123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260 |
- //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/MC/MCAssembler.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/MC/MCAsmBackend.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCAsmLayout.h"
- #include "llvm/MC/MCCodeEmitter.h"
- #include "llvm/MC/MCCodeView.h"
- #include "llvm/MC/MCContext.h"
- #include "llvm/MC/MCDwarf.h"
- #include "llvm/MC/MCExpr.h"
- #include "llvm/MC/MCFixup.h"
- #include "llvm/MC/MCFixupKindInfo.h"
- #include "llvm/MC/MCFragment.h"
- #include "llvm/MC/MCInst.h"
- #include "llvm/MC/MCObjectWriter.h"
- #include "llvm/MC/MCSection.h"
- #include "llvm/MC/MCSymbol.h"
- #include "llvm/MC/MCValue.h"
- #include "llvm/Support/Alignment.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/EndianStream.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/LEB128.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <cstdint>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- namespace llvm {
- class MCSubtargetInfo;
- }
- #define DEBUG_TYPE "assembler"
- namespace {
- namespace stats {
- STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
- STATISTIC(EmittedRelaxableFragments,
- "Number of emitted assembler fragments - relaxable");
- STATISTIC(EmittedDataFragments,
- "Number of emitted assembler fragments - data");
- STATISTIC(EmittedCompactEncodedInstFragments,
- "Number of emitted assembler fragments - compact encoded inst");
- STATISTIC(EmittedAlignFragments,
- "Number of emitted assembler fragments - align");
- STATISTIC(EmittedFillFragments,
- "Number of emitted assembler fragments - fill");
- STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
- STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
- STATISTIC(evaluateFixup, "Number of evaluated fixups");
- STATISTIC(FragmentLayouts, "Number of fragment layouts");
- STATISTIC(ObjectBytes, "Number of emitted object file bytes");
- STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
- STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
- } // end namespace stats
- } // end anonymous namespace
- // FIXME FIXME FIXME: There are number of places in this file where we convert
- // what is a 64-bit assembler value used for computation into a value in the
- // object file, which may truncate it. We should detect that truncation where
- // invalid and report errors back.
- /* *** */
- MCAssembler::MCAssembler(MCContext &Context,
- std::unique_ptr<MCAsmBackend> Backend,
- std::unique_ptr<MCCodeEmitter> Emitter,
- std::unique_ptr<MCObjectWriter> Writer)
- : Context(Context), Backend(std::move(Backend)),
- Emitter(std::move(Emitter)), Writer(std::move(Writer)),
- BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
- IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
- VersionInfo.Major = 0; // Major version == 0 for "none specified"
- DarwinTargetVariantVersionInfo.Major = 0;
- }
- MCAssembler::~MCAssembler() = default;
- void MCAssembler::reset() {
- Sections.clear();
- Symbols.clear();
- IndirectSymbols.clear();
- DataRegions.clear();
- LinkerOptions.clear();
- FileNames.clear();
- ThumbFuncs.clear();
- BundleAlignSize = 0;
- RelaxAll = false;
- SubsectionsViaSymbols = false;
- IncrementalLinkerCompatible = false;
- ELFHeaderEFlags = 0;
- LOHContainer.reset();
- VersionInfo.Major = 0;
- VersionInfo.SDKVersion = VersionTuple();
- DarwinTargetVariantVersionInfo.Major = 0;
- DarwinTargetVariantVersionInfo.SDKVersion = VersionTuple();
- // reset objects owned by us
- if (getBackendPtr())
- getBackendPtr()->reset();
- if (getEmitterPtr())
- getEmitterPtr()->reset();
- if (getWriterPtr())
- getWriterPtr()->reset();
- getLOHContainer().reset();
- }
- bool MCAssembler::registerSection(MCSection &Section) {
- if (Section.isRegistered())
- return false;
- Sections.push_back(&Section);
- Section.setIsRegistered(true);
- return true;
- }
- bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
- if (ThumbFuncs.count(Symbol))
- return true;
- if (!Symbol->isVariable())
- return false;
- const MCExpr *Expr = Symbol->getVariableValue();
- MCValue V;
- if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
- return false;
- if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
- return false;
- const MCSymbolRefExpr *Ref = V.getSymA();
- if (!Ref)
- return false;
- if (Ref->getKind() != MCSymbolRefExpr::VK_None)
- return false;
- const MCSymbol &Sym = Ref->getSymbol();
- if (!isThumbFunc(&Sym))
- return false;
- ThumbFuncs.insert(Symbol); // Cache it.
- return true;
- }
- bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
- // Non-temporary labels should always be visible to the linker.
- if (!Symbol.isTemporary())
- return true;
- if (Symbol.isUsedInReloc())
- return true;
- return false;
- }
- const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
- // Linker visible symbols define atoms.
- if (isSymbolLinkerVisible(S))
- return &S;
- // Absolute and undefined symbols have no defining atom.
- if (!S.isInSection())
- return nullptr;
- // Non-linker visible symbols in sections which can't be atomized have no
- // defining atom.
- if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
- *S.getFragment()->getParent()))
- return nullptr;
- // Otherwise, return the atom for the containing fragment.
- return S.getFragment()->getAtom();
- }
- bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
- const MCFixup &Fixup, const MCFragment *DF,
- MCValue &Target, uint64_t &Value,
- bool &WasForced) const {
- ++stats::evaluateFixup;
- // FIXME: This code has some duplication with recordRelocation. We should
- // probably merge the two into a single callback that tries to evaluate a
- // fixup and records a relocation if one is needed.
- // On error claim to have completely evaluated the fixup, to prevent any
- // further processing from being done.
- const MCExpr *Expr = Fixup.getValue();
- MCContext &Ctx = getContext();
- Value = 0;
- WasForced = false;
- if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
- Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
- return true;
- }
- if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
- if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
- Ctx.reportError(Fixup.getLoc(),
- "unsupported subtraction of qualified symbol");
- return true;
- }
- }
- assert(getBackendPtr() && "Expected assembler backend");
- bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
- MCFixupKindInfo::FKF_IsTarget;
- if (IsTarget)
- return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
- Value, WasForced);
- unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
- bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
- MCFixupKindInfo::FKF_IsPCRel;
- bool IsResolved = false;
- if (IsPCRel) {
- if (Target.getSymB()) {
- IsResolved = false;
- } else if (!Target.getSymA()) {
- IsResolved = false;
- } else {
- const MCSymbolRefExpr *A = Target.getSymA();
- const MCSymbol &SA = A->getSymbol();
- if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
- IsResolved = false;
- } else if (auto *Writer = getWriterPtr()) {
- IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
- Writer->isSymbolRefDifferenceFullyResolvedImpl(
- *this, SA, *DF, false, true);
- }
- }
- } else {
- IsResolved = Target.isAbsolute();
- }
- Value = Target.getConstant();
- if (const MCSymbolRefExpr *A = Target.getSymA()) {
- const MCSymbol &Sym = A->getSymbol();
- if (Sym.isDefined())
- Value += Layout.getSymbolOffset(Sym);
- }
- if (const MCSymbolRefExpr *B = Target.getSymB()) {
- const MCSymbol &Sym = B->getSymbol();
- if (Sym.isDefined())
- Value -= Layout.getSymbolOffset(Sym);
- }
- bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
- MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
- assert((ShouldAlignPC ? IsPCRel : true) &&
- "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
- if (IsPCRel) {
- uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
- // A number of ARM fixups in Thumb mode require that the effective PC
- // address be determined as the 32-bit aligned version of the actual offset.
- if (ShouldAlignPC) Offset &= ~0x3;
- Value -= Offset;
- }
- // Let the backend force a relocation if needed.
- if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
- IsResolved = false;
- WasForced = true;
- }
- return IsResolved;
- }
- uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
- const MCFragment &F) const {
- assert(getBackendPtr() && "Requires assembler backend");
- switch (F.getKind()) {
- case MCFragment::FT_Data:
- return cast<MCDataFragment>(F).getContents().size();
- case MCFragment::FT_Relaxable:
- return cast<MCRelaxableFragment>(F).getContents().size();
- case MCFragment::FT_CompactEncodedInst:
- return cast<MCCompactEncodedInstFragment>(F).getContents().size();
- case MCFragment::FT_Fill: {
- auto &FF = cast<MCFillFragment>(F);
- int64_t NumValues = 0;
- if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
- getContext().reportError(FF.getLoc(),
- "expected assembly-time absolute expression");
- return 0;
- }
- int64_t Size = NumValues * FF.getValueSize();
- if (Size < 0) {
- getContext().reportError(FF.getLoc(), "invalid number of bytes");
- return 0;
- }
- return Size;
- }
- case MCFragment::FT_Nops:
- return cast<MCNopsFragment>(F).getNumBytes();
- case MCFragment::FT_LEB:
- return cast<MCLEBFragment>(F).getContents().size();
- case MCFragment::FT_BoundaryAlign:
- return cast<MCBoundaryAlignFragment>(F).getSize();
- case MCFragment::FT_SymbolId:
- return 4;
- case MCFragment::FT_Align: {
- const MCAlignFragment &AF = cast<MCAlignFragment>(F);
- unsigned Offset = Layout.getFragmentOffset(&AF);
- unsigned Size = offsetToAlignment(Offset, AF.getAlignment());
- // Insert extra Nops for code alignment if the target define
- // shouldInsertExtraNopBytesForCodeAlign target hook.
- if (AF.getParent()->useCodeAlign() && AF.hasEmitNops() &&
- getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
- return Size;
- // If we are padding with nops, force the padding to be larger than the
- // minimum nop size.
- if (Size > 0 && AF.hasEmitNops()) {
- while (Size % getBackend().getMinimumNopSize())
- Size += AF.getAlignment().value();
- }
- if (Size > AF.getMaxBytesToEmit())
- return 0;
- return Size;
- }
- case MCFragment::FT_Org: {
- const MCOrgFragment &OF = cast<MCOrgFragment>(F);
- MCValue Value;
- if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
- getContext().reportError(OF.getLoc(),
- "expected assembly-time absolute expression");
- return 0;
- }
- uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
- int64_t TargetLocation = Value.getConstant();
- if (const MCSymbolRefExpr *A = Value.getSymA()) {
- uint64_t Val;
- if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
- getContext().reportError(OF.getLoc(), "expected absolute expression");
- return 0;
- }
- TargetLocation += Val;
- }
- int64_t Size = TargetLocation - FragmentOffset;
- if (Size < 0 || Size >= 0x40000000) {
- getContext().reportError(
- OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
- "' (at offset '" + Twine(FragmentOffset) + "')");
- return 0;
- }
- return Size;
- }
- case MCFragment::FT_Dwarf:
- return cast<MCDwarfLineAddrFragment>(F).getContents().size();
- case MCFragment::FT_DwarfFrame:
- return cast<MCDwarfCallFrameFragment>(F).getContents().size();
- case MCFragment::FT_CVInlineLines:
- return cast<MCCVInlineLineTableFragment>(F).getContents().size();
- case MCFragment::FT_CVDefRange:
- return cast<MCCVDefRangeFragment>(F).getContents().size();
- case MCFragment::FT_PseudoProbe:
- return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
- case MCFragment::FT_Dummy:
- llvm_unreachable("Should not have been added");
- }
- llvm_unreachable("invalid fragment kind");
- }
- void MCAsmLayout::layoutFragment(MCFragment *F) {
- MCFragment *Prev = F->getPrevNode();
- // We should never try to recompute something which is valid.
- assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
- // We should never try to compute the fragment layout if its predecessor
- // isn't valid.
- assert((!Prev || isFragmentValid(Prev)) &&
- "Attempt to compute fragment before its predecessor!");
- assert(!F->IsBeingLaidOut && "Already being laid out!");
- F->IsBeingLaidOut = true;
- ++stats::FragmentLayouts;
- // Compute fragment offset and size.
- if (Prev)
- F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
- else
- F->Offset = 0;
- F->IsBeingLaidOut = false;
- LastValidFragment[F->getParent()] = F;
- // If bundling is enabled and this fragment has instructions in it, it has to
- // obey the bundling restrictions. With padding, we'll have:
- //
- //
- // BundlePadding
- // |||
- // -------------------------------------
- // Prev |##########| F |
- // -------------------------------------
- // ^
- // |
- // F->Offset
- //
- // The fragment's offset will point to after the padding, and its computed
- // size won't include the padding.
- //
- // When the -mc-relax-all flag is used, we optimize bundling by writting the
- // padding directly into fragments when the instructions are emitted inside
- // the streamer. When the fragment is larger than the bundle size, we need to
- // ensure that it's bundle aligned. This means that if we end up with
- // multiple fragments, we must emit bundle padding between fragments.
- //
- // ".align N" is an example of a directive that introduces multiple
- // fragments. We could add a special case to handle ".align N" by emitting
- // within-fragment padding (which would produce less padding when N is less
- // than the bundle size), but for now we don't.
- //
- if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
- assert(isa<MCEncodedFragment>(F) &&
- "Only MCEncodedFragment implementations have instructions");
- MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
- uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
- if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
- report_fatal_error("Fragment can't be larger than a bundle size");
- uint64_t RequiredBundlePadding =
- computeBundlePadding(Assembler, EF, EF->Offset, FSize);
- if (RequiredBundlePadding > UINT8_MAX)
- report_fatal_error("Padding cannot exceed 255 bytes");
- EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
- EF->Offset += RequiredBundlePadding;
- }
- }
- void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
- bool New = !Symbol.isRegistered();
- if (Created)
- *Created = New;
- if (New) {
- Symbol.setIsRegistered(true);
- Symbols.push_back(&Symbol);
- }
- }
- void MCAssembler::writeFragmentPadding(raw_ostream &OS,
- const MCEncodedFragment &EF,
- uint64_t FSize) const {
- assert(getBackendPtr() && "Expected assembler backend");
- // Should NOP padding be written out before this fragment?
- unsigned BundlePadding = EF.getBundlePadding();
- if (BundlePadding > 0) {
- assert(isBundlingEnabled() &&
- "Writing bundle padding with disabled bundling");
- assert(EF.hasInstructions() &&
- "Writing bundle padding for a fragment without instructions");
- unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
- const MCSubtargetInfo *STI = EF.getSubtargetInfo();
- if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
- // If the padding itself crosses a bundle boundary, it must be emitted
- // in 2 pieces, since even nop instructions must not cross boundaries.
- // v--------------v <- BundleAlignSize
- // v---------v <- BundlePadding
- // ----------------------------
- // | Prev |####|####| F |
- // ----------------------------
- // ^-------------------^ <- TotalLength
- unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
- if (!getBackend().writeNopData(OS, DistanceToBoundary, STI))
- report_fatal_error("unable to write NOP sequence of " +
- Twine(DistanceToBoundary) + " bytes");
- BundlePadding -= DistanceToBoundary;
- }
- if (!getBackend().writeNopData(OS, BundlePadding, STI))
- report_fatal_error("unable to write NOP sequence of " +
- Twine(BundlePadding) + " bytes");
- }
- }
- /// Write the fragment \p F to the output file.
- static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
- const MCAsmLayout &Layout, const MCFragment &F) {
- // FIXME: Embed in fragments instead?
- uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
- support::endianness Endian = Asm.getBackend().Endian;
- if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
- Asm.writeFragmentPadding(OS, *EF, FragmentSize);
- // This variable (and its dummy usage) is to participate in the assert at
- // the end of the function.
- uint64_t Start = OS.tell();
- (void) Start;
- ++stats::EmittedFragments;
- switch (F.getKind()) {
- case MCFragment::FT_Align: {
- ++stats::EmittedAlignFragments;
- const MCAlignFragment &AF = cast<MCAlignFragment>(F);
- assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
- uint64_t Count = FragmentSize / AF.getValueSize();
- // FIXME: This error shouldn't actually occur (the front end should emit
- // multiple .align directives to enforce the semantics it wants), but is
- // severe enough that we want to report it. How to handle this?
- if (Count * AF.getValueSize() != FragmentSize)
- report_fatal_error("undefined .align directive, value size '" +
- Twine(AF.getValueSize()) +
- "' is not a divisor of padding size '" +
- Twine(FragmentSize) + "'");
- // See if we are aligning with nops, and if so do that first to try to fill
- // the Count bytes. Then if that did not fill any bytes or there are any
- // bytes left to fill use the Value and ValueSize to fill the rest.
- // If we are aligning with nops, ask that target to emit the right data.
- if (AF.hasEmitNops()) {
- if (!Asm.getBackend().writeNopData(OS, Count, AF.getSubtargetInfo()))
- report_fatal_error("unable to write nop sequence of " +
- Twine(Count) + " bytes");
- break;
- }
- // Otherwise, write out in multiples of the value size.
- for (uint64_t i = 0; i != Count; ++i) {
- switch (AF.getValueSize()) {
- default: llvm_unreachable("Invalid size!");
- case 1: OS << char(AF.getValue()); break;
- case 2:
- support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
- break;
- case 4:
- support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
- break;
- case 8:
- support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
- break;
- }
- }
- break;
- }
- case MCFragment::FT_Data:
- ++stats::EmittedDataFragments;
- OS << cast<MCDataFragment>(F).getContents();
- break;
- case MCFragment::FT_Relaxable:
- ++stats::EmittedRelaxableFragments;
- OS << cast<MCRelaxableFragment>(F).getContents();
- break;
- case MCFragment::FT_CompactEncodedInst:
- ++stats::EmittedCompactEncodedInstFragments;
- OS << cast<MCCompactEncodedInstFragment>(F).getContents();
- break;
- case MCFragment::FT_Fill: {
- ++stats::EmittedFillFragments;
- const MCFillFragment &FF = cast<MCFillFragment>(F);
- uint64_t V = FF.getValue();
- unsigned VSize = FF.getValueSize();
- const unsigned MaxChunkSize = 16;
- char Data[MaxChunkSize];
- assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
- // Duplicate V into Data as byte vector to reduce number of
- // writes done. As such, do endian conversion here.
- for (unsigned I = 0; I != VSize; ++I) {
- unsigned index = Endian == support::little ? I : (VSize - I - 1);
- Data[I] = uint8_t(V >> (index * 8));
- }
- for (unsigned I = VSize; I < MaxChunkSize; ++I)
- Data[I] = Data[I - VSize];
- // Set to largest multiple of VSize in Data.
- const unsigned NumPerChunk = MaxChunkSize / VSize;
- // Set ChunkSize to largest multiple of VSize in Data
- const unsigned ChunkSize = VSize * NumPerChunk;
- // Do copies by chunk.
- StringRef Ref(Data, ChunkSize);
- for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
- OS << Ref;
- // do remainder if needed.
- unsigned TrailingCount = FragmentSize % ChunkSize;
- if (TrailingCount)
- OS.write(Data, TrailingCount);
- break;
- }
- case MCFragment::FT_Nops: {
- ++stats::EmittedNopsFragments;
- const MCNopsFragment &NF = cast<MCNopsFragment>(F);
- int64_t NumBytes = NF.getNumBytes();
- int64_t ControlledNopLength = NF.getControlledNopLength();
- int64_t MaximumNopLength =
- Asm.getBackend().getMaximumNopSize(*NF.getSubtargetInfo());
- assert(NumBytes > 0 && "Expected positive NOPs fragment size");
- assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
- if (ControlledNopLength > MaximumNopLength) {
- Asm.getContext().reportError(NF.getLoc(),
- "illegal NOP size " +
- std::to_string(ControlledNopLength) +
- ". (expected within [0, " +
- std::to_string(MaximumNopLength) + "])");
- // Clamp the NOP length as reportError does not stop the execution
- // immediately.
- ControlledNopLength = MaximumNopLength;
- }
- // Use maximum value if the size of each NOP is not specified
- if (!ControlledNopLength)
- ControlledNopLength = MaximumNopLength;
- while (NumBytes) {
- uint64_t NumBytesToEmit =
- (uint64_t)std::min(NumBytes, ControlledNopLength);
- assert(NumBytesToEmit && "try to emit empty NOP instruction");
- if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit,
- NF.getSubtargetInfo())) {
- report_fatal_error("unable to write nop sequence of the remaining " +
- Twine(NumBytesToEmit) + " bytes");
- break;
- }
- NumBytes -= NumBytesToEmit;
- }
- break;
- }
- case MCFragment::FT_LEB: {
- const MCLEBFragment &LF = cast<MCLEBFragment>(F);
- OS << LF.getContents();
- break;
- }
- case MCFragment::FT_BoundaryAlign: {
- const MCBoundaryAlignFragment &BF = cast<MCBoundaryAlignFragment>(F);
- if (!Asm.getBackend().writeNopData(OS, FragmentSize, BF.getSubtargetInfo()))
- report_fatal_error("unable to write nop sequence of " +
- Twine(FragmentSize) + " bytes");
- break;
- }
- case MCFragment::FT_SymbolId: {
- const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
- support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
- break;
- }
- case MCFragment::FT_Org: {
- ++stats::EmittedOrgFragments;
- const MCOrgFragment &OF = cast<MCOrgFragment>(F);
- for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
- OS << char(OF.getValue());
- break;
- }
- case MCFragment::FT_Dwarf: {
- const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
- OS << OF.getContents();
- break;
- }
- case MCFragment::FT_DwarfFrame: {
- const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
- OS << CF.getContents();
- break;
- }
- case MCFragment::FT_CVInlineLines: {
- const auto &OF = cast<MCCVInlineLineTableFragment>(F);
- OS << OF.getContents();
- break;
- }
- case MCFragment::FT_CVDefRange: {
- const auto &DRF = cast<MCCVDefRangeFragment>(F);
- OS << DRF.getContents();
- break;
- }
- case MCFragment::FT_PseudoProbe: {
- const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
- OS << PF.getContents();
- break;
- }
- case MCFragment::FT_Dummy:
- llvm_unreachable("Should not have been added");
- }
- assert(OS.tell() - Start == FragmentSize &&
- "The stream should advance by fragment size");
- }
- void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
- const MCAsmLayout &Layout) const {
- assert(getBackendPtr() && "Expected assembler backend");
- // Ignore virtual sections.
- if (Sec->isVirtualSection()) {
- assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
- // Check that contents are only things legal inside a virtual section.
- for (const MCFragment &F : *Sec) {
- switch (F.getKind()) {
- default: llvm_unreachable("Invalid fragment in virtual section!");
- case MCFragment::FT_Data: {
- // Check that we aren't trying to write a non-zero contents (or fixups)
- // into a virtual section. This is to support clients which use standard
- // directives to fill the contents of virtual sections.
- const MCDataFragment &DF = cast<MCDataFragment>(F);
- if (DF.fixup_begin() != DF.fixup_end())
- getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
- " section '" + Sec->getName() +
- "' cannot have fixups");
- for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
- if (DF.getContents()[i]) {
- getContext().reportError(SMLoc(),
- Sec->getVirtualSectionKind() +
- " section '" + Sec->getName() +
- "' cannot have non-zero initializers");
- break;
- }
- break;
- }
- case MCFragment::FT_Align:
- // Check that we aren't trying to write a non-zero value into a virtual
- // section.
- assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
- cast<MCAlignFragment>(F).getValue() == 0) &&
- "Invalid align in virtual section!");
- break;
- case MCFragment::FT_Fill:
- assert((cast<MCFillFragment>(F).getValue() == 0) &&
- "Invalid fill in virtual section!");
- break;
- case MCFragment::FT_Org:
- break;
- }
- }
- return;
- }
- uint64_t Start = OS.tell();
- (void)Start;
- for (const MCFragment &F : *Sec)
- writeFragment(OS, *this, Layout, F);
- assert(getContext().hadError() ||
- OS.tell() - Start == Layout.getSectionAddressSize(Sec));
- }
- std::tuple<MCValue, uint64_t, bool>
- MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
- const MCFixup &Fixup) {
- // Evaluate the fixup.
- MCValue Target;
- uint64_t FixedValue;
- bool WasForced;
- bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
- WasForced);
- if (!IsResolved) {
- // The fixup was unresolved, we need a relocation. Inform the object
- // writer of the relocation, and give it an opportunity to adjust the
- // fixup value if need be.
- getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
- }
- return std::make_tuple(Target, FixedValue, IsResolved);
- }
- void MCAssembler::layout(MCAsmLayout &Layout) {
- assert(getBackendPtr() && "Expected assembler backend");
- DEBUG_WITH_TYPE("mc-dump", {
- errs() << "assembler backend - pre-layout\n--\n";
- dump(); });
- // Create dummy fragments and assign section ordinals.
- unsigned SectionIndex = 0;
- for (MCSection &Sec : *this) {
- // Create dummy fragments to eliminate any empty sections, this simplifies
- // layout.
- if (Sec.getFragmentList().empty())
- new MCDataFragment(&Sec);
- Sec.setOrdinal(SectionIndex++);
- }
- // Assign layout order indices to sections and fragments.
- for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
- MCSection *Sec = Layout.getSectionOrder()[i];
- Sec->setLayoutOrder(i);
- unsigned FragmentIndex = 0;
- for (MCFragment &Frag : *Sec)
- Frag.setLayoutOrder(FragmentIndex++);
- }
- // Layout until everything fits.
- while (layoutOnce(Layout)) {
- if (getContext().hadError())
- return;
- // Size of fragments in one section can depend on the size of fragments in
- // another. If any fragment has changed size, we have to re-layout (and
- // as a result possibly further relax) all.
- for (MCSection &Sec : *this)
- Layout.invalidateFragmentsFrom(&*Sec.begin());
- }
- DEBUG_WITH_TYPE("mc-dump", {
- errs() << "assembler backend - post-relaxation\n--\n";
- dump(); });
- // Finalize the layout, including fragment lowering.
- finishLayout(Layout);
- DEBUG_WITH_TYPE("mc-dump", {
- errs() << "assembler backend - final-layout\n--\n";
- dump(); });
- // Allow the object writer a chance to perform post-layout binding (for
- // example, to set the index fields in the symbol data).
- getWriter().executePostLayoutBinding(*this, Layout);
- // Evaluate and apply the fixups, generating relocation entries as necessary.
- for (MCSection &Sec : *this) {
- for (MCFragment &Frag : Sec) {
- ArrayRef<MCFixup> Fixups;
- MutableArrayRef<char> Contents;
- const MCSubtargetInfo *STI = nullptr;
- // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
- switch (Frag.getKind()) {
- default:
- continue;
- case MCFragment::FT_Align: {
- MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
- // Insert fixup type for code alignment if the target define
- // shouldInsertFixupForCodeAlign target hook.
- if (Sec.useCodeAlign() && AF.hasEmitNops())
- getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF);
- continue;
- }
- case MCFragment::FT_Data: {
- MCDataFragment &DF = cast<MCDataFragment>(Frag);
- Fixups = DF.getFixups();
- Contents = DF.getContents();
- STI = DF.getSubtargetInfo();
- assert(!DF.hasInstructions() || STI != nullptr);
- break;
- }
- case MCFragment::FT_Relaxable: {
- MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
- Fixups = RF.getFixups();
- Contents = RF.getContents();
- STI = RF.getSubtargetInfo();
- assert(!RF.hasInstructions() || STI != nullptr);
- break;
- }
- case MCFragment::FT_CVDefRange: {
- MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
- Fixups = CF.getFixups();
- Contents = CF.getContents();
- break;
- }
- case MCFragment::FT_Dwarf: {
- MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
- Fixups = DF.getFixups();
- Contents = DF.getContents();
- break;
- }
- case MCFragment::FT_DwarfFrame: {
- MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
- Fixups = DF.getFixups();
- Contents = DF.getContents();
- break;
- }
- case MCFragment::FT_PseudoProbe: {
- MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
- Fixups = PF.getFixups();
- Contents = PF.getContents();
- break;
- }
- }
- for (const MCFixup &Fixup : Fixups) {
- uint64_t FixedValue;
- bool IsResolved;
- MCValue Target;
- std::tie(Target, FixedValue, IsResolved) =
- handleFixup(Layout, Frag, Fixup);
- getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
- IsResolved, STI);
- }
- }
- }
- }
- void MCAssembler::Finish() {
- // Create the layout object.
- MCAsmLayout Layout(*this);
- layout(Layout);
- // Write the object file.
- stats::ObjectBytes += getWriter().writeObject(*this, Layout);
- }
- bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
- const MCRelaxableFragment *DF,
- const MCAsmLayout &Layout) const {
- assert(getBackendPtr() && "Expected assembler backend");
- MCValue Target;
- uint64_t Value;
- bool WasForced;
- bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
- if (Target.getSymA() &&
- Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
- Fixup.getKind() == FK_Data_1)
- return false;
- return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
- Layout, WasForced);
- }
- bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
- const MCAsmLayout &Layout) const {
- assert(getBackendPtr() && "Expected assembler backend");
- // If this inst doesn't ever need relaxation, ignore it. This occurs when we
- // are intentionally pushing out inst fragments, or because we relaxed a
- // previous instruction to one that doesn't need relaxation.
- if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
- return false;
- for (const MCFixup &Fixup : F->getFixups())
- if (fixupNeedsRelaxation(Fixup, F, Layout))
- return true;
- return false;
- }
- bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
- MCRelaxableFragment &F) {
- assert(getEmitterPtr() &&
- "Expected CodeEmitter defined for relaxInstruction");
- if (!fragmentNeedsRelaxation(&F, Layout))
- return false;
- ++stats::RelaxedInstructions;
- // FIXME-PERF: We could immediately lower out instructions if we can tell
- // they are fully resolved, to avoid retesting on later passes.
- // Relax the fragment.
- MCInst Relaxed = F.getInst();
- getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
- // Encode the new instruction.
- //
- // FIXME-PERF: If it matters, we could let the target do this. It can
- // probably do so more efficiently in many cases.
- SmallVector<MCFixup, 4> Fixups;
- SmallString<256> Code;
- raw_svector_ostream VecOS(Code);
- getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
- // Update the fragment.
- F.setInst(Relaxed);
- F.getContents() = Code;
- F.getFixups() = Fixups;
- return true;
- }
- bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
- uint64_t OldSize = LF.getContents().size();
- int64_t Value;
- bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
- if (!Abs)
- report_fatal_error("sleb128 and uleb128 expressions must be absolute");
- SmallString<8> &Data = LF.getContents();
- Data.clear();
- raw_svector_ostream OSE(Data);
- // The compiler can generate EH table assembly that is impossible to assemble
- // without either adding padding to an LEB fragment or adding extra padding
- // to a later alignment fragment. To accommodate such tables, relaxation can
- // only increase an LEB fragment size here, not decrease it. See PR35809.
- if (LF.isSigned())
- encodeSLEB128(Value, OSE, OldSize);
- else
- encodeULEB128(Value, OSE, OldSize);
- return OldSize != LF.getContents().size();
- }
- /// Check if the branch crosses the boundary.
- ///
- /// \param StartAddr start address of the fused/unfused branch.
- /// \param Size size of the fused/unfused branch.
- /// \param BoundaryAlignment alignment requirement of the branch.
- /// \returns true if the branch cross the boundary.
- static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
- Align BoundaryAlignment) {
- uint64_t EndAddr = StartAddr + Size;
- return (StartAddr >> Log2(BoundaryAlignment)) !=
- ((EndAddr - 1) >> Log2(BoundaryAlignment));
- }
- /// Check if the branch is against the boundary.
- ///
- /// \param StartAddr start address of the fused/unfused branch.
- /// \param Size size of the fused/unfused branch.
- /// \param BoundaryAlignment alignment requirement of the branch.
- /// \returns true if the branch is against the boundary.
- static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
- Align BoundaryAlignment) {
- uint64_t EndAddr = StartAddr + Size;
- return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
- }
- /// Check if the branch needs padding.
- ///
- /// \param StartAddr start address of the fused/unfused branch.
- /// \param Size size of the fused/unfused branch.
- /// \param BoundaryAlignment alignment requirement of the branch.
- /// \returns true if the branch needs padding.
- static bool needPadding(uint64_t StartAddr, uint64_t Size,
- Align BoundaryAlignment) {
- return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
- isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
- }
- bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
- MCBoundaryAlignFragment &BF) {
- // BoundaryAlignFragment that doesn't need to align any fragment should not be
- // relaxed.
- if (!BF.getLastFragment())
- return false;
- uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
- uint64_t AlignedSize = 0;
- for (const MCFragment *F = BF.getLastFragment(); F != &BF;
- F = F->getPrevNode())
- AlignedSize += computeFragmentSize(Layout, *F);
- Align BoundaryAlignment = BF.getAlignment();
- uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
- ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
- : 0U;
- if (NewSize == BF.getSize())
- return false;
- BF.setSize(NewSize);
- Layout.invalidateFragmentsFrom(&BF);
- return true;
- }
- bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
- MCDwarfLineAddrFragment &DF) {
- bool WasRelaxed;
- if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed))
- return WasRelaxed;
- MCContext &Context = Layout.getAssembler().getContext();
- uint64_t OldSize = DF.getContents().size();
- int64_t AddrDelta;
- bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
- assert(Abs && "We created a line delta with an invalid expression");
- (void)Abs;
- int64_t LineDelta;
- LineDelta = DF.getLineDelta();
- SmallVectorImpl<char> &Data = DF.getContents();
- Data.clear();
- raw_svector_ostream OSE(Data);
- DF.getFixups().clear();
- MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
- AddrDelta, OSE);
- return OldSize != Data.size();
- }
- bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
- MCDwarfCallFrameFragment &DF) {
- bool WasRelaxed;
- if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed))
- return WasRelaxed;
- MCContext &Context = Layout.getAssembler().getContext();
- uint64_t OldSize = DF.getContents().size();
- int64_t AddrDelta;
- bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
- assert(Abs && "We created call frame with an invalid expression");
- (void) Abs;
- SmallVectorImpl<char> &Data = DF.getContents();
- Data.clear();
- raw_svector_ostream OSE(Data);
- DF.getFixups().clear();
- MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
- return OldSize != Data.size();
- }
- bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
- MCCVInlineLineTableFragment &F) {
- unsigned OldSize = F.getContents().size();
- getContext().getCVContext().encodeInlineLineTable(Layout, F);
- return OldSize != F.getContents().size();
- }
- bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
- MCCVDefRangeFragment &F) {
- unsigned OldSize = F.getContents().size();
- getContext().getCVContext().encodeDefRange(Layout, F);
- return OldSize != F.getContents().size();
- }
- bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout,
- MCPseudoProbeAddrFragment &PF) {
- uint64_t OldSize = PF.getContents().size();
- int64_t AddrDelta;
- bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
- assert(Abs && "We created a pseudo probe with an invalid expression");
- (void)Abs;
- SmallVectorImpl<char> &Data = PF.getContents();
- Data.clear();
- raw_svector_ostream OSE(Data);
- PF.getFixups().clear();
- // AddrDelta is a signed integer
- encodeSLEB128(AddrDelta, OSE, OldSize);
- return OldSize != Data.size();
- }
- bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
- switch(F.getKind()) {
- default:
- return false;
- case MCFragment::FT_Relaxable:
- assert(!getRelaxAll() &&
- "Did not expect a MCRelaxableFragment in RelaxAll mode");
- return relaxInstruction(Layout, cast<MCRelaxableFragment>(F));
- case MCFragment::FT_Dwarf:
- return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F));
- case MCFragment::FT_DwarfFrame:
- return relaxDwarfCallFrameFragment(Layout,
- cast<MCDwarfCallFrameFragment>(F));
- case MCFragment::FT_LEB:
- return relaxLEB(Layout, cast<MCLEBFragment>(F));
- case MCFragment::FT_BoundaryAlign:
- return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
- case MCFragment::FT_CVInlineLines:
- return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
- case MCFragment::FT_CVDefRange:
- return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F));
- case MCFragment::FT_PseudoProbe:
- return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F));
- }
- }
- bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
- // Holds the first fragment which needed relaxing during this layout. It will
- // remain NULL if none were relaxed.
- // When a fragment is relaxed, all the fragments following it should get
- // invalidated because their offset is going to change.
- MCFragment *FirstRelaxedFragment = nullptr;
- // Attempt to relax all the fragments in the section.
- for (MCFragment &Frag : Sec) {
- // Check if this is a fragment that needs relaxation.
- bool RelaxedFrag = relaxFragment(Layout, Frag);
- if (RelaxedFrag && !FirstRelaxedFragment)
- FirstRelaxedFragment = &Frag;
- }
- if (FirstRelaxedFragment) {
- Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
- return true;
- }
- return false;
- }
- bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
- ++stats::RelaxationSteps;
- bool WasRelaxed = false;
- for (MCSection &Sec : *this) {
- while (layoutSectionOnce(Layout, Sec))
- WasRelaxed = true;
- }
- return WasRelaxed;
- }
- void MCAssembler::finishLayout(MCAsmLayout &Layout) {
- assert(getBackendPtr() && "Expected assembler backend");
- // The layout is done. Mark every fragment as valid.
- for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
- MCSection &Section = *Layout.getSectionOrder()[i];
- Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
- computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
- }
- getBackend().finishLayout(*this, Layout);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void MCAssembler::dump() const{
- raw_ostream &OS = errs();
- OS << "<MCAssembler\n";
- OS << " Sections:[\n ";
- for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
- if (it != begin()) OS << ",\n ";
- it->dump();
- }
- OS << "],\n";
- OS << " Symbols:[";
- for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
- if (it != symbol_begin()) OS << ",\n ";
- OS << "(";
- it->dump();
- OS << ", Index:" << it->getIndex() << ", ";
- OS << ")";
- }
- OS << "]>\n";
- }
- #endif
|