range
- // metadata.
- if (!NewTy->isIntegerTy())
- return;
- MDBuilder MDB(NewLI.getContext());
- const Value *Ptr = OldLI.getPointerOperand();
- auto *ITy = cast<IntegerType>(NewTy);
- auto *NullInt = ConstantExpr::getPtrToInt(
- ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
- auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
- NewLI.setMetadata(LLVMContext::MD_range,
- MDB.createRange(NonNullInt, NullInt));
- }
- void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
- MDNode *N, LoadInst &NewLI) {
- auto *NewTy = NewLI.getType();
- // Simply copy the metadata if the type did not change.
- if (NewTy == OldLI.getType()) {
- NewLI.setMetadata(LLVMContext::MD_range, N);
- return;
- }
- // Give up unless it is converted to a pointer where there is a single very
- // valuable mapping we can do reliably.
- // FIXME: It would be nice to propagate this in more ways, but the type
- // conversions make it hard.
- if (!NewTy->isPointerTy())
- return;
- unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
- if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
- MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
- NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
- }
- }
- void llvm::dropDebugUsers(Instruction &I) {
- SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
- findDbgUsers(DbgUsers, &I);
- for (auto *DII : DbgUsers)
- DII->eraseFromParent();
- }
- void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
- BasicBlock *BB) {
- // Since we are moving the instructions out of its basic block, we do not
- // retain their original debug locations (DILocations) and debug intrinsic
- // instructions.
- //
- // Doing so would degrade the debugging experience and adversely affect the
- // accuracy of profiling information.
- //
- // Currently, when hoisting the instructions, we take the following actions:
- // - Remove their debug intrinsic instructions.
- // - Set their debug locations to the values from the insertion point.
- //
- // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
- // need to be deleted, is because there will not be any instructions with a
- // DILocation in either branch left after performing the transformation. We
- // can only insert a dbg.value after the two branches are joined again.
- //
- // See PR38762, PR39243 for more details.
- //
- // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
- // encode predicated DIExpressions that yield different results on different
- // code paths.
- for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
- Instruction *I = &*II;
- I->dropUndefImplyingAttrsAndUnknownMetadata();
- if (I->isUsedByMetadata())
- dropDebugUsers(*I);
- if (I->isDebugOrPseudoInst()) {
- // Remove DbgInfo and pseudo probe Intrinsics.
- II = I->eraseFromParent();
- continue;
- }
- I->setDebugLoc(InsertPt->getDebugLoc());
- ++II;
- }
- DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
- BB->getTerminator()->getIterator());
- }
- namespace {
- /// A potential constituent of a bitreverse or bswap expression. See
- /// collectBitParts for a fuller explanation.
- struct BitPart {
- BitPart(Value *P, unsigned BW) : Provider(P) {
- Provenance.resize(BW);
- }
- /// The Value that this is a bitreverse/bswap of.
- Value *Provider;
- /// The "provenance" of each bit. Provenance[A] = B means that bit A
- /// in Provider becomes bit B in the result of this expression.
- SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
- enum { Unset = -1 };
- };
- } // end anonymous namespace
- /// Analyze the specified subexpression and see if it is capable of providing
- /// pieces of a bswap or bitreverse. The subexpression provides a potential
- /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
- /// the output of the expression came from a corresponding bit in some other
- /// value. This function is recursive, and the end result is a mapping of
- /// bitnumber to bitnumber. It is the caller's responsibility to validate that
- /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
- ///
- /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
- /// that the expression deposits the low byte of %X into the high byte of the
- /// result and that all other bits are zero. This expression is accepted and a
- /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
- /// [0-7].
- ///
- /// For vector types, all analysis is performed at the per-element level. No
- /// cross-element analysis is supported (shuffle/insertion/reduction), and all
- /// constant masks must be splatted across all elements.
- ///
- /// To avoid revisiting values, the BitPart results are memoized into the
- /// provided map. To avoid unnecessary copying of BitParts, BitParts are
- /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
- /// store BitParts objects, not pointers. As we need the concept of a nullptr
- /// BitParts (Value has been analyzed and the analysis failed), we an Optional
- /// type instead to provide the same functionality.
- ///
- /// Because we pass around references into \c BPS, we must use a container that
- /// does not invalidate internal references (std::map instead of DenseMap).
- static const std::optional<BitPart> &
- collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
- std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
- bool &FoundRoot) {
- auto I = BPS.find(V);
- if (I != BPS.end())
- return I->second;
- auto &Result = BPS[V] = std::nullopt;
- auto BitWidth = V->getType()->getScalarSizeInBits();
- // Can't do integer/elements > 128 bits.
- if (BitWidth > 128)
- return Result;
- // Prevent stack overflow by limiting the recursion depth
- if (Depth == BitPartRecursionMaxDepth) {
- LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
- return Result;
- }
- if (auto *I = dyn_cast<Instruction>(V)) {
- Value *X, *Y;
- const APInt *C;
- // If this is an or instruction, it may be an inner node of the bswap.
- if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
- // Check we have both sources and they are from the same provider.
- const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!A || !A->Provider)
- return Result;
- const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!B || A->Provider != B->Provider)
- return Result;
- // Try and merge the two together.
- Result = BitPart(A->Provider, BitWidth);
- for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
- if (A->Provenance[BitIdx] != BitPart::Unset &&
- B->Provenance[BitIdx] != BitPart::Unset &&
- A->Provenance[BitIdx] != B->Provenance[BitIdx])
- return Result = std::nullopt;
- if (A->Provenance[BitIdx] == BitPart::Unset)
- Result->Provenance[BitIdx] = B->Provenance[BitIdx];
- else
- Result->Provenance[BitIdx] = A->Provenance[BitIdx];
- }
- return Result;
- }
- // If this is a logical shift by a constant, recurse then shift the result.
- if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
- const APInt &BitShift = *C;
- // Ensure the shift amount is defined.
- if (BitShift.uge(BitWidth))
- return Result;
- // For bswap-only, limit shift amounts to whole bytes, for an early exit.
- if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
- return Result;
- const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!Res)
- return Result;
- Result = Res;
- // Perform the "shift" on BitProvenance.
- auto &P = Result->Provenance;
- if (I->getOpcode() == Instruction::Shl) {
- P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
- P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
- } else {
- P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
- P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
- }
- return Result;
- }
- // If this is a logical 'and' with a mask that clears bits, recurse then
- // unset the appropriate bits.
- if (match(V, m_And(m_Value(X), m_APInt(C)))) {
- const APInt &AndMask = *C;
- // Check that the mask allows a multiple of 8 bits for a bswap, for an
- // early exit.
- unsigned NumMaskedBits = AndMask.countPopulation();
- if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
- return Result;
- const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!Res)
- return Result;
- Result = Res;
- for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
- // If the AndMask is zero for this bit, clear the bit.
- if (AndMask[BitIdx] == 0)
- Result->Provenance[BitIdx] = BitPart::Unset;
- return Result;
- }
- // If this is a zext instruction zero extend the result.
- if (match(V, m_ZExt(m_Value(X)))) {
- const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!Res)
- return Result;
- Result = BitPart(Res->Provider, BitWidth);
- auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
- for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
- Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
- for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
- Result->Provenance[BitIdx] = BitPart::Unset;
- return Result;
- }
- // If this is a truncate instruction, extract the lower bits.
- if (match(V, m_Trunc(m_Value(X)))) {
- const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!Res)
- return Result;
- Result = BitPart(Res->Provider, BitWidth);
- for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
- Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
- return Result;
- }
- // BITREVERSE - most likely due to us previous matching a partial
- // bitreverse.
- if (match(V, m_BitReverse(m_Value(X)))) {
- const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!Res)
- return Result;
- Result = BitPart(Res->Provider, BitWidth);
- for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
- Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
- return Result;
- }
- // BSWAP - most likely due to us previous matching a partial bswap.
- if (match(V, m_BSwap(m_Value(X)))) {
- const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!Res)
- return Result;
- unsigned ByteWidth = BitWidth / 8;
- Result = BitPart(Res->Provider, BitWidth);
- for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
- unsigned ByteBitOfs = ByteIdx * 8;
- for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
- Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
- Res->Provenance[ByteBitOfs + BitIdx];
- }
- return Result;
- }
- // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
- // amount (modulo).
- // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
- // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
- if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
- match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
- // We can treat fshr as a fshl by flipping the modulo amount.
- unsigned ModAmt = C->urem(BitWidth);
- if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
- ModAmt = BitWidth - ModAmt;
- // For bswap-only, limit shift amounts to whole bytes, for an early exit.
- if (!MatchBitReversals && (ModAmt % 8) != 0)
- return Result;
- // Check we have both sources and they are from the same provider.
- const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!LHS || !LHS->Provider)
- return Result;
- const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
- Depth + 1, FoundRoot);
- if (!RHS || LHS->Provider != RHS->Provider)
- return Result;
- unsigned StartBitRHS = BitWidth - ModAmt;
- Result = BitPart(LHS->Provider, BitWidth);
- for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
- Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
- for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
- Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
- return Result;
- }
- }
- // If we've already found a root input value then we're never going to merge
- // these back together.
- if (FoundRoot)
- return Result;
- // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
- // be the root input value to the bswap/bitreverse.
- FoundRoot = true;
- Result = BitPart(V, BitWidth);
- for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
- Result->Provenance[BitIdx] = BitIdx;
- return Result;
- }
- static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
- unsigned BitWidth) {
- if (From % 8 != To % 8)
- return false;
- // Convert from bit indices to byte indices and check for a byte reversal.
- From >>= 3;
- To >>= 3;
- BitWidth >>= 3;
- return From == BitWidth - To - 1;
- }
- static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
- unsigned BitWidth) {
- return From == BitWidth - To - 1;
- }
- bool llvm::recognizeBSwapOrBitReverseIdiom(
- Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
- SmallVectorImpl<Instruction *> &InsertedInsts) {
- if (!match(I, m_Or(m_Value(), m_Value())) &&
- !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
- !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
- return false;
- if (!MatchBSwaps && !MatchBitReversals)
- return false;
- Type *ITy = I->getType();
- if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
- return false; // Can't do integer/elements > 128 bits.
- // Try to find all the pieces corresponding to the bswap.
- bool FoundRoot = false;
- std::map<Value *, std::optional<BitPart>> BPS;
- const auto &Res =
- collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
- if (!Res)
- return false;
- ArrayRef<int8_t> BitProvenance = Res->Provenance;
- assert(all_of(BitProvenance,
- [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
- "Illegal bit provenance index");
- // If the upper bits are zero, then attempt to perform as a truncated op.
- Type *DemandedTy = ITy;
- if (BitProvenance.back() == BitPart::Unset) {
- while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
- BitProvenance = BitProvenance.drop_back();
- if (BitProvenance.empty())
- return false; // TODO - handle null value?
- DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
- if (auto *IVecTy = dyn_cast<VectorType>(ITy))
- DemandedTy = VectorType::get(DemandedTy, IVecTy);
- }
- // Check BitProvenance hasn't found a source larger than the result type.
- unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
- if (DemandedBW > ITy->getScalarSizeInBits())
- return false;
- // Now, is the bit permutation correct for a bswap or a bitreverse? We can
- // only byteswap values with an even number of bytes.
- APInt DemandedMask = APInt::getAllOnes(DemandedBW);
- bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
- bool OKForBitReverse = MatchBitReversals;
- for (unsigned BitIdx = 0;
- (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
- if (BitProvenance[BitIdx] == BitPart::Unset) {
- DemandedMask.clearBit(BitIdx);
- continue;
- }
- OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
- DemandedBW);
- OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
- BitIdx, DemandedBW);
- }
- Intrinsic::ID Intrin;
- if (OKForBSwap)
- Intrin = Intrinsic::bswap;
- else if (OKForBitReverse)
- Intrin = Intrinsic::bitreverse;
- else
- return false;
- Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
- Value *Provider = Res->Provider;
- // We may need to truncate the provider.
- if (DemandedTy != Provider->getType()) {
- auto *Trunc =
- CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
- InsertedInsts.push_back(Trunc);
- Provider = Trunc;
- }
- Instruction *Result = CallInst::Create(F, Provider, "rev", I);
- InsertedInsts.push_back(Result);
- if (!DemandedMask.isAllOnes()) {
- auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
- Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
- InsertedInsts.push_back(Result);
- }
- // We may need to zeroextend back to the result type.
- if (ITy != Result->getType()) {
- auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
- InsertedInsts.push_back(ExtInst);
- }
- return true;
- }
- // CodeGen has special handling for some string functions that may replace
- // them with target-specific intrinsics. Since that'd skip our interceptors
- // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
- // we mark affected calls as NoBuiltin, which will disable optimization
- // in CodeGen.
- void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
- CallInst *CI, const TargetLibraryInfo *TLI) {
- Function *F = CI->getCalledFunction();
- LibFunc Func;
- if (F && !F->hasLocalLinkage() && F->hasName() &&
- TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
- !F->doesNotAccessMemory())
- CI->addFnAttr(Attribute::NoBuiltin);
- }
- bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
- // We can't have a PHI with a metadata type.
- if (I->getOperand(OpIdx)->getType()->isMetadataTy())
- return false;
- // Early exit.
- if (!isa<Constant>(I->getOperand(OpIdx)))
- return true;
- switch (I->getOpcode()) {
- default:
- return true;
- case Instruction::Call:
- case Instruction::Invoke: {
- const auto &CB = cast<CallBase>(*I);
- // Can't handle inline asm. Skip it.
- if (CB.isInlineAsm())
- return false;
- // Constant bundle operands may need to retain their constant-ness for
- // correctness.
- if (CB.isBundleOperand(OpIdx))
- return false;
- if (OpIdx < CB.arg_size()) {
- // Some variadic intrinsics require constants in the variadic arguments,
- // which currently aren't markable as immarg.
- if (isa<IntrinsicInst>(CB) &&
- OpIdx >= CB.getFunctionType()->getNumParams()) {
- // This is known to be OK for stackmap.
- return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
- }
- // gcroot is a special case, since it requires a constant argument which
- // isn't also required to be a simple ConstantInt.
- if (CB.getIntrinsicID() == Intrinsic::gcroot)
- return false;
- // Some intrinsic operands are required to be immediates.
- return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
- }
- // It is never allowed to replace the call argument to an intrinsic, but it
- // may be possible for a call.
- return !isa<IntrinsicInst>(CB);
- }
- case Instruction::ShuffleVector:
- // Shufflevector masks are constant.
- return OpIdx != 2;
- case Instruction::Switch:
- case Instruction::ExtractValue:
- // All operands apart from the first are constant.
- return OpIdx == 0;
- case Instruction::InsertValue:
- // All operands apart from the first and the second are constant.
- return OpIdx < 2;
- case Instruction::Alloca:
- // Static allocas (constant size in the entry block) are handled by
- // prologue/epilogue insertion so they're free anyway. We definitely don't
- // want to make them non-constant.
- return !cast<AllocaInst>(I)->isStaticAlloca();
- case Instruction::GetElementPtr:
- if (OpIdx == 0)
- return true;
- gep_type_iterator It = gep_type_begin(I);
- for (auto E = std::next(It, OpIdx); It != E; ++It)
- if (It.isStruct())
- return false;
- return true;
- }
- }
- Value *llvm::invertCondition(Value *Condition) {
- // First: Check if it's a constant
- if (Constant *C = dyn_cast<Constant>(Condition))
- return ConstantExpr::getNot(C);
- // Second: If the condition is already inverted, return the original value
- Value *NotCondition;
- if (match(Condition, m_Not(m_Value(NotCondition))))
- return NotCondition;
- BasicBlock *Parent = nullptr;
- Instruction *Inst = dyn_cast<Instruction>(Condition);
- if (Inst)
- Parent = Inst->getParent();
- else if (Argument *Arg = dyn_cast<Argument>(Condition))
- Parent = &Arg->getParent()->getEntryBlock();
- assert(Parent && "Unsupported condition to invert");
- // Third: Check all the users for an invert
- for (User *U : Condition->users())
- if (Instruction *I = dyn_cast<Instruction>(U))
- if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
- return I;
- // Last option: Create a new instruction
- auto *Inverted =
- BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
- if (Inst && !isa<PHINode>(Inst))
- Inverted->insertAfter(Inst);
- else
- Inverted->insertBefore(&*Parent->getFirstInsertionPt());
- return Inverted;
- }
- bool llvm::inferAttributesFromOthers(Function &F) {
- // Note: We explicitly check for attributes rather than using cover functions
- // because some of the cover functions include the logic being implemented.
- bool Changed = false;
- // readnone + not convergent implies nosync
- if (!F.hasFnAttribute(Attribute::NoSync) &&
- F.doesNotAccessMemory() && !F.isConvergent()) {
- F.setNoSync();
- Changed = true;
- }
- // readonly implies nofree
- if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
- F.setDoesNotFreeMemory();
- Changed = true;
- }
- // willreturn implies mustprogress
- if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
- F.setMustProgress();
- Changed = true;
- }
- // TODO: There are a bunch of cases of restrictive memory effects we
- // can infer by inspecting arguments of argmemonly-ish functions.
- return Changed;
- }
|