123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479 |
- //===-- SCCP.cpp ----------------------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements Interprocedural Sparse Conditional Constant Propagation.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO/SCCP.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueLattice.h"
- #include "llvm/Analysis/ValueLatticeUtils.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ModRef.h"
- #include "llvm/Transforms/IPO.h"
- #include "llvm/Transforms/IPO/FunctionSpecialization.h"
- #include "llvm/Transforms/Scalar/SCCP.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SCCPSolver.h"
- using namespace llvm;
- #define DEBUG_TYPE "sccp"
- STATISTIC(NumInstRemoved, "Number of instructions removed");
- STATISTIC(NumArgsElimed ,"Number of arguments constant propagated");
- STATISTIC(NumGlobalConst, "Number of globals found to be constant");
- STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
- STATISTIC(NumInstReplaced,
- "Number of instructions replaced with (simpler) instruction");
- static cl::opt<unsigned> FuncSpecializationMaxIters(
- "func-specialization-max-iters", cl::init(1), cl::Hidden, cl::desc(
- "The maximum number of iterations function specialization is run"));
- static void findReturnsToZap(Function &F,
- SmallVector<ReturnInst *, 8> &ReturnsToZap,
- SCCPSolver &Solver) {
- // We can only do this if we know that nothing else can call the function.
- if (!Solver.isArgumentTrackedFunction(&F))
- return;
- if (Solver.mustPreserveReturn(&F)) {
- LLVM_DEBUG(
- dbgs()
- << "Can't zap returns of the function : " << F.getName()
- << " due to present musttail or \"clang.arc.attachedcall\" call of "
- "it\n");
- return;
- }
- assert(
- all_of(F.users(),
- [&Solver](User *U) {
- if (isa<Instruction>(U) &&
- !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
- return true;
- // Non-callsite uses are not impacted by zapping. Also, constant
- // uses (like blockaddresses) could stuck around, without being
- // used in the underlying IR, meaning we do not have lattice
- // values for them.
- if (!isa<CallBase>(U))
- return true;
- if (U->getType()->isStructTy()) {
- return all_of(Solver.getStructLatticeValueFor(U),
- [](const ValueLatticeElement &LV) {
- return !SCCPSolver::isOverdefined(LV);
- });
- }
- // We don't consider assume-like intrinsics to be actual address
- // captures.
- if (auto *II = dyn_cast<IntrinsicInst>(U)) {
- if (II->isAssumeLikeIntrinsic())
- return true;
- }
- return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U));
- }) &&
- "We can only zap functions where all live users have a concrete value");
- for (BasicBlock &BB : F) {
- if (CallInst *CI = BB.getTerminatingMustTailCall()) {
- LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
- << "musttail call : " << *CI << "\n");
- (void)CI;
- return;
- }
- if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
- if (!isa<UndefValue>(RI->getOperand(0)))
- ReturnsToZap.push_back(RI);
- }
- }
- static bool runIPSCCP(
- Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM,
- std::function<const TargetLibraryInfo &(Function &)> GetTLI,
- std::function<TargetTransformInfo &(Function &)> GetTTI,
- std::function<AssumptionCache &(Function &)> GetAC,
- function_ref<AnalysisResultsForFn(Function &)> getAnalysis,
- bool IsFuncSpecEnabled) {
- SCCPSolver Solver(DL, GetTLI, M.getContext());
- FunctionSpecializer Specializer(Solver, M, FAM, GetTLI, GetTTI, GetAC);
- // Loop over all functions, marking arguments to those with their addresses
- // taken or that are external as overdefined.
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
- Solver.addAnalysis(F, getAnalysis(F));
- // Determine if we can track the function's return values. If so, add the
- // function to the solver's set of return-tracked functions.
- if (canTrackReturnsInterprocedurally(&F))
- Solver.addTrackedFunction(&F);
- // Determine if we can track the function's arguments. If so, add the
- // function to the solver's set of argument-tracked functions.
- if (canTrackArgumentsInterprocedurally(&F)) {
- Solver.addArgumentTrackedFunction(&F);
- continue;
- }
- // Assume the function is called.
- Solver.markBlockExecutable(&F.front());
- // Assume nothing about the incoming arguments.
- for (Argument &AI : F.args())
- Solver.markOverdefined(&AI);
- }
- // Determine if we can track any of the module's global variables. If so, add
- // the global variables we can track to the solver's set of tracked global
- // variables.
- for (GlobalVariable &G : M.globals()) {
- G.removeDeadConstantUsers();
- if (canTrackGlobalVariableInterprocedurally(&G))
- Solver.trackValueOfGlobalVariable(&G);
- }
- // Solve for constants.
- Solver.solveWhileResolvedUndefsIn(M);
- if (IsFuncSpecEnabled) {
- unsigned Iters = 0;
- while (Iters++ < FuncSpecializationMaxIters && Specializer.run());
- }
- // Iterate over all of the instructions in the module, replacing them with
- // constants if we have found them to be of constant values.
- bool MadeChanges = false;
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
- SmallVector<BasicBlock *, 512> BlocksToErase;
- if (Solver.isBlockExecutable(&F.front())) {
- bool ReplacedPointerArg = false;
- for (Argument &Arg : F.args()) {
- if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(&Arg)) {
- ReplacedPointerArg |= Arg.getType()->isPointerTy();
- ++NumArgsElimed;
- }
- }
- // If we replaced an argument, we may now also access a global (currently
- // classified as "other" memory). Update memory attribute to reflect this.
- if (ReplacedPointerArg) {
- auto UpdateAttrs = [&](AttributeList AL) {
- MemoryEffects ME = AL.getMemoryEffects();
- if (ME == MemoryEffects::unknown())
- return AL;
- ME |= MemoryEffects(MemoryEffects::Other,
- ME.getModRef(MemoryEffects::ArgMem));
- return AL.addFnAttribute(
- F.getContext(),
- Attribute::getWithMemoryEffects(F.getContext(), ME));
- };
- F.setAttributes(UpdateAttrs(F.getAttributes()));
- for (User *U : F.users()) {
- auto *CB = dyn_cast<CallBase>(U);
- if (!CB || CB->getCalledFunction() != &F)
- continue;
- CB->setAttributes(UpdateAttrs(CB->getAttributes()));
- }
- }
- MadeChanges |= ReplacedPointerArg;
- }
- SmallPtrSet<Value *, 32> InsertedValues;
- for (BasicBlock &BB : F) {
- if (!Solver.isBlockExecutable(&BB)) {
- LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
- ++NumDeadBlocks;
- MadeChanges = true;
- if (&BB != &F.front())
- BlocksToErase.push_back(&BB);
- continue;
- }
- MadeChanges |= Solver.simplifyInstsInBlock(
- BB, InsertedValues, NumInstRemoved, NumInstReplaced);
- }
- DomTreeUpdater DTU = IsFuncSpecEnabled && Specializer.isClonedFunction(&F)
- ? DomTreeUpdater(DomTreeUpdater::UpdateStrategy::Lazy)
- : Solver.getDTU(F);
- // Change dead blocks to unreachable. We do it after replacing constants
- // in all executable blocks, because changeToUnreachable may remove PHI
- // nodes in executable blocks we found values for. The function's entry
- // block is not part of BlocksToErase, so we have to handle it separately.
- for (BasicBlock *BB : BlocksToErase) {
- NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(),
- /*PreserveLCSSA=*/false, &DTU);
- }
- if (!Solver.isBlockExecutable(&F.front()))
- NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
- /*PreserveLCSSA=*/false, &DTU);
- BasicBlock *NewUnreachableBB = nullptr;
- for (BasicBlock &BB : F)
- MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB);
- for (BasicBlock *DeadBB : BlocksToErase)
- if (!DeadBB->hasAddressTaken())
- DTU.deleteBB(DeadBB);
- for (BasicBlock &BB : F) {
- for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
- if (Solver.getPredicateInfoFor(&Inst)) {
- if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) {
- if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
- Value *Op = II->getOperand(0);
- Inst.replaceAllUsesWith(Op);
- Inst.eraseFromParent();
- }
- }
- }
- }
- }
- }
- // If we inferred constant or undef return values for a function, we replaced
- // all call uses with the inferred value. This means we don't need to bother
- // actually returning anything from the function. Replace all return
- // instructions with return undef.
- //
- // Do this in two stages: first identify the functions we should process, then
- // actually zap their returns. This is important because we can only do this
- // if the address of the function isn't taken. In cases where a return is the
- // last use of a function, the order of processing functions would affect
- // whether other functions are optimizable.
- SmallVector<ReturnInst*, 8> ReturnsToZap;
- for (const auto &I : Solver.getTrackedRetVals()) {
- Function *F = I.first;
- const ValueLatticeElement &ReturnValue = I.second;
- // If there is a known constant range for the return value, add !range
- // metadata to the function's call sites.
- if (ReturnValue.isConstantRange() &&
- !ReturnValue.getConstantRange().isSingleElement()) {
- // Do not add range metadata if the return value may include undef.
- if (ReturnValue.isConstantRangeIncludingUndef())
- continue;
- auto &CR = ReturnValue.getConstantRange();
- for (User *User : F->users()) {
- auto *CB = dyn_cast<CallBase>(User);
- if (!CB || CB->getCalledFunction() != F)
- continue;
- // Limit to cases where the return value is guaranteed to be neither
- // poison nor undef. Poison will be outside any range and currently
- // values outside of the specified range cause immediate undefined
- // behavior.
- if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
- continue;
- // Do not touch existing metadata for now.
- // TODO: We should be able to take the intersection of the existing
- // metadata and the inferred range.
- if (CB->getMetadata(LLVMContext::MD_range))
- continue;
- LLVMContext &Context = CB->getParent()->getContext();
- Metadata *RangeMD[] = {
- ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
- ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
- CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
- }
- continue;
- }
- if (F->getReturnType()->isVoidTy())
- continue;
- if (SCCPSolver::isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
- findReturnsToZap(*F, ReturnsToZap, Solver);
- }
- for (auto *F : Solver.getMRVFunctionsTracked()) {
- assert(F->getReturnType()->isStructTy() &&
- "The return type should be a struct");
- StructType *STy = cast<StructType>(F->getReturnType());
- if (Solver.isStructLatticeConstant(F, STy))
- findReturnsToZap(*F, ReturnsToZap, Solver);
- }
- // Zap all returns which we've identified as zap to change.
- SmallSetVector<Function *, 8> FuncZappedReturn;
- for (ReturnInst *RI : ReturnsToZap) {
- Function *F = RI->getParent()->getParent();
- RI->setOperand(0, UndefValue::get(F->getReturnType()));
- // Record all functions that are zapped.
- FuncZappedReturn.insert(F);
- }
- // Remove the returned attribute for zapped functions and the
- // corresponding call sites.
- for (Function *F : FuncZappedReturn) {
- for (Argument &A : F->args())
- F->removeParamAttr(A.getArgNo(), Attribute::Returned);
- for (Use &U : F->uses()) {
- CallBase *CB = dyn_cast<CallBase>(U.getUser());
- if (!CB) {
- assert(isa<BlockAddress>(U.getUser()) ||
- (isa<Constant>(U.getUser()) &&
- all_of(U.getUser()->users(), [](const User *UserUser) {
- return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic();
- })));
- continue;
- }
- for (Use &Arg : CB->args())
- CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
- }
- }
- // If we inferred constant or undef values for globals variables, we can
- // delete the global and any stores that remain to it.
- for (const auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
- GlobalVariable *GV = I.first;
- if (SCCPSolver::isOverdefined(I.second))
- continue;
- LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
- << "' is constant!\n");
- while (!GV->use_empty()) {
- StoreInst *SI = cast<StoreInst>(GV->user_back());
- SI->eraseFromParent();
- MadeChanges = true;
- }
- M.getGlobalList().erase(GV);
- ++NumGlobalConst;
- }
- return MadeChanges;
- }
- PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) {
- const DataLayout &DL = M.getDataLayout();
- auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
- auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & {
- return FAM.getResult<TargetLibraryAnalysis>(F);
- };
- auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
- return FAM.getResult<TargetIRAnalysis>(F);
- };
- auto GetAC = [&FAM](Function &F) -> AssumptionCache & {
- return FAM.getResult<AssumptionAnalysis>(F);
- };
- auto getAnalysis = [&FAM, this](Function &F) -> AnalysisResultsForFn {
- DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- return {
- std::make_unique<PredicateInfo>(F, DT, FAM.getResult<AssumptionAnalysis>(F)),
- &DT, FAM.getCachedResult<PostDominatorTreeAnalysis>(F),
- isFuncSpecEnabled() ? &FAM.getResult<LoopAnalysis>(F) : nullptr };
- };
- if (!runIPSCCP(M, DL, &FAM, GetTLI, GetTTI, GetAC, getAnalysis,
- isFuncSpecEnabled()))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<PostDominatorTreeAnalysis>();
- PA.preserve<FunctionAnalysisManagerModuleProxy>();
- return PA;
- }
- namespace {
- //===--------------------------------------------------------------------===//
- //
- /// IPSCCP Class - This class implements interprocedural Sparse Conditional
- /// Constant Propagation.
- ///
- class IPSCCPLegacyPass : public ModulePass {
- public:
- static char ID;
- IPSCCPLegacyPass() : ModulePass(ID) {
- initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override {
- if (skipModule(M))
- return false;
- const DataLayout &DL = M.getDataLayout();
- auto GetTLI = [this](Function &F) -> const TargetLibraryInfo & {
- return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- };
- auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
- return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- };
- auto GetAC = [this](Function &F) -> AssumptionCache & {
- return this->getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- };
- auto getAnalysis = [this](Function &F) -> AnalysisResultsForFn {
- DominatorTree &DT =
- this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
- return {
- std::make_unique<PredicateInfo>(
- F, DT,
- this->getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
- F)),
- nullptr, // We cannot preserve the LI, DT or PDT with the legacy pass
- nullptr, // manager, so set them to nullptr.
- nullptr};
- };
- return runIPSCCP(M, DL, nullptr, GetTLI, GetTTI, GetAC, getAnalysis, false);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- char IPSCCPLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp",
- "Interprocedural Sparse Conditional Constant Propagation",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp",
- "Interprocedural Sparse Conditional Constant Propagation",
- false, false)
- // createIPSCCPPass - This is the public interface to this file.
- ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); }
|