123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779 |
- //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This specialises functions with constant parameters. Constant parameters
- // like function pointers and constant globals are propagated to the callee by
- // specializing the function. The main benefit of this pass at the moment is
- // that indirect calls are transformed into direct calls, which provides inline
- // opportunities that the inliner would not have been able to achieve. That's
- // why function specialisation is run before the inliner in the optimisation
- // pipeline; that is by design. Otherwise, we would only benefit from constant
- // passing, which is a valid use-case too, but hasn't been explored much in
- // terms of performance uplifts, cost-model and compile-time impact.
- //
- // Current limitations:
- // - It does not yet handle integer ranges. We do support "literal constants",
- // but that's off by default under an option.
- // - The cost-model could be further looked into (it mainly focuses on inlining
- // benefits),
- //
- // Ideas:
- // - With a function specialization attribute for arguments, we could have
- // a direct way to steer function specialization, avoiding the cost-model,
- // and thus control compile-times / code-size.
- //
- // Todos:
- // - Specializing recursive functions relies on running the transformation a
- // number of times, which is controlled by option
- // `func-specialization-max-iters`. Thus, increasing this value and the
- // number of iterations, will linearly increase the number of times recursive
- // functions get specialized, see also the discussion in
- // https://reviews.llvm.org/D106426 for details. Perhaps there is a
- // compile-time friendlier way to control/limit the number of specialisations
- // for recursive functions.
- // - Don't transform the function if function specialization does not trigger;
- // the SCCPSolver may make IR changes.
- //
- // References:
- // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
- // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO/FunctionSpecialization.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/InlineCost.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueLattice.h"
- #include "llvm/Analysis/ValueLatticeUtils.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Transforms/Scalar/SCCP.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/SCCPSolver.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include <cmath>
- using namespace llvm;
- #define DEBUG_TYPE "function-specialization"
- STATISTIC(NumFuncSpecialized, "Number of functions specialized");
- static cl::opt<bool> ForceFunctionSpecialization(
- "force-function-specialization", cl::init(false), cl::Hidden,
- cl::desc("Force function specialization for every call site with a "
- "constant argument"));
- static cl::opt<unsigned> MaxClonesThreshold(
- "func-specialization-max-clones", cl::Hidden,
- cl::desc("The maximum number of clones allowed for a single function "
- "specialization"),
- cl::init(3));
- static cl::opt<unsigned> SmallFunctionThreshold(
- "func-specialization-size-threshold", cl::Hidden,
- cl::desc("Don't specialize functions that have less than this theshold "
- "number of instructions"),
- cl::init(100));
- static cl::opt<unsigned>
- AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
- cl::desc("Average loop iteration count cost"),
- cl::init(10));
- static cl::opt<bool> SpecializeOnAddresses(
- "func-specialization-on-address", cl::init(false), cl::Hidden,
- cl::desc("Enable function specialization on the address of global values"));
- // Disabled by default as it can significantly increase compilation times.
- //
- // https://llvm-compile-time-tracker.com
- // https://github.com/nikic/llvm-compile-time-tracker
- static cl::opt<bool> EnableSpecializationForLiteralConstant(
- "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
- cl::desc("Enable specialization of functions that take a literal constant "
- "as an argument."));
- Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
- CallInst *Call) {
- Value *StoreValue = nullptr;
- for (auto *User : Alloca->users()) {
- // We can't use llvm::isAllocaPromotable() as that would fail because of
- // the usage in the CallInst, which is what we check here.
- if (User == Call)
- continue;
- if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
- if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
- return nullptr;
- continue;
- }
- if (auto *Store = dyn_cast<StoreInst>(User)) {
- // This is a duplicate store, bail out.
- if (StoreValue || Store->isVolatile())
- return nullptr;
- StoreValue = Store->getValueOperand();
- continue;
- }
- // Bail if there is any other unknown usage.
- return nullptr;
- }
- return getCandidateConstant(StoreValue);
- }
- // A constant stack value is an AllocaInst that has a single constant
- // value stored to it. Return this constant if such an alloca stack value
- // is a function argument.
- Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
- Value *Val) {
- if (!Val)
- return nullptr;
- Val = Val->stripPointerCasts();
- if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
- return ConstVal;
- auto *Alloca = dyn_cast<AllocaInst>(Val);
- if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
- return nullptr;
- return getPromotableAlloca(Alloca, Call);
- }
- // To support specializing recursive functions, it is important to propagate
- // constant arguments because after a first iteration of specialisation, a
- // reduced example may look like this:
- //
- // define internal void @RecursiveFn(i32* arg1) {
- // %temp = alloca i32, align 4
- // store i32 2 i32* %temp, align 4
- // call void @RecursiveFn.1(i32* nonnull %temp)
- // ret void
- // }
- //
- // Before a next iteration, we need to propagate the constant like so
- // which allows further specialization in next iterations.
- //
- // @funcspec.arg = internal constant i32 2
- //
- // define internal void @someFunc(i32* arg1) {
- // call void @otherFunc(i32* nonnull @funcspec.arg)
- // ret void
- // }
- //
- void FunctionSpecializer::promoteConstantStackValues() {
- // Iterate over the argument tracked functions see if there
- // are any new constant values for the call instruction via
- // stack variables.
- for (Function &F : M) {
- if (!Solver.isArgumentTrackedFunction(&F))
- continue;
- for (auto *User : F.users()) {
- auto *Call = dyn_cast<CallInst>(User);
- if (!Call)
- continue;
- if (!Solver.isBlockExecutable(Call->getParent()))
- continue;
- bool Changed = false;
- for (const Use &U : Call->args()) {
- unsigned Idx = Call->getArgOperandNo(&U);
- Value *ArgOp = Call->getArgOperand(Idx);
- Type *ArgOpType = ArgOp->getType();
- if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
- continue;
- auto *ConstVal = getConstantStackValue(Call, ArgOp);
- if (!ConstVal)
- continue;
- Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
- GlobalValue::InternalLinkage, ConstVal,
- "funcspec.arg");
- if (ArgOpType != ConstVal->getType())
- GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
- Call->setArgOperand(Idx, GV);
- Changed = true;
- }
- // Add the changed CallInst to Solver Worklist
- if (Changed)
- Solver.visitCall(*Call);
- }
- }
- }
- // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
- // interfere with the promoteConstantStackValues() optimization.
- static void removeSSACopy(Function &F) {
- for (BasicBlock &BB : F) {
- for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
- auto *II = dyn_cast<IntrinsicInst>(&Inst);
- if (!II)
- continue;
- if (II->getIntrinsicID() != Intrinsic::ssa_copy)
- continue;
- Inst.replaceAllUsesWith(II->getOperand(0));
- Inst.eraseFromParent();
- }
- }
- }
- /// Remove any ssa_copy intrinsics that may have been introduced.
- void FunctionSpecializer::cleanUpSSA() {
- for (Function *F : SpecializedFuncs)
- removeSSACopy(*F);
- }
- template <> struct llvm::DenseMapInfo<SpecSig> {
- static inline SpecSig getEmptyKey() { return {~0U, {}}; }
- static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
- static unsigned getHashValue(const SpecSig &S) {
- return static_cast<unsigned>(hash_value(S));
- }
- static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
- return LHS == RHS;
- }
- };
- /// Attempt to specialize functions in the module to enable constant
- /// propagation across function boundaries.
- ///
- /// \returns true if at least one function is specialized.
- bool FunctionSpecializer::run() {
- // Find possible specializations for each function.
- SpecMap SM;
- SmallVector<Spec, 32> AllSpecs;
- unsigned NumCandidates = 0;
- for (Function &F : M) {
- if (!isCandidateFunction(&F))
- continue;
- auto Cost = getSpecializationCost(&F);
- if (!Cost.isValid()) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialization cost for "
- << F.getName() << "\n");
- continue;
- }
- LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
- << F.getName() << " is " << Cost << "\n");
- if (!findSpecializations(&F, Cost, AllSpecs, SM)) {
- LLVM_DEBUG(
- dbgs() << "FnSpecialization: No possible specializations found for "
- << F.getName() << "\n");
- continue;
- }
- ++NumCandidates;
- }
- if (!NumCandidates) {
- LLVM_DEBUG(
- dbgs()
- << "FnSpecialization: No possible specializations found in module\n");
- return false;
- }
- // Choose the most profitable specialisations, which fit in the module
- // specialization budget, which is derived from maximum number of
- // specializations per specialization candidate function.
- auto CompareGain = [&AllSpecs](unsigned I, unsigned J) {
- return AllSpecs[I].Gain > AllSpecs[J].Gain;
- };
- const unsigned NSpecs =
- std::min(NumCandidates * MaxClonesThreshold, unsigned(AllSpecs.size()));
- SmallVector<unsigned> BestSpecs(NSpecs + 1);
- std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
- if (AllSpecs.size() > NSpecs) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
- << "the maximum number of clones threshold.\n"
- << "FnSpecialization: Specializing the "
- << NSpecs
- << " most profitable candidates.\n");
- std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareGain);
- for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
- BestSpecs[NSpecs] = I;
- std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
- std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
- }
- }
- LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
- for (unsigned I = 0; I < NSpecs; ++I) {
- const Spec &S = AllSpecs[BestSpecs[I]];
- dbgs() << "FnSpecialization: Function " << S.F->getName()
- << " , gain " << S.Gain << "\n";
- for (const ArgInfo &Arg : S.Sig.Args)
- dbgs() << "FnSpecialization: FormalArg = "
- << Arg.Formal->getNameOrAsOperand()
- << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
- << "\n";
- });
- // Create the chosen specializations.
- SmallPtrSet<Function *, 8> OriginalFuncs;
- SmallVector<Function *> Clones;
- for (unsigned I = 0; I < NSpecs; ++I) {
- Spec &S = AllSpecs[BestSpecs[I]];
- S.Clone = createSpecialization(S.F, S.Sig);
- // Update the known call sites to call the clone.
- for (CallBase *Call : S.CallSites) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
- << " to call " << S.Clone->getName() << "\n");
- Call->setCalledFunction(S.Clone);
- }
- Clones.push_back(S.Clone);
- OriginalFuncs.insert(S.F);
- }
- Solver.solveWhileResolvedUndefsIn(Clones);
- // Update the rest of the call sites - these are the recursive calls, calls
- // to discarded specialisations and calls that may match a specialisation
- // after the solver runs.
- for (Function *F : OriginalFuncs) {
- auto [Begin, End] = SM[F];
- updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
- }
- promoteConstantStackValues();
- LLVM_DEBUG(if (NbFunctionsSpecialized) dbgs()
- << "FnSpecialization: Specialized " << NbFunctionsSpecialized
- << " functions in module " << M.getName() << "\n");
- NumFuncSpecialized += NbFunctionsSpecialized;
- return true;
- }
- void FunctionSpecializer::removeDeadFunctions() {
- for (Function *F : FullySpecialized) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
- << F->getName() << "\n");
- if (FAM)
- FAM->clear(*F, F->getName());
- F->eraseFromParent();
- }
- FullySpecialized.clear();
- }
- // Compute the code metrics for function \p F.
- CodeMetrics &FunctionSpecializer::analyzeFunction(Function *F) {
- auto I = FunctionMetrics.insert({F, CodeMetrics()});
- CodeMetrics &Metrics = I.first->second;
- if (I.second) {
- // The code metrics were not cached.
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
- for (BasicBlock &BB : *F)
- Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
- LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
- << F->getName() << " is " << Metrics.NumInsts
- << " instructions\n");
- }
- return Metrics;
- }
- /// Clone the function \p F and remove the ssa_copy intrinsics added by
- /// the SCCPSolver in the cloned version.
- static Function *cloneCandidateFunction(Function *F) {
- ValueToValueMapTy Mappings;
- Function *Clone = CloneFunction(F, Mappings);
- removeSSACopy(*Clone);
- return Clone;
- }
- bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
- SmallVectorImpl<Spec> &AllSpecs,
- SpecMap &SM) {
- // A mapping from a specialisation signature to the index of the respective
- // entry in the all specialisation array. Used to ensure uniqueness of
- // specialisations.
- DenseMap<SpecSig, unsigned> UM;
- // Get a list of interesting arguments.
- SmallVector<Argument *> Args;
- for (Argument &Arg : F->args())
- if (isArgumentInteresting(&Arg))
- Args.push_back(&Arg);
- if (Args.empty())
- return false;
- bool Found = false;
- for (User *U : F->users()) {
- if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
- continue;
- auto &CS = *cast<CallBase>(U);
- // The user instruction does not call our function.
- if (CS.getCalledFunction() != F)
- continue;
- // If the call site has attribute minsize set, that callsite won't be
- // specialized.
- if (CS.hasFnAttr(Attribute::MinSize))
- continue;
- // If the parent of the call site will never be executed, we don't need
- // to worry about the passed value.
- if (!Solver.isBlockExecutable(CS.getParent()))
- continue;
- // Examine arguments and create a specialisation candidate from the
- // constant operands of this call site.
- SpecSig S;
- for (Argument *A : Args) {
- Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
- if (!C)
- continue;
- LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
- << A->getName() << " : " << C->getNameOrAsOperand()
- << "\n");
- S.Args.push_back({A, C});
- }
- if (S.Args.empty())
- continue;
- // Check if we have encountered the same specialisation already.
- if (auto It = UM.find(S); It != UM.end()) {
- // Existing specialisation. Add the call to the list to rewrite, unless
- // it's a recursive call. A specialisation, generated because of a
- // recursive call may end up as not the best specialisation for all
- // the cloned instances of this call, which result from specialising
- // functions. Hence we don't rewrite the call directly, but match it with
- // the best specialisation once all specialisations are known.
- if (CS.getFunction() == F)
- continue;
- const unsigned Index = It->second;
- AllSpecs[Index].CallSites.push_back(&CS);
- } else {
- // Calculate the specialisation gain.
- InstructionCost Gain = 0 - Cost;
- for (ArgInfo &A : S.Args)
- Gain +=
- getSpecializationBonus(A.Formal, A.Actual, Solver.getLoopInfo(*F));
- // Discard unprofitable specialisations.
- if (!ForceFunctionSpecialization && Gain <= 0)
- continue;
- // Create a new specialisation entry.
- auto &Spec = AllSpecs.emplace_back(F, S, Gain);
- if (CS.getFunction() != F)
- Spec.CallSites.push_back(&CS);
- const unsigned Index = AllSpecs.size() - 1;
- UM[S] = Index;
- if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
- It->second.second = Index + 1;
- Found = true;
- }
- }
- return Found;
- }
- bool FunctionSpecializer::isCandidateFunction(Function *F) {
- if (F->isDeclaration())
- return false;
- if (F->hasFnAttribute(Attribute::NoDuplicate))
- return false;
- if (!Solver.isArgumentTrackedFunction(F))
- return false;
- // Do not specialize the cloned function again.
- if (SpecializedFuncs.contains(F))
- return false;
- // If we're optimizing the function for size, we shouldn't specialize it.
- if (F->hasOptSize() ||
- shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
- return false;
- // Exit if the function is not executable. There's no point in specializing
- // a dead function.
- if (!Solver.isBlockExecutable(&F->getEntryBlock()))
- return false;
- // It wastes time to specialize a function which would get inlined finally.
- if (F->hasFnAttribute(Attribute::AlwaysInline))
- return false;
- LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
- << "\n");
- return true;
- }
- Function *FunctionSpecializer::createSpecialization(Function *F, const SpecSig &S) {
- Function *Clone = cloneCandidateFunction(F);
- // Initialize the lattice state of the arguments of the function clone,
- // marking the argument on which we specialized the function constant
- // with the given value.
- Solver.markArgInFuncSpecialization(Clone, S.Args);
- Solver.addArgumentTrackedFunction(Clone);
- Solver.markBlockExecutable(&Clone->front());
- // Mark all the specialized functions
- SpecializedFuncs.insert(Clone);
- NbFunctionsSpecialized++;
- return Clone;
- }
- /// Compute and return the cost of specializing function \p F.
- InstructionCost FunctionSpecializer::getSpecializationCost(Function *F) {
- CodeMetrics &Metrics = analyzeFunction(F);
- // If the code metrics reveal that we shouldn't duplicate the function, we
- // shouldn't specialize it. Set the specialization cost to Invalid.
- // Or if the lines of codes implies that this function is easy to get
- // inlined so that we shouldn't specialize it.
- if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
- (!ForceFunctionSpecialization &&
- !F->hasFnAttribute(Attribute::NoInline) &&
- Metrics.NumInsts < SmallFunctionThreshold))
- return InstructionCost::getInvalid();
- // Otherwise, set the specialization cost to be the cost of all the
- // instructions in the function.
- return Metrics.NumInsts * InlineConstants::getInstrCost();
- }
- static InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
- const LoopInfo &LI) {
- auto *I = dyn_cast_or_null<Instruction>(U);
- // If not an instruction we do not know how to evaluate.
- // Keep minimum possible cost for now so that it doesnt affect
- // specialization.
- if (!I)
- return std::numeric_limits<unsigned>::min();
- InstructionCost Cost =
- TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
- // Increase the cost if it is inside the loop.
- unsigned LoopDepth = LI.getLoopDepth(I->getParent());
- Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
- // Traverse recursively if there are more uses.
- // TODO: Any other instructions to be added here?
- if (I->mayReadFromMemory() || I->isCast())
- for (auto *User : I->users())
- Cost += getUserBonus(User, TTI, LI);
- return Cost;
- }
- /// Compute a bonus for replacing argument \p A with constant \p C.
- InstructionCost
- FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
- const LoopInfo &LI) {
- Function *F = A->getParent();
- auto &TTI = (GetTTI)(*F);
- LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
- << C->getNameOrAsOperand() << "\n");
- InstructionCost TotalCost = 0;
- for (auto *U : A->users()) {
- TotalCost += getUserBonus(U, TTI, LI);
- LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
- TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
- }
- // The below heuristic is only concerned with exposing inlining
- // opportunities via indirect call promotion. If the argument is not a
- // (potentially casted) function pointer, give up.
- Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
- if (!CalledFunction)
- return TotalCost;
- // Get TTI for the called function (used for the inline cost).
- auto &CalleeTTI = (GetTTI)(*CalledFunction);
- // Look at all the call sites whose called value is the argument.
- // Specializing the function on the argument would allow these indirect
- // calls to be promoted to direct calls. If the indirect call promotion
- // would likely enable the called function to be inlined, specializing is a
- // good idea.
- int Bonus = 0;
- for (User *U : A->users()) {
- if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
- continue;
- auto *CS = cast<CallBase>(U);
- if (CS->getCalledOperand() != A)
- continue;
- if (CS->getFunctionType() != CalledFunction->getFunctionType())
- continue;
- // Get the cost of inlining the called function at this call site. Note
- // that this is only an estimate. The called function may eventually
- // change in a way that leads to it not being inlined here, even though
- // inlining looks profitable now. For example, one of its called
- // functions may be inlined into it, making the called function too large
- // to be inlined into this call site.
- //
- // We apply a boost for performing indirect call promotion by increasing
- // the default threshold by the threshold for indirect calls.
- auto Params = getInlineParams();
- Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
- InlineCost IC =
- getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
- // We clamp the bonus for this call to be between zero and the default
- // threshold.
- if (IC.isAlways())
- Bonus += Params.DefaultThreshold;
- else if (IC.isVariable() && IC.getCostDelta() > 0)
- Bonus += IC.getCostDelta();
- LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
- << " for user " << *U << "\n");
- }
- return TotalCost + Bonus;
- }
- /// Determine if it is possible to specialise the function for constant values
- /// of the formal parameter \p A.
- bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
- // No point in specialization if the argument is unused.
- if (A->user_empty())
- return false;
- // For now, don't attempt to specialize functions based on the values of
- // composite types.
- Type *ArgTy = A->getType();
- if (!ArgTy->isSingleValueType())
- return false;
- // Specialization of integer and floating point types needs to be explicitly
- // enabled.
- if (!EnableSpecializationForLiteralConstant &&
- (ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
- return false;
- // SCCP solver does not record an argument that will be constructed on
- // stack.
- if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
- return false;
- // Check the lattice value and decide if we should attemt to specialize,
- // based on this argument. No point in specialization, if the lattice value
- // is already a constant.
- const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
- if (LV.isUnknownOrUndef() || LV.isConstant() ||
- (LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, parameter "
- << A->getNameOrAsOperand() << " is already constant\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting parameter "
- << A->getNameOrAsOperand() << "\n");
- return true;
- }
- /// Check if the valuy \p V (an actual argument) is a constant or can only
- /// have a constant value. Return that constant.
- Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
- if (isa<PoisonValue>(V))
- return nullptr;
- // TrackValueOfGlobalVariable only tracks scalar global variables.
- if (auto *GV = dyn_cast<GlobalVariable>(V)) {
- // Check if we want to specialize on the address of non-constant
- // global values.
- if (!GV->isConstant() && !SpecializeOnAddresses)
- return nullptr;
- if (!GV->getValueType()->isSingleValueType())
- return nullptr;
- }
- // Select for possible specialisation values that are constants or
- // are deduced to be constants or constant ranges with a single element.
- Constant *C = dyn_cast<Constant>(V);
- if (!C) {
- const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
- if (LV.isConstant())
- C = LV.getConstant();
- else if (LV.isConstantRange() && LV.getConstantRange().isSingleElement()) {
- assert(V->getType()->isIntegerTy() && "Non-integral constant range");
- C = Constant::getIntegerValue(V->getType(),
- *LV.getConstantRange().getSingleElement());
- } else
- return nullptr;
- }
- return C;
- }
- void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
- const Spec *End) {
- // Collect the call sites that need updating.
- SmallVector<CallBase *> ToUpdate;
- for (User *U : F->users())
- if (auto *CS = dyn_cast<CallBase>(U);
- CS && CS->getCalledFunction() == F &&
- Solver.isBlockExecutable(CS->getParent()))
- ToUpdate.push_back(CS);
- unsigned NCallsLeft = ToUpdate.size();
- for (CallBase *CS : ToUpdate) {
- bool ShouldDecrementCount = CS->getFunction() == F;
- // Find the best matching specialisation.
- const Spec *BestSpec = nullptr;
- for (const Spec &S : make_range(Begin, End)) {
- if (!S.Clone || (BestSpec && S.Gain <= BestSpec->Gain))
- continue;
- if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
- unsigned ArgNo = Arg.Formal->getArgNo();
- return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
- }))
- continue;
- BestSpec = &S;
- }
- if (BestSpec) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
- << " to call " << BestSpec->Clone->getName() << "\n");
- CS->setCalledFunction(BestSpec->Clone);
- ShouldDecrementCount = true;
- }
- if (ShouldDecrementCount)
- --NCallsLeft;
- }
- // If the function has been completely specialized, the original function
- // is no longer needed. Mark it unreachable.
- if (NCallsLeft == 0) {
- Solver.markFunctionUnreachable(F);
- FullySpecialized.insert(F);
- }
- }
|