123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639 |
- //===-- IntegerDivision.cpp - Expand integer division ---------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file contains an implementation of 32bit and 64bit scalar integer
- // division for targets that don't have native support. It's largely derived
- // from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
- // but hand-tuned for targets that prefer less control flow.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/IntegerDivision.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- using namespace llvm;
- #define DEBUG_TYPE "integer-division"
- /// Generate code to compute the remainder of two signed integers. Returns the
- /// remainder, which will have the sign of the dividend. Builder's insert point
- /// should be pointing where the caller wants code generated, e.g. at the srem
- /// instruction. This will generate a urem in the process, and Builder's insert
- /// point will be pointing at the uren (if present, i.e. not folded), ready to
- /// be expanded if the user wishes
- static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
- ConstantInt *Shift = Builder.getIntN(BitWidth, BitWidth - 1);
- // Following instructions are generated for both i32 (shift 31) and
- // i64 (shift 63).
- // ; %dividend_sgn = ashr i32 %dividend, 31
- // ; %divisor_sgn = ashr i32 %divisor, 31
- // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
- // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
- // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
- // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
- // ; %urem = urem i32 %dividend, %divisor
- // ; %xored = xor i32 %urem, %dividend_sgn
- // ; %srem = sub i32 %xored, %dividend_sgn
- Dividend = Builder.CreateFreeze(Dividend);
- Divisor = Builder.CreateFreeze(Divisor);
- Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
- Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
- Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
- Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
- Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
- Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
- Value *URem = Builder.CreateURem(UDividend, UDivisor);
- Value *Xored = Builder.CreateXor(URem, DividendSign);
- Value *SRem = Builder.CreateSub(Xored, DividendSign);
- if (Instruction *URemInst = dyn_cast<Instruction>(URem))
- Builder.SetInsertPoint(URemInst);
- return SRem;
- }
- /// Generate code to compute the remainder of two unsigned integers. Returns the
- /// remainder. Builder's insert point should be pointing where the caller wants
- /// code generated, e.g. at the urem instruction. This will generate a udiv in
- /// the process, and Builder's insert point will be pointing at the udiv (if
- /// present, i.e. not folded), ready to be expanded if the user wishes
- static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- // Remainder = Dividend - Quotient*Divisor
- // Following instructions are generated for both i32 and i64
- // ; %quotient = udiv i32 %dividend, %divisor
- // ; %product = mul i32 %divisor, %quotient
- // ; %remainder = sub i32 %dividend, %product
- Dividend = Builder.CreateFreeze(Dividend);
- Divisor = Builder.CreateFreeze(Divisor);
- Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
- Value *Product = Builder.CreateMul(Divisor, Quotient);
- Value *Remainder = Builder.CreateSub(Dividend, Product);
- if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
- Builder.SetInsertPoint(UDiv);
- return Remainder;
- }
- /// Generate code to divide two signed integers. Returns the quotient, rounded
- /// towards 0. Builder's insert point should be pointing where the caller wants
- /// code generated, e.g. at the sdiv instruction. This will generate a udiv in
- /// the process, and Builder's insert point will be pointing at the udiv (if
- /// present, i.e. not folded), ready to be expanded if the user wishes.
- static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- // Implementation taken from compiler-rt's __divsi3 and __divdi3
- unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
- ConstantInt *Shift = Builder.getIntN(BitWidth, BitWidth - 1);
- // Following instructions are generated for both i32 (shift 31) and
- // i64 (shift 63).
- // ; %tmp = ashr i32 %dividend, 31
- // ; %tmp1 = ashr i32 %divisor, 31
- // ; %tmp2 = xor i32 %tmp, %dividend
- // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
- // ; %tmp3 = xor i32 %tmp1, %divisor
- // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
- // ; %q_sgn = xor i32 %tmp1, %tmp
- // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
- // ; %tmp4 = xor i32 %q_mag, %q_sgn
- // ; %q = sub i32 %tmp4, %q_sgn
- Dividend = Builder.CreateFreeze(Dividend);
- Divisor = Builder.CreateFreeze(Divisor);
- Value *Tmp = Builder.CreateAShr(Dividend, Shift);
- Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
- Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
- Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
- Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
- Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
- Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
- Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
- Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
- Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
- if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
- Builder.SetInsertPoint(UDiv);
- return Q;
- }
- /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
- /// Returns the quotient, rounded towards 0. Builder's insert point should
- /// point where the caller wants code generated, e.g. at the udiv instruction.
- static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
- IRBuilder<> &Builder) {
- // The basic algorithm can be found in the compiler-rt project's
- // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
- // that's been hand-tuned to lessen the amount of control flow involved.
- // Some helper values
- IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
- unsigned BitWidth = DivTy->getBitWidth();
- ConstantInt *Zero = ConstantInt::get(DivTy, 0);
- ConstantInt *One = ConstantInt::get(DivTy, 1);
- ConstantInt *NegOne = ConstantInt::getSigned(DivTy, -1);
- ConstantInt *MSB = ConstantInt::get(DivTy, BitWidth - 1);
- ConstantInt *True = Builder.getTrue();
- BasicBlock *IBB = Builder.GetInsertBlock();
- Function *F = IBB->getParent();
- Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
- DivTy);
- // Our CFG is going to look like:
- // +---------------------+
- // | special-cases |
- // | ... |
- // +---------------------+
- // | |
- // | +----------+
- // | | bb1 |
- // | | ... |
- // | +----------+
- // | | |
- // | | +------------+
- // | | | preheader |
- // | | | ... |
- // | | +------------+
- // | | |
- // | | | +---+
- // | | | | |
- // | | +------------+ |
- // | | | do-while | |
- // | | | ... | |
- // | | +------------+ |
- // | | | | |
- // | +-----------+ +---+
- // | | loop-exit |
- // | | ... |
- // | +-----------+
- // | |
- // +-------+
- // | ... |
- // | end |
- // +-------+
- BasicBlock *SpecialCases = Builder.GetInsertBlock();
- SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
- BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
- "udiv-end");
- BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
- "udiv-loop-exit", F, End);
- BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
- "udiv-do-while", F, End);
- BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
- "udiv-preheader", F, End);
- BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
- "udiv-bb1", F, End);
- // We'll be overwriting the terminator to insert our extra blocks
- SpecialCases->getTerminator()->eraseFromParent();
- // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
- // First off, check for special cases: dividend or divisor is zero, divisor
- // is greater than dividend, and divisor is 1.
- // ; special-cases:
- // ; %ret0_1 = icmp eq i32 %divisor, 0
- // ; %ret0_2 = icmp eq i32 %dividend, 0
- // ; %ret0_3 = or i1 %ret0_1, %ret0_2
- // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
- // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
- // ; %sr = sub nsw i32 %tmp0, %tmp1
- // ; %ret0_4 = icmp ugt i32 %sr, 31
- // ; %ret0 = select i1 %ret0_3, i1 true, i1 %ret0_4
- // ; %retDividend = icmp eq i32 %sr, 31
- // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
- // ; %earlyRet = select i1 %ret0, i1 true, %retDividend
- // ; br i1 %earlyRet, label %end, label %bb1
- Builder.SetInsertPoint(SpecialCases);
- Divisor = Builder.CreateFreeze(Divisor);
- Dividend = Builder.CreateFreeze(Dividend);
- Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
- Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
- Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
- Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
- Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
- Value *SR = Builder.CreateSub(Tmp0, Tmp1);
- Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
- Value *Ret0 = Builder.CreateLogicalOr(Ret0_3, Ret0_4);
- Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
- Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
- Value *EarlyRet = Builder.CreateLogicalOr(Ret0, RetDividend);
- Builder.CreateCondBr(EarlyRet, End, BB1);
- // ; bb1: ; preds = %special-cases
- // ; %sr_1 = add i32 %sr, 1
- // ; %tmp2 = sub i32 31, %sr
- // ; %q = shl i32 %dividend, %tmp2
- // ; %skipLoop = icmp eq i32 %sr_1, 0
- // ; br i1 %skipLoop, label %loop-exit, label %preheader
- Builder.SetInsertPoint(BB1);
- Value *SR_1 = Builder.CreateAdd(SR, One);
- Value *Tmp2 = Builder.CreateSub(MSB, SR);
- Value *Q = Builder.CreateShl(Dividend, Tmp2);
- Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
- Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
- // ; preheader: ; preds = %bb1
- // ; %tmp3 = lshr i32 %dividend, %sr_1
- // ; %tmp4 = add i32 %divisor, -1
- // ; br label %do-while
- Builder.SetInsertPoint(Preheader);
- Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
- Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
- Builder.CreateBr(DoWhile);
- // ; do-while: ; preds = %do-while, %preheader
- // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
- // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
- // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
- // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
- // ; %tmp5 = shl i32 %r_1, 1
- // ; %tmp6 = lshr i32 %q_2, 31
- // ; %tmp7 = or i32 %tmp5, %tmp6
- // ; %tmp8 = shl i32 %q_2, 1
- // ; %q_1 = or i32 %carry_1, %tmp8
- // ; %tmp9 = sub i32 %tmp4, %tmp7
- // ; %tmp10 = ashr i32 %tmp9, 31
- // ; %carry = and i32 %tmp10, 1
- // ; %tmp11 = and i32 %tmp10, %divisor
- // ; %r = sub i32 %tmp7, %tmp11
- // ; %sr_2 = add i32 %sr_3, -1
- // ; %tmp12 = icmp eq i32 %sr_2, 0
- // ; br i1 %tmp12, label %loop-exit, label %do-while
- Builder.SetInsertPoint(DoWhile);
- PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
- PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
- PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
- PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
- Value *Tmp5 = Builder.CreateShl(R_1, One);
- Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
- Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
- Value *Tmp8 = Builder.CreateShl(Q_2, One);
- Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
- Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
- Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
- Value *Carry = Builder.CreateAnd(Tmp10, One);
- Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
- Value *R = Builder.CreateSub(Tmp7, Tmp11);
- Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
- Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
- Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
- // ; loop-exit: ; preds = %do-while, %bb1
- // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
- // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
- // ; %tmp13 = shl i32 %q_3, 1
- // ; %q_4 = or i32 %carry_2, %tmp13
- // ; br label %end
- Builder.SetInsertPoint(LoopExit);
- PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
- PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
- Value *Tmp13 = Builder.CreateShl(Q_3, One);
- Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
- Builder.CreateBr(End);
- // ; end: ; preds = %loop-exit, %special-cases
- // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
- // ; ret i32 %q_5
- Builder.SetInsertPoint(End, End->begin());
- PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
- // Populate the Phis, since all values have now been created. Our Phis were:
- // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
- Carry_1->addIncoming(Zero, Preheader);
- Carry_1->addIncoming(Carry, DoWhile);
- // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
- SR_3->addIncoming(SR_1, Preheader);
- SR_3->addIncoming(SR_2, DoWhile);
- // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
- R_1->addIncoming(Tmp3, Preheader);
- R_1->addIncoming(R, DoWhile);
- // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
- Q_2->addIncoming(Q, Preheader);
- Q_2->addIncoming(Q_1, DoWhile);
- // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
- Carry_2->addIncoming(Zero, BB1);
- Carry_2->addIncoming(Carry, DoWhile);
- // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
- Q_3->addIncoming(Q, BB1);
- Q_3->addIncoming(Q_1, DoWhile);
- // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
- Q_5->addIncoming(Q_4, LoopExit);
- Q_5->addIncoming(RetVal, SpecialCases);
- return Q_5;
- }
- /// Generate code to calculate the remainder of two integers, replacing Rem with
- /// the generated code. This currently generates code using the udiv expansion,
- /// but future work includes generating more specialized code, e.g. when more
- /// information about the operands are known.
- ///
- /// Replace Rem with generated code.
- bool llvm::expandRemainder(BinaryOperator *Rem) {
- assert((Rem->getOpcode() == Instruction::SRem ||
- Rem->getOpcode() == Instruction::URem) &&
- "Trying to expand remainder from a non-remainder function");
- IRBuilder<> Builder(Rem);
- assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
- // First prepare the sign if it's a signed remainder
- if (Rem->getOpcode() == Instruction::SRem) {
- Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
- Rem->getOperand(1), Builder);
- // Check whether this is the insert point while Rem is still valid.
- bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
- Rem->replaceAllUsesWith(Remainder);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
- // If we didn't actually generate an urem instruction, we're done
- // This happens for example if the input were constant. In this case the
- // Builder insertion point was unchanged
- if (IsInsertPoint)
- return true;
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
- Rem = BO;
- }
- Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
- Rem->getOperand(1),
- Builder);
- Rem->replaceAllUsesWith(Remainder);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
- // Expand the udiv
- if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
- assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
- expandDivision(UDiv);
- }
- return true;
- }
- /// Generate code to divide two integers, replacing Div with the generated
- /// code. This currently generates code similarly to compiler-rt's
- /// implementations, but future work includes generating more specialized code
- /// when more information about the operands are known.
- ///
- /// Replace Div with generated code.
- bool llvm::expandDivision(BinaryOperator *Div) {
- assert((Div->getOpcode() == Instruction::SDiv ||
- Div->getOpcode() == Instruction::UDiv) &&
- "Trying to expand division from a non-division function");
- IRBuilder<> Builder(Div);
- assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
- // First prepare the sign if it's a signed division
- if (Div->getOpcode() == Instruction::SDiv) {
- // Lower the code to unsigned division, and reset Div to point to the udiv.
- Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
- Div->getOperand(1), Builder);
- // Check whether this is the insert point while Div is still valid.
- bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
- Div->replaceAllUsesWith(Quotient);
- Div->dropAllReferences();
- Div->eraseFromParent();
- // If we didn't actually generate an udiv instruction, we're done
- // This happens for example if the input were constant. In this case the
- // Builder insertion point was unchanged
- if (IsInsertPoint)
- return true;
- BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
- Div = BO;
- }
- // Insert the unsigned division code
- Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
- Div->getOperand(1),
- Builder);
- Div->replaceAllUsesWith(Quotient);
- Div->dropAllReferences();
- Div->eraseFromParent();
- return true;
- }
- /// Generate code to compute the remainder of two integers of bitwidth up to
- /// 32 bits. Uses the above routines and extends the inputs/truncates the
- /// outputs to operate in 32 bits; that is, these routines are good for targets
- /// that have no or very little suppport for smaller than 32 bit integer
- /// arithmetic.
- ///
- /// Replace Rem with emulation code.
- bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
- assert((Rem->getOpcode() == Instruction::SRem ||
- Rem->getOpcode() == Instruction::URem) &&
- "Trying to expand remainder from a non-remainder function");
- Type *RemTy = Rem->getType();
- assert(!RemTy->isVectorTy() && "Div over vectors not supported");
- unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
- assert(RemTyBitWidth <= 32 &&
- "Div of bitwidth greater than 32 not supported");
- if (RemTyBitWidth == 32)
- return expandRemainder(Rem);
- // If bitwidth smaller than 32 extend inputs, extend output and proceed
- // with 32 bit division.
- IRBuilder<> Builder(Rem);
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtRem;
- Value *Trunc;
- Type *Int32Ty = Builder.getInt32Ty();
- if (Rem->getOpcode() == Instruction::SRem) {
- ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
- ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
- ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtRem, RemTy);
- Rem->replaceAllUsesWith(Trunc);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
- return expandRemainder(cast<BinaryOperator>(ExtRem));
- }
- /// Generate code to compute the remainder of two integers of bitwidth up to
- /// 64 bits. Uses the above routines and extends the inputs/truncates the
- /// outputs to operate in 64 bits.
- ///
- /// Replace Rem with emulation code.
- bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
- assert((Rem->getOpcode() == Instruction::SRem ||
- Rem->getOpcode() == Instruction::URem) &&
- "Trying to expand remainder from a non-remainder function");
- Type *RemTy = Rem->getType();
- assert(!RemTy->isVectorTy() && "Div over vectors not supported");
- unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
- if (RemTyBitWidth >= 64)
- return expandRemainder(Rem);
- // If bitwidth smaller than 64 extend inputs, extend output and proceed
- // with 64 bit division.
- IRBuilder<> Builder(Rem);
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtRem;
- Value *Trunc;
- Type *Int64Ty = Builder.getInt64Ty();
- if (Rem->getOpcode() == Instruction::SRem) {
- ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
- ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
- ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtRem, RemTy);
- Rem->replaceAllUsesWith(Trunc);
- Rem->dropAllReferences();
- Rem->eraseFromParent();
- return expandRemainder(cast<BinaryOperator>(ExtRem));
- }
- /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
- /// above routines and extends the inputs/truncates the outputs to operate
- /// in 32 bits; that is, these routines are good for targets that have no
- /// or very little support for smaller than 32 bit integer arithmetic.
- ///
- /// Replace Div with emulation code.
- bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
- assert((Div->getOpcode() == Instruction::SDiv ||
- Div->getOpcode() == Instruction::UDiv) &&
- "Trying to expand division from a non-division function");
- Type *DivTy = Div->getType();
- assert(!DivTy->isVectorTy() && "Div over vectors not supported");
- unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
- assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
- if (DivTyBitWidth == 32)
- return expandDivision(Div);
- // If bitwidth smaller than 32 extend inputs, extend output and proceed
- // with 32 bit division.
- IRBuilder<> Builder(Div);
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtDiv;
- Value *Trunc;
- Type *Int32Ty = Builder.getInt32Ty();
- if (Div->getOpcode() == Instruction::SDiv) {
- ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
- ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
- ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
- ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
- Div->replaceAllUsesWith(Trunc);
- Div->dropAllReferences();
- Div->eraseFromParent();
- return expandDivision(cast<BinaryOperator>(ExtDiv));
- }
- /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
- /// above routines and extends the inputs/truncates the outputs to operate
- /// in 64 bits.
- ///
- /// Replace Div with emulation code.
- bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
- assert((Div->getOpcode() == Instruction::SDiv ||
- Div->getOpcode() == Instruction::UDiv) &&
- "Trying to expand division from a non-division function");
- Type *DivTy = Div->getType();
- assert(!DivTy->isVectorTy() && "Div over vectors not supported");
- unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
- if (DivTyBitWidth >= 64)
- return expandDivision(Div);
- // If bitwidth smaller than 64 extend inputs, extend output and proceed
- // with 64 bit division.
- IRBuilder<> Builder(Div);
- Value *ExtDividend;
- Value *ExtDivisor;
- Value *ExtDiv;
- Value *Trunc;
- Type *Int64Ty = Builder.getInt64Ty();
- if (Div->getOpcode() == Instruction::SDiv) {
- ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
- ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
- } else {
- ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
- ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
- ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
- }
- Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
- Div->replaceAllUsesWith(Trunc);
- Div->dropAllReferences();
- Div->eraseFromParent();
- return expandDivision(cast<BinaryOperator>(ExtDiv));
- }
|