12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284 |
- //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
- //
- // This SMS implementation is a target-independent back-end pass. When enabled,
- // the pass runs just prior to the register allocation pass, while the machine
- // IR is in SSA form. If software pipelining is successful, then the original
- // loop is replaced by the optimized loop. The optimized loop contains one or
- // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
- // the instructions cannot be scheduled in a given MII, we increase the MII by
- // one and try again.
- //
- // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
- // represent loop carried dependences in the DAG as order edges to the Phi
- // nodes. We also perform several passes over the DAG to eliminate unnecessary
- // edges that inhibit the ability to pipeline. The implementation uses the
- // DFAPacketizer class to compute the minimum initiation interval and the check
- // where an instruction may be inserted in the pipelined schedule.
- //
- // In order for the SMS pass to work, several target specific hooks need to be
- // implemented to get information about the loop structure and to rewrite
- // instructions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/MachinePipeliner.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/PriorityQueue.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CycleAnalysis.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/DFAPacketizer.h"
- #include "llvm/CodeGen/LiveIntervals.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/ModuloSchedule.h"
- #include "llvm/CodeGen/RegisterPressure.h"
- #include "llvm/CodeGen/ScheduleDAG.h"
- #include "llvm/CodeGen/ScheduleDAGMutation.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/MC/LaneBitmask.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/MC/MCInstrItineraries.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <climits>
- #include <cstdint>
- #include <deque>
- #include <functional>
- #include <iomanip>
- #include <iterator>
- #include <map>
- #include <memory>
- #include <sstream>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "pipeliner"
- STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
- STATISTIC(NumPipelined, "Number of loops software pipelined");
- STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
- STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
- STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
- STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
- STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
- STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
- STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
- STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
- STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
- /// A command line option to turn software pipelining on or off.
- static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
- cl::desc("Enable Software Pipelining"));
- /// A command line option to enable SWP at -Os.
- static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
- cl::desc("Enable SWP at Os."), cl::Hidden,
- cl::init(false));
- /// A command line argument to limit minimum initial interval for pipelining.
- static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
- cl::desc("Size limit for the MII."),
- cl::Hidden, cl::init(27));
- /// A command line argument to force pipeliner to use specified initial
- /// interval.
- static cl::opt<int> SwpForceII("pipeliner-force-ii",
- cl::desc("Force pipeliner to use specified II."),
- cl::Hidden, cl::init(-1));
- /// A command line argument to limit the number of stages in the pipeline.
- static cl::opt<int>
- SwpMaxStages("pipeliner-max-stages",
- cl::desc("Maximum stages allowed in the generated scheduled."),
- cl::Hidden, cl::init(3));
- /// A command line option to disable the pruning of chain dependences due to
- /// an unrelated Phi.
- static cl::opt<bool>
- SwpPruneDeps("pipeliner-prune-deps",
- cl::desc("Prune dependences between unrelated Phi nodes."),
- cl::Hidden, cl::init(true));
- /// A command line option to disable the pruning of loop carried order
- /// dependences.
- static cl::opt<bool>
- SwpPruneLoopCarried("pipeliner-prune-loop-carried",
- cl::desc("Prune loop carried order dependences."),
- cl::Hidden, cl::init(true));
- #ifndef NDEBUG
- static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
- #endif
- static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
- cl::ReallyHidden,
- cl::desc("Ignore RecMII"));
- static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
- cl::init(false));
- static cl::opt<bool> EmitTestAnnotations(
- "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
- cl::desc("Instead of emitting the pipelined code, annotate instructions "
- "with the generated schedule for feeding into the "
- "-modulo-schedule-test pass"));
- static cl::opt<bool> ExperimentalCodeGen(
- "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
- cl::desc(
- "Use the experimental peeling code generator for software pipelining"));
- namespace llvm {
- // A command line option to enable the CopyToPhi DAG mutation.
- cl::opt<bool> SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
- cl::init(true),
- cl::desc("Enable CopyToPhi DAG Mutation"));
- /// A command line argument to force pipeliner to use specified issue
- /// width.
- cl::opt<int> SwpForceIssueWidth(
- "pipeliner-force-issue-width",
- cl::desc("Force pipeliner to use specified issue width."), cl::Hidden,
- cl::init(-1));
- } // end namespace llvm
- unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
- char MachinePipeliner::ID = 0;
- #ifndef NDEBUG
- int MachinePipeliner::NumTries = 0;
- #endif
- char &llvm::MachinePipelinerID = MachinePipeliner::ID;
- INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
- "Modulo Software Pipelining", false, false)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
- INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
- "Modulo Software Pipelining", false, false)
- /// The "main" function for implementing Swing Modulo Scheduling.
- bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
- if (skipFunction(mf.getFunction()))
- return false;
- if (!EnableSWP)
- return false;
- if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
- !EnableSWPOptSize.getPosition())
- return false;
- if (!mf.getSubtarget().enableMachinePipeliner())
- return false;
- // Cannot pipeline loops without instruction itineraries if we are using
- // DFA for the pipeliner.
- if (mf.getSubtarget().useDFAforSMS() &&
- (!mf.getSubtarget().getInstrItineraryData() ||
- mf.getSubtarget().getInstrItineraryData()->isEmpty()))
- return false;
- MF = &mf;
- MLI = &getAnalysis<MachineLoopInfo>();
- MDT = &getAnalysis<MachineDominatorTree>();
- ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
- TII = MF->getSubtarget().getInstrInfo();
- RegClassInfo.runOnMachineFunction(*MF);
- for (const auto &L : *MLI)
- scheduleLoop(*L);
- return false;
- }
- /// Attempt to perform the SMS algorithm on the specified loop. This function is
- /// the main entry point for the algorithm. The function identifies candidate
- /// loops, calculates the minimum initiation interval, and attempts to schedule
- /// the loop.
- bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
- bool Changed = false;
- for (const auto &InnerLoop : L)
- Changed |= scheduleLoop(*InnerLoop);
- #ifndef NDEBUG
- // Stop trying after reaching the limit (if any).
- int Limit = SwpLoopLimit;
- if (Limit >= 0) {
- if (NumTries >= SwpLoopLimit)
- return Changed;
- NumTries++;
- }
- #endif
- setPragmaPipelineOptions(L);
- if (!canPipelineLoop(L)) {
- LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
- ORE->emit([&]() {
- return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "Failed to pipeline loop";
- });
- LI.LoopPipelinerInfo.reset();
- return Changed;
- }
- ++NumTrytoPipeline;
- Changed = swingModuloScheduler(L);
- LI.LoopPipelinerInfo.reset();
- return Changed;
- }
- void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
- // Reset the pragma for the next loop in iteration.
- disabledByPragma = false;
- II_setByPragma = 0;
- MachineBasicBlock *LBLK = L.getTopBlock();
- if (LBLK == nullptr)
- return;
- const BasicBlock *BBLK = LBLK->getBasicBlock();
- if (BBLK == nullptr)
- return;
- const Instruction *TI = BBLK->getTerminator();
- if (TI == nullptr)
- return;
- MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
- if (LoopID == nullptr)
- return;
- assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop");
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (MD == nullptr)
- continue;
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (S == nullptr)
- continue;
- if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
- assert(MD->getNumOperands() == 2 &&
- "Pipeline initiation interval hint metadata should have two operands.");
- II_setByPragma =
- mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
- assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
- } else if (S->getString() == "llvm.loop.pipeline.disable") {
- disabledByPragma = true;
- }
- }
- }
- /// Return true if the loop can be software pipelined. The algorithm is
- /// restricted to loops with a single basic block. Make sure that the
- /// branch in the loop can be analyzed.
- bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
- if (L.getNumBlocks() != 1) {
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "Not a single basic block: "
- << ore::NV("NumBlocks", L.getNumBlocks());
- });
- return false;
- }
- if (disabledByPragma) {
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "Disabled by Pragma.";
- });
- return false;
- }
- // Check if the branch can't be understood because we can't do pipelining
- // if that's the case.
- LI.TBB = nullptr;
- LI.FBB = nullptr;
- LI.BrCond.clear();
- if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
- LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
- NumFailBranch++;
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "The branch can't be understood";
- });
- return false;
- }
- LI.LoopInductionVar = nullptr;
- LI.LoopCompare = nullptr;
- LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock());
- if (!LI.LoopPipelinerInfo) {
- LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
- NumFailLoop++;
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "The loop structure is not supported";
- });
- return false;
- }
- if (!L.getLoopPreheader()) {
- LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
- NumFailPreheader++;
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "No loop preheader found";
- });
- return false;
- }
- // Remove any subregisters from inputs to phi nodes.
- preprocessPhiNodes(*L.getHeader());
- return true;
- }
- void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
- MachineRegisterInfo &MRI = MF->getRegInfo();
- SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
- for (MachineInstr &PI : B.phis()) {
- MachineOperand &DefOp = PI.getOperand(0);
- assert(DefOp.getSubReg() == 0);
- auto *RC = MRI.getRegClass(DefOp.getReg());
- for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
- MachineOperand &RegOp = PI.getOperand(i);
- if (RegOp.getSubReg() == 0)
- continue;
- // If the operand uses a subregister, replace it with a new register
- // without subregisters, and generate a copy to the new register.
- Register NewReg = MRI.createVirtualRegister(RC);
- MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
- MachineBasicBlock::iterator At = PredB.getFirstTerminator();
- const DebugLoc &DL = PredB.findDebugLoc(At);
- auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
- .addReg(RegOp.getReg(), getRegState(RegOp),
- RegOp.getSubReg());
- Slots.insertMachineInstrInMaps(*Copy);
- RegOp.setReg(NewReg);
- RegOp.setSubReg(0);
- }
- }
- }
- /// The SMS algorithm consists of the following main steps:
- /// 1. Computation and analysis of the dependence graph.
- /// 2. Ordering of the nodes (instructions).
- /// 3. Attempt to Schedule the loop.
- bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
- assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
- SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
- II_setByPragma, LI.LoopPipelinerInfo.get());
- MachineBasicBlock *MBB = L.getHeader();
- // The kernel should not include any terminator instructions. These
- // will be added back later.
- SMS.startBlock(MBB);
- // Compute the number of 'real' instructions in the basic block by
- // ignoring terminators.
- unsigned size = MBB->size();
- for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
- E = MBB->instr_end();
- I != E; ++I, --size)
- ;
- SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
- SMS.schedule();
- SMS.exitRegion();
- SMS.finishBlock();
- return SMS.hasNewSchedule();
- }
- void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addRequired<MachineLoopInfo>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<LiveIntervals>();
- AU.addRequired<MachineOptimizationRemarkEmitterPass>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
- if (SwpForceII > 0)
- MII = SwpForceII;
- else if (II_setByPragma > 0)
- MII = II_setByPragma;
- else
- MII = std::max(ResMII, RecMII);
- }
- void SwingSchedulerDAG::setMAX_II() {
- if (SwpForceII > 0)
- MAX_II = SwpForceII;
- else if (II_setByPragma > 0)
- MAX_II = II_setByPragma;
- else
- MAX_II = MII + 10;
- }
- /// We override the schedule function in ScheduleDAGInstrs to implement the
- /// scheduling part of the Swing Modulo Scheduling algorithm.
- void SwingSchedulerDAG::schedule() {
- AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
- buildSchedGraph(AA);
- addLoopCarriedDependences(AA);
- updatePhiDependences();
- Topo.InitDAGTopologicalSorting();
- changeDependences();
- postprocessDAG();
- LLVM_DEBUG(dump());
- NodeSetType NodeSets;
- findCircuits(NodeSets);
- NodeSetType Circuits = NodeSets;
- // Calculate the MII.
- unsigned ResMII = calculateResMII();
- unsigned RecMII = calculateRecMII(NodeSets);
- fuseRecs(NodeSets);
- // This flag is used for testing and can cause correctness problems.
- if (SwpIgnoreRecMII)
- RecMII = 0;
- setMII(ResMII, RecMII);
- setMAX_II();
- LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
- << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
- // Can't schedule a loop without a valid MII.
- if (MII == 0) {
- LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
- NumFailZeroMII++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Invalid Minimal Initiation Interval: 0";
- });
- return;
- }
- // Don't pipeline large loops.
- if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
- LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
- << ", we don't pipeline large loops\n");
- NumFailLargeMaxMII++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Minimal Initiation Interval too large: "
- << ore::NV("MII", (int)MII) << " > "
- << ore::NV("SwpMaxMii", SwpMaxMii) << "."
- << "Refer to -pipeliner-max-mii.";
- });
- return;
- }
- computeNodeFunctions(NodeSets);
- registerPressureFilter(NodeSets);
- colocateNodeSets(NodeSets);
- checkNodeSets(NodeSets);
- LLVM_DEBUG({
- for (auto &I : NodeSets) {
- dbgs() << " Rec NodeSet ";
- I.dump();
- }
- });
- llvm::stable_sort(NodeSets, std::greater<NodeSet>());
- groupRemainingNodes(NodeSets);
- removeDuplicateNodes(NodeSets);
- LLVM_DEBUG({
- for (auto &I : NodeSets) {
- dbgs() << " NodeSet ";
- I.dump();
- }
- });
- computeNodeOrder(NodeSets);
- // check for node order issues
- checkValidNodeOrder(Circuits);
- SMSchedule Schedule(Pass.MF, this);
- Scheduled = schedulePipeline(Schedule);
- if (!Scheduled){
- LLVM_DEBUG(dbgs() << "No schedule found, return\n");
- NumFailNoSchedule++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Unable to find schedule";
- });
- return;
- }
- unsigned numStages = Schedule.getMaxStageCount();
- // No need to generate pipeline if there are no overlapped iterations.
- if (numStages == 0) {
- LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
- NumFailZeroStage++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "No need to pipeline - no overlapped iterations in schedule.";
- });
- return;
- }
- // Check that the maximum stage count is less than user-defined limit.
- if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
- LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
- << " : too many stages, abort\n");
- NumFailLargeMaxStage++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Too many stages in schedule: "
- << ore::NV("numStages", (int)numStages) << " > "
- << ore::NV("SwpMaxStages", SwpMaxStages)
- << ". Refer to -pipeliner-max-stages.";
- });
- return;
- }
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
- Loop.getHeader())
- << "Pipelined succesfully!";
- });
- // Generate the schedule as a ModuloSchedule.
- DenseMap<MachineInstr *, int> Cycles, Stages;
- std::vector<MachineInstr *> OrderedInsts;
- for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
- ++Cycle) {
- for (SUnit *SU : Schedule.getInstructions(Cycle)) {
- OrderedInsts.push_back(SU->getInstr());
- Cycles[SU->getInstr()] = Cycle;
- Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
- }
- }
- DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
- for (auto &KV : NewMIs) {
- Cycles[KV.first] = Cycles[KV.second];
- Stages[KV.first] = Stages[KV.second];
- NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
- }
- ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
- std::move(Stages));
- if (EmitTestAnnotations) {
- assert(NewInstrChanges.empty() &&
- "Cannot serialize a schedule with InstrChanges!");
- ModuloScheduleTestAnnotater MSTI(MF, MS);
- MSTI.annotate();
- return;
- }
- // The experimental code generator can't work if there are InstChanges.
- if (ExperimentalCodeGen && NewInstrChanges.empty()) {
- PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
- MSE.expand();
- } else {
- ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
- MSE.expand();
- MSE.cleanup();
- }
- ++NumPipelined;
- }
- /// Clean up after the software pipeliner runs.
- void SwingSchedulerDAG::finishBlock() {
- for (auto &KV : NewMIs)
- MF.deleteMachineInstr(KV.second);
- NewMIs.clear();
- // Call the superclass.
- ScheduleDAGInstrs::finishBlock();
- }
- /// Return the register values for the operands of a Phi instruction.
- /// This function assume the instruction is a Phi.
- static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
- unsigned &InitVal, unsigned &LoopVal) {
- assert(Phi.isPHI() && "Expecting a Phi.");
- InitVal = 0;
- LoopVal = 0;
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() != Loop)
- InitVal = Phi.getOperand(i).getReg();
- else
- LoopVal = Phi.getOperand(i).getReg();
- assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
- }
- /// Return the Phi register value that comes the loop block.
- static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() == LoopBB)
- return Phi.getOperand(i).getReg();
- return 0;
- }
- /// Return true if SUb can be reached from SUa following the chain edges.
- static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SUnit *, 8> Worklist;
- Worklist.push_back(SUa);
- while (!Worklist.empty()) {
- const SUnit *SU = Worklist.pop_back_val();
- for (const auto &SI : SU->Succs) {
- SUnit *SuccSU = SI.getSUnit();
- if (SI.getKind() == SDep::Order) {
- if (Visited.count(SuccSU))
- continue;
- if (SuccSU == SUb)
- return true;
- Worklist.push_back(SuccSU);
- Visited.insert(SuccSU);
- }
- }
- }
- return false;
- }
- /// Return true if the instruction causes a chain between memory
- /// references before and after it.
- static bool isDependenceBarrier(MachineInstr &MI) {
- return MI.isCall() || MI.mayRaiseFPException() ||
- MI.hasUnmodeledSideEffects() ||
- (MI.hasOrderedMemoryRef() &&
- (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad()));
- }
- /// Return the underlying objects for the memory references of an instruction.
- /// This function calls the code in ValueTracking, but first checks that the
- /// instruction has a memory operand.
- static void getUnderlyingObjects(const MachineInstr *MI,
- SmallVectorImpl<const Value *> &Objs) {
- if (!MI->hasOneMemOperand())
- return;
- MachineMemOperand *MM = *MI->memoperands_begin();
- if (!MM->getValue())
- return;
- getUnderlyingObjects(MM->getValue(), Objs);
- for (const Value *V : Objs) {
- if (!isIdentifiedObject(V)) {
- Objs.clear();
- return;
- }
- Objs.push_back(V);
- }
- }
- /// Add a chain edge between a load and store if the store can be an
- /// alias of the load on a subsequent iteration, i.e., a loop carried
- /// dependence. This code is very similar to the code in ScheduleDAGInstrs
- /// but that code doesn't create loop carried dependences.
- void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
- MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
- Value *UnknownValue =
- UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
- for (auto &SU : SUnits) {
- MachineInstr &MI = *SU.getInstr();
- if (isDependenceBarrier(MI))
- PendingLoads.clear();
- else if (MI.mayLoad()) {
- SmallVector<const Value *, 4> Objs;
- ::getUnderlyingObjects(&MI, Objs);
- if (Objs.empty())
- Objs.push_back(UnknownValue);
- for (const auto *V : Objs) {
- SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
- SUs.push_back(&SU);
- }
- } else if (MI.mayStore()) {
- SmallVector<const Value *, 4> Objs;
- ::getUnderlyingObjects(&MI, Objs);
- if (Objs.empty())
- Objs.push_back(UnknownValue);
- for (const auto *V : Objs) {
- MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
- PendingLoads.find(V);
- if (I == PendingLoads.end())
- continue;
- for (auto *Load : I->second) {
- if (isSuccOrder(Load, &SU))
- continue;
- MachineInstr &LdMI = *Load->getInstr();
- // First, perform the cheaper check that compares the base register.
- // If they are the same and the load offset is less than the store
- // offset, then mark the dependence as loop carried potentially.
- const MachineOperand *BaseOp1, *BaseOp2;
- int64_t Offset1, Offset2;
- bool Offset1IsScalable, Offset2IsScalable;
- if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
- Offset1IsScalable, TRI) &&
- TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
- Offset2IsScalable, TRI)) {
- if (BaseOp1->isIdenticalTo(*BaseOp2) &&
- Offset1IsScalable == Offset2IsScalable &&
- (int)Offset1 < (int)Offset2) {
- assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
- "What happened to the chain edge?");
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- }
- // Second, the more expensive check that uses alias analysis on the
- // base registers. If they alias, and the load offset is less than
- // the store offset, the mark the dependence as loop carried.
- if (!AA) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
- MachineMemOperand *MMO2 = *MI.memoperands_begin();
- if (!MMO1->getValue() || !MMO2->getValue()) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- if (MMO1->getValue() == MMO2->getValue() &&
- MMO1->getOffset() <= MMO2->getOffset()) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- if (!AA->isNoAlias(
- MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
- MemoryLocation::getAfter(MMO2->getValue(),
- MMO2->getAAInfo()))) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- }
- }
- }
- }
- }
- }
- /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
- /// processes dependences for PHIs. This function adds true dependences
- /// from a PHI to a use, and a loop carried dependence from the use to the
- /// PHI. The loop carried dependence is represented as an anti dependence
- /// edge. This function also removes chain dependences between unrelated
- /// PHIs.
- void SwingSchedulerDAG::updatePhiDependences() {
- SmallVector<SDep, 4> RemoveDeps;
- const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
- // Iterate over each DAG node.
- for (SUnit &I : SUnits) {
- RemoveDeps.clear();
- // Set to true if the instruction has an operand defined by a Phi.
- unsigned HasPhiUse = 0;
- unsigned HasPhiDef = 0;
- MachineInstr *MI = I.getInstr();
- // Iterate over each operand, and we process the definitions.
- for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end();
- MOI != MOE; ++MOI) {
- if (!MOI->isReg())
- continue;
- Register Reg = MOI->getReg();
- if (MOI->isDef()) {
- // If the register is used by a Phi, then create an anti dependence.
- for (MachineRegisterInfo::use_instr_iterator
- UI = MRI.use_instr_begin(Reg),
- UE = MRI.use_instr_end();
- UI != UE; ++UI) {
- MachineInstr *UseMI = &*UI;
- SUnit *SU = getSUnit(UseMI);
- if (SU != nullptr && UseMI->isPHI()) {
- if (!MI->isPHI()) {
- SDep Dep(SU, SDep::Anti, Reg);
- Dep.setLatency(1);
- I.addPred(Dep);
- } else {
- HasPhiDef = Reg;
- // Add a chain edge to a dependent Phi that isn't an existing
- // predecessor.
- if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
- I.addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- } else if (MOI->isUse()) {
- // If the register is defined by a Phi, then create a true dependence.
- MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
- if (DefMI == nullptr)
- continue;
- SUnit *SU = getSUnit(DefMI);
- if (SU != nullptr && DefMI->isPHI()) {
- if (!MI->isPHI()) {
- SDep Dep(SU, SDep::Data, Reg);
- Dep.setLatency(0);
- ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
- I.addPred(Dep);
- } else {
- HasPhiUse = Reg;
- // Add a chain edge to a dependent Phi that isn't an existing
- // predecessor.
- if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
- I.addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- }
- // Remove order dependences from an unrelated Phi.
- if (!SwpPruneDeps)
- continue;
- for (auto &PI : I.Preds) {
- MachineInstr *PMI = PI.getSUnit()->getInstr();
- if (PMI->isPHI() && PI.getKind() == SDep::Order) {
- if (I.getInstr()->isPHI()) {
- if (PMI->getOperand(0).getReg() == HasPhiUse)
- continue;
- if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
- continue;
- }
- RemoveDeps.push_back(PI);
- }
- }
- for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
- I.removePred(RemoveDeps[i]);
- }
- }
- /// Iterate over each DAG node and see if we can change any dependences
- /// in order to reduce the recurrence MII.
- void SwingSchedulerDAG::changeDependences() {
- // See if an instruction can use a value from the previous iteration.
- // If so, we update the base and offset of the instruction and change
- // the dependences.
- for (SUnit &I : SUnits) {
- unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
- int64_t NewOffset = 0;
- if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
- NewOffset))
- continue;
- // Get the MI and SUnit for the instruction that defines the original base.
- Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
- MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
- if (!DefMI)
- continue;
- SUnit *DefSU = getSUnit(DefMI);
- if (!DefSU)
- continue;
- // Get the MI and SUnit for the instruction that defins the new base.
- MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
- if (!LastMI)
- continue;
- SUnit *LastSU = getSUnit(LastMI);
- if (!LastSU)
- continue;
- if (Topo.IsReachable(&I, LastSU))
- continue;
- // Remove the dependence. The value now depends on a prior iteration.
- SmallVector<SDep, 4> Deps;
- for (const SDep &P : I.Preds)
- if (P.getSUnit() == DefSU)
- Deps.push_back(P);
- for (int i = 0, e = Deps.size(); i != e; i++) {
- Topo.RemovePred(&I, Deps[i].getSUnit());
- I.removePred(Deps[i]);
- }
- // Remove the chain dependence between the instructions.
- Deps.clear();
- for (auto &P : LastSU->Preds)
- if (P.getSUnit() == &I && P.getKind() == SDep::Order)
- Deps.push_back(P);
- for (int i = 0, e = Deps.size(); i != e; i++) {
- Topo.RemovePred(LastSU, Deps[i].getSUnit());
- LastSU->removePred(Deps[i]);
- }
- // Add a dependence between the new instruction and the instruction
- // that defines the new base.
- SDep Dep(&I, SDep::Anti, NewBase);
- Topo.AddPred(LastSU, &I);
- LastSU->addPred(Dep);
- // Remember the base and offset information so that we can update the
- // instruction during code generation.
- InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
- }
- }
- namespace {
- // FuncUnitSorter - Comparison operator used to sort instructions by
- // the number of functional unit choices.
- struct FuncUnitSorter {
- const InstrItineraryData *InstrItins;
- const MCSubtargetInfo *STI;
- DenseMap<InstrStage::FuncUnits, unsigned> Resources;
- FuncUnitSorter(const TargetSubtargetInfo &TSI)
- : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
- // Compute the number of functional unit alternatives needed
- // at each stage, and take the minimum value. We prioritize the
- // instructions by the least number of choices first.
- unsigned minFuncUnits(const MachineInstr *Inst,
- InstrStage::FuncUnits &F) const {
- unsigned SchedClass = Inst->getDesc().getSchedClass();
- unsigned min = UINT_MAX;
- if (InstrItins && !InstrItins->isEmpty()) {
- for (const InstrStage &IS :
- make_range(InstrItins->beginStage(SchedClass),
- InstrItins->endStage(SchedClass))) {
- InstrStage::FuncUnits funcUnits = IS.getUnits();
- unsigned numAlternatives = llvm::popcount(funcUnits);
- if (numAlternatives < min) {
- min = numAlternatives;
- F = funcUnits;
- }
- }
- return min;
- }
- if (STI && STI->getSchedModel().hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc =
- STI->getSchedModel().getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- // No valid Schedule Class Desc for schedClass, should be
- // Pseudo/PostRAPseudo
- return min;
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- const MCProcResourceDesc *ProcResource =
- STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
- unsigned NumUnits = ProcResource->NumUnits;
- if (NumUnits < min) {
- min = NumUnits;
- F = PRE.ProcResourceIdx;
- }
- }
- return min;
- }
- llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
- }
- // Compute the critical resources needed by the instruction. This
- // function records the functional units needed by instructions that
- // must use only one functional unit. We use this as a tie breaker
- // for computing the resource MII. The instrutions that require
- // the same, highly used, functional unit have high priority.
- void calcCriticalResources(MachineInstr &MI) {
- unsigned SchedClass = MI.getDesc().getSchedClass();
- if (InstrItins && !InstrItins->isEmpty()) {
- for (const InstrStage &IS :
- make_range(InstrItins->beginStage(SchedClass),
- InstrItins->endStage(SchedClass))) {
- InstrStage::FuncUnits FuncUnits = IS.getUnits();
- if (llvm::popcount(FuncUnits) == 1)
- Resources[FuncUnits]++;
- }
- return;
- }
- if (STI && STI->getSchedModel().hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc =
- STI->getSchedModel().getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- // No valid Schedule Class Desc for schedClass, should be
- // Pseudo/PostRAPseudo
- return;
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- Resources[PRE.ProcResourceIdx]++;
- }
- return;
- }
- llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
- }
- /// Return true if IS1 has less priority than IS2.
- bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
- InstrStage::FuncUnits F1 = 0, F2 = 0;
- unsigned MFUs1 = minFuncUnits(IS1, F1);
- unsigned MFUs2 = minFuncUnits(IS2, F2);
- if (MFUs1 == MFUs2)
- return Resources.lookup(F1) < Resources.lookup(F2);
- return MFUs1 > MFUs2;
- }
- };
- } // end anonymous namespace
- /// Calculate the resource constrained minimum initiation interval for the
- /// specified loop. We use the DFA to model the resources needed for
- /// each instruction, and we ignore dependences. A different DFA is created
- /// for each cycle that is required. When adding a new instruction, we attempt
- /// to add it to each existing DFA, until a legal space is found. If the
- /// instruction cannot be reserved in an existing DFA, we create a new one.
- unsigned SwingSchedulerDAG::calculateResMII() {
- LLVM_DEBUG(dbgs() << "calculateResMII:\n");
- ResourceManager RM(&MF.getSubtarget(), this);
- return RM.calculateResMII();
- }
- /// Calculate the recurrence-constrainted minimum initiation interval.
- /// Iterate over each circuit. Compute the delay(c) and distance(c)
- /// for each circuit. The II needs to satisfy the inequality
- /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
- /// II that satisfies the inequality, and the RecMII is the maximum
- /// of those values.
- unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
- unsigned RecMII = 0;
- for (NodeSet &Nodes : NodeSets) {
- if (Nodes.empty())
- continue;
- unsigned Delay = Nodes.getLatency();
- unsigned Distance = 1;
- // ii = ceil(delay / distance)
- unsigned CurMII = (Delay + Distance - 1) / Distance;
- Nodes.setRecMII(CurMII);
- if (CurMII > RecMII)
- RecMII = CurMII;
- }
- return RecMII;
- }
- /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
- /// but we do this to find the circuits, and then change them back.
- static void swapAntiDependences(std::vector<SUnit> &SUnits) {
- SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
- for (SUnit &SU : SUnits) {
- for (SDep &Pred : SU.Preds)
- if (Pred.getKind() == SDep::Anti)
- DepsAdded.push_back(std::make_pair(&SU, Pred));
- }
- for (std::pair<SUnit *, SDep> &P : DepsAdded) {
- // Remove this anti dependency and add one in the reverse direction.
- SUnit *SU = P.first;
- SDep &D = P.second;
- SUnit *TargetSU = D.getSUnit();
- unsigned Reg = D.getReg();
- unsigned Lat = D.getLatency();
- SU->removePred(D);
- SDep Dep(SU, SDep::Anti, Reg);
- Dep.setLatency(Lat);
- TargetSU->addPred(Dep);
- }
- }
- /// Create the adjacency structure of the nodes in the graph.
- void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
- SwingSchedulerDAG *DAG) {
- BitVector Added(SUnits.size());
- DenseMap<int, int> OutputDeps;
- for (int i = 0, e = SUnits.size(); i != e; ++i) {
- Added.reset();
- // Add any successor to the adjacency matrix and exclude duplicates.
- for (auto &SI : SUnits[i].Succs) {
- // Only create a back-edge on the first and last nodes of a dependence
- // chain. This records any chains and adds them later.
- if (SI.getKind() == SDep::Output) {
- int N = SI.getSUnit()->NodeNum;
- int BackEdge = i;
- auto Dep = OutputDeps.find(BackEdge);
- if (Dep != OutputDeps.end()) {
- BackEdge = Dep->second;
- OutputDeps.erase(Dep);
- }
- OutputDeps[N] = BackEdge;
- }
- // Do not process a boundary node, an artificial node.
- // A back-edge is processed only if it goes to a Phi.
- if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
- (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
- continue;
- int N = SI.getSUnit()->NodeNum;
- if (!Added.test(N)) {
- AdjK[i].push_back(N);
- Added.set(N);
- }
- }
- // A chain edge between a store and a load is treated as a back-edge in the
- // adjacency matrix.
- for (auto &PI : SUnits[i].Preds) {
- if (!SUnits[i].getInstr()->mayStore() ||
- !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
- continue;
- if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
- int N = PI.getSUnit()->NodeNum;
- if (!Added.test(N)) {
- AdjK[i].push_back(N);
- Added.set(N);
- }
- }
- }
- }
- // Add back-edges in the adjacency matrix for the output dependences.
- for (auto &OD : OutputDeps)
- if (!Added.test(OD.second)) {
- AdjK[OD.first].push_back(OD.second);
- Added.set(OD.second);
- }
- }
- /// Identify an elementary circuit in the dependence graph starting at the
- /// specified node.
- bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
- bool HasBackedge) {
- SUnit *SV = &SUnits[V];
- bool F = false;
- Stack.insert(SV);
- Blocked.set(V);
- for (auto W : AdjK[V]) {
- if (NumPaths > MaxPaths)
- break;
- if (W < S)
- continue;
- if (W == S) {
- if (!HasBackedge)
- NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
- F = true;
- ++NumPaths;
- break;
- } else if (!Blocked.test(W)) {
- if (circuit(W, S, NodeSets,
- Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
- F = true;
- }
- }
- if (F)
- unblock(V);
- else {
- for (auto W : AdjK[V]) {
- if (W < S)
- continue;
- B[W].insert(SV);
- }
- }
- Stack.pop_back();
- return F;
- }
- /// Unblock a node in the circuit finding algorithm.
- void SwingSchedulerDAG::Circuits::unblock(int U) {
- Blocked.reset(U);
- SmallPtrSet<SUnit *, 4> &BU = B[U];
- while (!BU.empty()) {
- SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
- assert(SI != BU.end() && "Invalid B set.");
- SUnit *W = *SI;
- BU.erase(W);
- if (Blocked.test(W->NodeNum))
- unblock(W->NodeNum);
- }
- }
- /// Identify all the elementary circuits in the dependence graph using
- /// Johnson's circuit algorithm.
- void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
- // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
- // but we do this to find the circuits, and then change them back.
- swapAntiDependences(SUnits);
- Circuits Cir(SUnits, Topo);
- // Create the adjacency structure.
- Cir.createAdjacencyStructure(this);
- for (int i = 0, e = SUnits.size(); i != e; ++i) {
- Cir.reset();
- Cir.circuit(i, i, NodeSets);
- }
- // Change the dependences back so that we've created a DAG again.
- swapAntiDependences(SUnits);
- }
- // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
- // is loop-carried to the USE in next iteration. This will help pipeliner avoid
- // additional copies that are needed across iterations. An artificial dependence
- // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
- // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
- // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
- // PHI-------True-Dep------> USEOfPhi
- // The mutation creates
- // USEOfPHI -------Artificial-Dep---> SRCOfCopy
- // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
- // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
- // late to avoid additional copies across iterations. The possible scheduling
- // order would be
- // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
- void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
- for (SUnit &SU : DAG->SUnits) {
- // Find the COPY/REG_SEQUENCE instruction.
- if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
- continue;
- // Record the loop carried PHIs.
- SmallVector<SUnit *, 4> PHISUs;
- // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
- SmallVector<SUnit *, 4> SrcSUs;
- for (auto &Dep : SU.Preds) {
- SUnit *TmpSU = Dep.getSUnit();
- MachineInstr *TmpMI = TmpSU->getInstr();
- SDep::Kind DepKind = Dep.getKind();
- // Save the loop carried PHI.
- if (DepKind == SDep::Anti && TmpMI->isPHI())
- PHISUs.push_back(TmpSU);
- // Save the source of COPY/REG_SEQUENCE.
- // If the source has no pre-decessors, we will end up creating cycles.
- else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
- SrcSUs.push_back(TmpSU);
- }
- if (PHISUs.size() == 0 || SrcSUs.size() == 0)
- continue;
- // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
- // SUnit to the container.
- SmallVector<SUnit *, 8> UseSUs;
- // Do not use iterator based loop here as we are updating the container.
- for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
- for (auto &Dep : PHISUs[Index]->Succs) {
- if (Dep.getKind() != SDep::Data)
- continue;
- SUnit *TmpSU = Dep.getSUnit();
- MachineInstr *TmpMI = TmpSU->getInstr();
- if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
- PHISUs.push_back(TmpSU);
- continue;
- }
- UseSUs.push_back(TmpSU);
- }
- }
- if (UseSUs.size() == 0)
- continue;
- SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
- // Add the artificial dependencies if it does not form a cycle.
- for (auto *I : UseSUs) {
- for (auto *Src : SrcSUs) {
- if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
- Src->addPred(SDep(I, SDep::Artificial));
- SDAG->Topo.AddPred(Src, I);
- }
- }
- }
- }
- }
- /// Return true for DAG nodes that we ignore when computing the cost functions.
- /// We ignore the back-edge recurrence in order to avoid unbounded recursion
- /// in the calculation of the ASAP, ALAP, etc functions.
- static bool ignoreDependence(const SDep &D, bool isPred) {
- if (D.isArtificial() || D.getSUnit()->isBoundaryNode())
- return true;
- return D.getKind() == SDep::Anti && isPred;
- }
- /// Compute several functions need to order the nodes for scheduling.
- /// ASAP - Earliest time to schedule a node.
- /// ALAP - Latest time to schedule a node.
- /// MOV - Mobility function, difference between ALAP and ASAP.
- /// D - Depth of each node.
- /// H - Height of each node.
- void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
- ScheduleInfo.resize(SUnits.size());
- LLVM_DEBUG({
- for (int I : Topo) {
- const SUnit &SU = SUnits[I];
- dumpNode(SU);
- }
- });
- int maxASAP = 0;
- // Compute ASAP and ZeroLatencyDepth.
- for (int I : Topo) {
- int asap = 0;
- int zeroLatencyDepth = 0;
- SUnit *SU = &SUnits[I];
- for (const SDep &P : SU->Preds) {
- SUnit *pred = P.getSUnit();
- if (P.getLatency() == 0)
- zeroLatencyDepth =
- std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
- if (ignoreDependence(P, true))
- continue;
- asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
- getDistance(pred, SU, P) * MII));
- }
- maxASAP = std::max(maxASAP, asap);
- ScheduleInfo[I].ASAP = asap;
- ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
- }
- // Compute ALAP, ZeroLatencyHeight, and MOV.
- for (int I : llvm::reverse(Topo)) {
- int alap = maxASAP;
- int zeroLatencyHeight = 0;
- SUnit *SU = &SUnits[I];
- for (const SDep &S : SU->Succs) {
- SUnit *succ = S.getSUnit();
- if (succ->isBoundaryNode())
- continue;
- if (S.getLatency() == 0)
- zeroLatencyHeight =
- std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
- if (ignoreDependence(S, true))
- continue;
- alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
- getDistance(SU, succ, S) * MII));
- }
- ScheduleInfo[I].ALAP = alap;
- ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
- }
- // After computing the node functions, compute the summary for each node set.
- for (NodeSet &I : NodeSets)
- I.computeNodeSetInfo(this);
- LLVM_DEBUG({
- for (unsigned i = 0; i < SUnits.size(); i++) {
- dbgs() << "\tNode " << i << ":\n";
- dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
- dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
- dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
- dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
- dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
- dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
- dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
- }
- });
- }
- /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
- /// as the predecessors of the elements of NodeOrder that are not also in
- /// NodeOrder.
- static bool pred_L(SetVector<SUnit *> &NodeOrder,
- SmallSetVector<SUnit *, 8> &Preds,
- const NodeSet *S = nullptr) {
- Preds.clear();
- for (const SUnit *SU : NodeOrder) {
- for (const SDep &Pred : SU->Preds) {
- if (S && S->count(Pred.getSUnit()) == 0)
- continue;
- if (ignoreDependence(Pred, true))
- continue;
- if (NodeOrder.count(Pred.getSUnit()) == 0)
- Preds.insert(Pred.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const SDep &Succ : SU->Succs) {
- if (Succ.getKind() != SDep::Anti)
- continue;
- if (S && S->count(Succ.getSUnit()) == 0)
- continue;
- if (NodeOrder.count(Succ.getSUnit()) == 0)
- Preds.insert(Succ.getSUnit());
- }
- }
- return !Preds.empty();
- }
- /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
- /// as the successors of the elements of NodeOrder that are not also in
- /// NodeOrder.
- static bool succ_L(SetVector<SUnit *> &NodeOrder,
- SmallSetVector<SUnit *, 8> &Succs,
- const NodeSet *S = nullptr) {
- Succs.clear();
- for (const SUnit *SU : NodeOrder) {
- for (const SDep &Succ : SU->Succs) {
- if (S && S->count(Succ.getSUnit()) == 0)
- continue;
- if (ignoreDependence(Succ, false))
- continue;
- if (NodeOrder.count(Succ.getSUnit()) == 0)
- Succs.insert(Succ.getSUnit());
- }
- for (const SDep &Pred : SU->Preds) {
- if (Pred.getKind() != SDep::Anti)
- continue;
- if (S && S->count(Pred.getSUnit()) == 0)
- continue;
- if (NodeOrder.count(Pred.getSUnit()) == 0)
- Succs.insert(Pred.getSUnit());
- }
- }
- return !Succs.empty();
- }
- /// Return true if there is a path from the specified node to any of the nodes
- /// in DestNodes. Keep track and return the nodes in any path.
- static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
- SetVector<SUnit *> &DestNodes,
- SetVector<SUnit *> &Exclude,
- SmallPtrSet<SUnit *, 8> &Visited) {
- if (Cur->isBoundaryNode())
- return false;
- if (Exclude.contains(Cur))
- return false;
- if (DestNodes.contains(Cur))
- return true;
- if (!Visited.insert(Cur).second)
- return Path.contains(Cur);
- bool FoundPath = false;
- for (auto &SI : Cur->Succs)
- if (!ignoreDependence(SI, false))
- FoundPath |=
- computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
- for (auto &PI : Cur->Preds)
- if (PI.getKind() == SDep::Anti)
- FoundPath |=
- computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
- if (FoundPath)
- Path.insert(Cur);
- return FoundPath;
- }
- /// Compute the live-out registers for the instructions in a node-set.
- /// The live-out registers are those that are defined in the node-set,
- /// but not used. Except for use operands of Phis.
- static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
- NodeSet &NS) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- SmallVector<RegisterMaskPair, 8> LiveOutRegs;
- SmallSet<unsigned, 4> Uses;
- for (SUnit *SU : NS) {
- const MachineInstr *MI = SU->getInstr();
- if (MI->isPHI())
- continue;
- for (const MachineOperand &MO : MI->operands())
- if (MO.isReg() && MO.isUse()) {
- Register Reg = MO.getReg();
- if (Reg.isVirtual())
- Uses.insert(Reg);
- else if (MRI.isAllocatable(Reg))
- for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
- ++Units)
- Uses.insert(*Units);
- }
- }
- for (SUnit *SU : NS)
- for (const MachineOperand &MO : SU->getInstr()->operands())
- if (MO.isReg() && MO.isDef() && !MO.isDead()) {
- Register Reg = MO.getReg();
- if (Reg.isVirtual()) {
- if (!Uses.count(Reg))
- LiveOutRegs.push_back(RegisterMaskPair(Reg,
- LaneBitmask::getNone()));
- } else if (MRI.isAllocatable(Reg)) {
- for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
- ++Units)
- if (!Uses.count(*Units))
- LiveOutRegs.push_back(RegisterMaskPair(*Units,
- LaneBitmask::getNone()));
- }
- }
- RPTracker.addLiveRegs(LiveOutRegs);
- }
- /// A heuristic to filter nodes in recurrent node-sets if the register
- /// pressure of a set is too high.
- void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
- for (auto &NS : NodeSets) {
- // Skip small node-sets since they won't cause register pressure problems.
- if (NS.size() <= 2)
- continue;
- IntervalPressure RecRegPressure;
- RegPressureTracker RecRPTracker(RecRegPressure);
- RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
- computeLiveOuts(MF, RecRPTracker, NS);
- RecRPTracker.closeBottom();
- std::vector<SUnit *> SUnits(NS.begin(), NS.end());
- llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
- return A->NodeNum > B->NodeNum;
- });
- for (auto &SU : SUnits) {
- // Since we're computing the register pressure for a subset of the
- // instructions in a block, we need to set the tracker for each
- // instruction in the node-set. The tracker is set to the instruction
- // just after the one we're interested in.
- MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
- RecRPTracker.setPos(std::next(CurInstI));
- RegPressureDelta RPDelta;
- ArrayRef<PressureChange> CriticalPSets;
- RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
- CriticalPSets,
- RecRegPressure.MaxSetPressure);
- if (RPDelta.Excess.isValid()) {
- LLVM_DEBUG(
- dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
- << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
- << ":" << RPDelta.Excess.getUnitInc() << "\n");
- NS.setExceedPressure(SU);
- break;
- }
- RecRPTracker.recede();
- }
- }
- }
- /// A heuristic to colocate node sets that have the same set of
- /// successors.
- void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
- unsigned Colocate = 0;
- for (int i = 0, e = NodeSets.size(); i < e; ++i) {
- NodeSet &N1 = NodeSets[i];
- SmallSetVector<SUnit *, 8> S1;
- if (N1.empty() || !succ_L(N1, S1))
- continue;
- for (int j = i + 1; j < e; ++j) {
- NodeSet &N2 = NodeSets[j];
- if (N1.compareRecMII(N2) != 0)
- continue;
- SmallSetVector<SUnit *, 8> S2;
- if (N2.empty() || !succ_L(N2, S2))
- continue;
- if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
- N1.setColocate(++Colocate);
- N2.setColocate(Colocate);
- break;
- }
- }
- }
- }
- /// Check if the existing node-sets are profitable. If not, then ignore the
- /// recurrent node-sets, and attempt to schedule all nodes together. This is
- /// a heuristic. If the MII is large and all the recurrent node-sets are small,
- /// then it's best to try to schedule all instructions together instead of
- /// starting with the recurrent node-sets.
- void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
- // Look for loops with a large MII.
- if (MII < 17)
- return;
- // Check if the node-set contains only a simple add recurrence.
- for (auto &NS : NodeSets) {
- if (NS.getRecMII() > 2)
- return;
- if (NS.getMaxDepth() > MII)
- return;
- }
- NodeSets.clear();
- LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
- }
- /// Add the nodes that do not belong to a recurrence set into groups
- /// based upon connected components.
- void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
- SetVector<SUnit *> NodesAdded;
- SmallPtrSet<SUnit *, 8> Visited;
- // Add the nodes that are on a path between the previous node sets and
- // the current node set.
- for (NodeSet &I : NodeSets) {
- SmallSetVector<SUnit *, 8> N;
- // Add the nodes from the current node set to the previous node set.
- if (succ_L(I, N)) {
- SetVector<SUnit *> Path;
- for (SUnit *NI : N) {
- Visited.clear();
- computePath(NI, Path, NodesAdded, I, Visited);
- }
- if (!Path.empty())
- I.insert(Path.begin(), Path.end());
- }
- // Add the nodes from the previous node set to the current node set.
- N.clear();
- if (succ_L(NodesAdded, N)) {
- SetVector<SUnit *> Path;
- for (SUnit *NI : N) {
- Visited.clear();
- computePath(NI, Path, I, NodesAdded, Visited);
- }
- if (!Path.empty())
- I.insert(Path.begin(), Path.end());
- }
- NodesAdded.insert(I.begin(), I.end());
- }
- // Create a new node set with the connected nodes of any successor of a node
- // in a recurrent set.
- NodeSet NewSet;
- SmallSetVector<SUnit *, 8> N;
- if (succ_L(NodesAdded, N))
- for (SUnit *I : N)
- addConnectedNodes(I, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
- // Create a new node set with the connected nodes of any predecessor of a node
- // in a recurrent set.
- NewSet.clear();
- if (pred_L(NodesAdded, N))
- for (SUnit *I : N)
- addConnectedNodes(I, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
- // Create new nodes sets with the connected nodes any remaining node that
- // has no predecessor.
- for (SUnit &SU : SUnits) {
- if (NodesAdded.count(&SU) == 0) {
- NewSet.clear();
- addConnectedNodes(&SU, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
- }
- }
- }
- /// Add the node to the set, and add all of its connected nodes to the set.
- void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
- SetVector<SUnit *> &NodesAdded) {
- NewSet.insert(SU);
- NodesAdded.insert(SU);
- for (auto &SI : SU->Succs) {
- SUnit *Successor = SI.getSUnit();
- if (!SI.isArtificial() && !Successor->isBoundaryNode() &&
- NodesAdded.count(Successor) == 0)
- addConnectedNodes(Successor, NewSet, NodesAdded);
- }
- for (auto &PI : SU->Preds) {
- SUnit *Predecessor = PI.getSUnit();
- if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
- addConnectedNodes(Predecessor, NewSet, NodesAdded);
- }
- }
- /// Return true if Set1 contains elements in Set2. The elements in common
- /// are returned in a different container.
- static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
- SmallSetVector<SUnit *, 8> &Result) {
- Result.clear();
- for (SUnit *SU : Set1) {
- if (Set2.count(SU) != 0)
- Result.insert(SU);
- }
- return !Result.empty();
- }
- /// Merge the recurrence node sets that have the same initial node.
- void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
- for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
- ++I) {
- NodeSet &NI = *I;
- for (NodeSetType::iterator J = I + 1; J != E;) {
- NodeSet &NJ = *J;
- if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
- if (NJ.compareRecMII(NI) > 0)
- NI.setRecMII(NJ.getRecMII());
- for (SUnit *SU : *J)
- I->insert(SU);
- NodeSets.erase(J);
- E = NodeSets.end();
- } else {
- ++J;
- }
- }
- }
- }
- /// Remove nodes that have been scheduled in previous NodeSets.
- void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
- for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
- ++I)
- for (NodeSetType::iterator J = I + 1; J != E;) {
- J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
- if (J->empty()) {
- NodeSets.erase(J);
- E = NodeSets.end();
- } else {
- ++J;
- }
- }
- }
- /// Compute an ordered list of the dependence graph nodes, which
- /// indicates the order that the nodes will be scheduled. This is a
- /// two-level algorithm. First, a partial order is created, which
- /// consists of a list of sets ordered from highest to lowest priority.
- void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
- SmallSetVector<SUnit *, 8> R;
- NodeOrder.clear();
- for (auto &Nodes : NodeSets) {
- LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
- OrderKind Order;
- SmallSetVector<SUnit *, 8> N;
- if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
- R.insert(N.begin(), N.end());
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
- } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
- R.insert(N.begin(), N.end());
- Order = TopDown;
- LLVM_DEBUG(dbgs() << " Top down (succs) ");
- } else if (isIntersect(N, Nodes, R)) {
- // If some of the successors are in the existing node-set, then use the
- // top-down ordering.
- Order = TopDown;
- LLVM_DEBUG(dbgs() << " Top down (intersect) ");
- } else if (NodeSets.size() == 1) {
- for (const auto &N : Nodes)
- if (N->Succs.size() == 0)
- R.insert(N);
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (all) ");
- } else {
- // Find the node with the highest ASAP.
- SUnit *maxASAP = nullptr;
- for (SUnit *SU : Nodes) {
- if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
- (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
- maxASAP = SU;
- }
- R.insert(maxASAP);
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (default) ");
- }
- while (!R.empty()) {
- if (Order == TopDown) {
- // Choose the node with the maximum height. If more than one, choose
- // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
- // choose the node with the lowest MOV.
- while (!R.empty()) {
- SUnit *maxHeight = nullptr;
- for (SUnit *I : R) {
- if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
- maxHeight = I;
- else if (getHeight(I) == getHeight(maxHeight) &&
- getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
- maxHeight = I;
- else if (getHeight(I) == getHeight(maxHeight) &&
- getZeroLatencyHeight(I) ==
- getZeroLatencyHeight(maxHeight) &&
- getMOV(I) < getMOV(maxHeight))
- maxHeight = I;
- }
- NodeOrder.insert(maxHeight);
- LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
- R.remove(maxHeight);
- for (const auto &I : maxHeight->Succs) {
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.contains(I.getSUnit()))
- continue;
- if (ignoreDependence(I, false))
- continue;
- R.insert(I.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const auto &I : maxHeight->Preds) {
- if (I.getKind() != SDep::Anti)
- continue;
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.contains(I.getSUnit()))
- continue;
- R.insert(I.getSUnit());
- }
- }
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
- SmallSetVector<SUnit *, 8> N;
- if (pred_L(NodeOrder, N, &Nodes))
- R.insert(N.begin(), N.end());
- } else {
- // Choose the node with the maximum depth. If more than one, choose
- // the node with the maximum ZeroLatencyDepth. If still more than one,
- // choose the node with the lowest MOV.
- while (!R.empty()) {
- SUnit *maxDepth = nullptr;
- for (SUnit *I : R) {
- if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
- maxDepth = I;
- else if (getDepth(I) == getDepth(maxDepth) &&
- getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
- maxDepth = I;
- else if (getDepth(I) == getDepth(maxDepth) &&
- getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
- getMOV(I) < getMOV(maxDepth))
- maxDepth = I;
- }
- NodeOrder.insert(maxDepth);
- LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
- R.remove(maxDepth);
- if (Nodes.isExceedSU(maxDepth)) {
- Order = TopDown;
- R.clear();
- R.insert(Nodes.getNode(0));
- break;
- }
- for (const auto &I : maxDepth->Preds) {
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.contains(I.getSUnit()))
- continue;
- R.insert(I.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const auto &I : maxDepth->Succs) {
- if (I.getKind() != SDep::Anti)
- continue;
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.contains(I.getSUnit()))
- continue;
- R.insert(I.getSUnit());
- }
- }
- Order = TopDown;
- LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
- SmallSetVector<SUnit *, 8> N;
- if (succ_L(NodeOrder, N, &Nodes))
- R.insert(N.begin(), N.end());
- }
- }
- LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
- }
- LLVM_DEBUG({
- dbgs() << "Node order: ";
- for (SUnit *I : NodeOrder)
- dbgs() << " " << I->NodeNum << " ";
- dbgs() << "\n";
- });
- }
- /// Process the nodes in the computed order and create the pipelined schedule
- /// of the instructions, if possible. Return true if a schedule is found.
- bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
- if (NodeOrder.empty()){
- LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
- return false;
- }
- bool scheduleFound = false;
- // Keep increasing II until a valid schedule is found.
- for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
- Schedule.reset();
- Schedule.setInitiationInterval(II);
- LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
- SetVector<SUnit *>::iterator NI = NodeOrder.begin();
- SetVector<SUnit *>::iterator NE = NodeOrder.end();
- do {
- SUnit *SU = *NI;
- // Compute the schedule time for the instruction, which is based
- // upon the scheduled time for any predecessors/successors.
- int EarlyStart = INT_MIN;
- int LateStart = INT_MAX;
- // These values are set when the size of the schedule window is limited
- // due to chain dependences.
- int SchedEnd = INT_MAX;
- int SchedStart = INT_MIN;
- Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
- II, this);
- LLVM_DEBUG({
- dbgs() << "\n";
- dbgs() << "Inst (" << SU->NodeNum << ") ";
- SU->getInstr()->dump();
- dbgs() << "\n";
- });
- LLVM_DEBUG({
- dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
- LateStart, SchedEnd, SchedStart);
- });
- if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
- SchedStart > LateStart)
- scheduleFound = false;
- else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
- SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
- scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
- } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
- SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
- scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
- } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
- SchedEnd =
- std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
- // When scheduling a Phi it is better to start at the late cycle and go
- // backwards. The default order may insert the Phi too far away from
- // its first dependence.
- if (SU->getInstr()->isPHI())
- scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
- else
- scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
- } else {
- int FirstCycle = Schedule.getFirstCycle();
- scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
- FirstCycle + getASAP(SU) + II - 1, II);
- }
- // Even if we find a schedule, make sure the schedule doesn't exceed the
- // allowable number of stages. We keep trying if this happens.
- if (scheduleFound)
- if (SwpMaxStages > -1 &&
- Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
- scheduleFound = false;
- LLVM_DEBUG({
- if (!scheduleFound)
- dbgs() << "\tCan't schedule\n";
- });
- } while (++NI != NE && scheduleFound);
- // If a schedule is found, ensure non-pipelined instructions are in stage 0
- if (scheduleFound)
- scheduleFound =
- Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo);
- // If a schedule is found, check if it is a valid schedule too.
- if (scheduleFound)
- scheduleFound = Schedule.isValidSchedule(this);
- }
- LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
- << " (II=" << Schedule.getInitiationInterval()
- << ")\n");
- if (scheduleFound) {
- scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule);
- if (!scheduleFound)
- LLVM_DEBUG(dbgs() << "Target rejected schedule\n");
- }
- if (scheduleFound) {
- Schedule.finalizeSchedule(this);
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Schedule found with Initiation Interval: "
- << ore::NV("II", Schedule.getInitiationInterval())
- << ", MaxStageCount: "
- << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
- });
- } else
- Schedule.reset();
- return scheduleFound && Schedule.getMaxStageCount() > 0;
- }
- /// Return true if we can compute the amount the instruction changes
- /// during each iteration. Set Delta to the amount of the change.
- bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- const MachineOperand *BaseOp;
- int64_t Offset;
- bool OffsetIsScalable;
- if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
- return false;
- // FIXME: This algorithm assumes instructions have fixed-size offsets.
- if (OffsetIsScalable)
- return false;
- if (!BaseOp->isReg())
- return false;
- Register BaseReg = BaseOp->getReg();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- // Check if there is a Phi. If so, get the definition in the loop.
- MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
- if (BaseDef && BaseDef->isPHI()) {
- BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
- BaseDef = MRI.getVRegDef(BaseReg);
- }
- if (!BaseDef)
- return false;
- int D = 0;
- if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
- return false;
- Delta = D;
- return true;
- }
- /// Check if we can change the instruction to use an offset value from the
- /// previous iteration. If so, return true and set the base and offset values
- /// so that we can rewrite the load, if necessary.
- /// v1 = Phi(v0, v3)
- /// v2 = load v1, 0
- /// v3 = post_store v1, 4, x
- /// This function enables the load to be rewritten as v2 = load v3, 4.
- bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
- unsigned &BasePos,
- unsigned &OffsetPos,
- unsigned &NewBase,
- int64_t &Offset) {
- // Get the load instruction.
- if (TII->isPostIncrement(*MI))
- return false;
- unsigned BasePosLd, OffsetPosLd;
- if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
- return false;
- Register BaseReg = MI->getOperand(BasePosLd).getReg();
- // Look for the Phi instruction.
- MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
- MachineInstr *Phi = MRI.getVRegDef(BaseReg);
- if (!Phi || !Phi->isPHI())
- return false;
- // Get the register defined in the loop block.
- unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
- if (!PrevReg)
- return false;
- // Check for the post-increment load/store instruction.
- MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
- if (!PrevDef || PrevDef == MI)
- return false;
- if (!TII->isPostIncrement(*PrevDef))
- return false;
- unsigned BasePos1 = 0, OffsetPos1 = 0;
- if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
- return false;
- // Make sure that the instructions do not access the same memory location in
- // the next iteration.
- int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
- int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
- bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
- MF.deleteMachineInstr(NewMI);
- if (!Disjoint)
- return false;
- // Set the return value once we determine that we return true.
- BasePos = BasePosLd;
- OffsetPos = OffsetPosLd;
- NewBase = PrevReg;
- Offset = StoreOffset;
- return true;
- }
- /// Apply changes to the instruction if needed. The changes are need
- /// to improve the scheduling and depend up on the final schedule.
- void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
- SMSchedule &Schedule) {
- SUnit *SU = getSUnit(MI);
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end()) {
- std::pair<unsigned, int64_t> RegAndOffset = It->second;
- unsigned BasePos, OffsetPos;
- if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
- return;
- Register BaseReg = MI->getOperand(BasePos).getReg();
- MachineInstr *LoopDef = findDefInLoop(BaseReg);
- int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
- int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
- int BaseStageNum = Schedule.stageScheduled(SU);
- int BaseCycleNum = Schedule.cycleScheduled(SU);
- if (BaseStageNum < DefStageNum) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- int OffsetDiff = DefStageNum - BaseStageNum;
- if (DefCycleNum < BaseCycleNum) {
- NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
- if (OffsetDiff > 0)
- --OffsetDiff;
- }
- int64_t NewOffset =
- MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- SU->setInstr(NewMI);
- MISUnitMap[NewMI] = SU;
- NewMIs[MI] = NewMI;
- }
- }
- }
- /// Return the instruction in the loop that defines the register.
- /// If the definition is a Phi, then follow the Phi operand to
- /// the instruction in the loop.
- MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
- SmallPtrSet<MachineInstr *, 8> Visited;
- MachineInstr *Def = MRI.getVRegDef(Reg);
- while (Def->isPHI()) {
- if (!Visited.insert(Def).second)
- break;
- for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
- if (Def->getOperand(i + 1).getMBB() == BB) {
- Def = MRI.getVRegDef(Def->getOperand(i).getReg());
- break;
- }
- }
- return Def;
- }
- /// Return true for an order or output dependence that is loop carried
- /// potentially. A dependence is loop carried if the destination defines a valu
- /// that may be used or defined by the source in a subsequent iteration.
- bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
- bool isSucc) {
- if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
- Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode())
- return false;
- if (!SwpPruneLoopCarried)
- return true;
- if (Dep.getKind() == SDep::Output)
- return true;
- MachineInstr *SI = Source->getInstr();
- MachineInstr *DI = Dep.getSUnit()->getInstr();
- if (!isSucc)
- std::swap(SI, DI);
- assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
- // Assume ordered loads and stores may have a loop carried dependence.
- if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
- SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
- SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
- return true;
- // Only chain dependences between a load and store can be loop carried.
- if (!DI->mayStore() || !SI->mayLoad())
- return false;
- unsigned DeltaS, DeltaD;
- if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
- return true;
- const MachineOperand *BaseOpS, *BaseOpD;
- int64_t OffsetS, OffsetD;
- bool OffsetSIsScalable, OffsetDIsScalable;
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
- TRI) ||
- !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
- TRI))
- return true;
- assert(!OffsetSIsScalable && !OffsetDIsScalable &&
- "Expected offsets to be byte offsets");
- MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg());
- MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg());
- if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI())
- return true;
- unsigned InitValS = 0;
- unsigned LoopValS = 0;
- unsigned InitValD = 0;
- unsigned LoopValD = 0;
- getPhiRegs(*DefS, BB, InitValS, LoopValS);
- getPhiRegs(*DefD, BB, InitValD, LoopValD);
- MachineInstr *InitDefS = MRI.getVRegDef(InitValS);
- MachineInstr *InitDefD = MRI.getVRegDef(InitValD);
- if (!InitDefS->isIdenticalTo(*InitDefD))
- return true;
- // Check that the base register is incremented by a constant value for each
- // iteration.
- MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS);
- int D = 0;
- if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D))
- return true;
- uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
- uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
- // This is the main test, which checks the offset values and the loop
- // increment value to determine if the accesses may be loop carried.
- if (AccessSizeS == MemoryLocation::UnknownSize ||
- AccessSizeD == MemoryLocation::UnknownSize)
- return true;
- if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
- return true;
- return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
- }
- void SwingSchedulerDAG::postprocessDAG() {
- for (auto &M : Mutations)
- M->apply(this);
- }
- /// Try to schedule the node at the specified StartCycle and continue
- /// until the node is schedule or the EndCycle is reached. This function
- /// returns true if the node is scheduled. This routine may search either
- /// forward or backward for a place to insert the instruction based upon
- /// the relative values of StartCycle and EndCycle.
- bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
- bool forward = true;
- LLVM_DEBUG({
- dbgs() << "Trying to insert node between " << StartCycle << " and "
- << EndCycle << " II: " << II << "\n";
- });
- if (StartCycle > EndCycle)
- forward = false;
- // The terminating condition depends on the direction.
- int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
- for (int curCycle = StartCycle; curCycle != termCycle;
- forward ? ++curCycle : --curCycle) {
- if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
- ProcItinResources.canReserveResources(*SU, curCycle)) {
- LLVM_DEBUG({
- dbgs() << "\tinsert at cycle " << curCycle << " ";
- SU->getInstr()->dump();
- });
- if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
- ProcItinResources.reserveResources(*SU, curCycle);
- ScheduledInstrs[curCycle].push_back(SU);
- InstrToCycle.insert(std::make_pair(SU, curCycle));
- if (curCycle > LastCycle)
- LastCycle = curCycle;
- if (curCycle < FirstCycle)
- FirstCycle = curCycle;
- return true;
- }
- LLVM_DEBUG({
- dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
- SU->getInstr()->dump();
- });
- }
- return false;
- }
- // Return the cycle of the earliest scheduled instruction in the chain.
- int SMSchedule::earliestCycleInChain(const SDep &Dep) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SDep, 8> Worklist;
- Worklist.push_back(Dep);
- int EarlyCycle = INT_MAX;
- while (!Worklist.empty()) {
- const SDep &Cur = Worklist.pop_back_val();
- SUnit *PrevSU = Cur.getSUnit();
- if (Visited.count(PrevSU))
- continue;
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
- if (it == InstrToCycle.end())
- continue;
- EarlyCycle = std::min(EarlyCycle, it->second);
- for (const auto &PI : PrevSU->Preds)
- if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
- Worklist.push_back(PI);
- Visited.insert(PrevSU);
- }
- return EarlyCycle;
- }
- // Return the cycle of the latest scheduled instruction in the chain.
- int SMSchedule::latestCycleInChain(const SDep &Dep) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SDep, 8> Worklist;
- Worklist.push_back(Dep);
- int LateCycle = INT_MIN;
- while (!Worklist.empty()) {
- const SDep &Cur = Worklist.pop_back_val();
- SUnit *SuccSU = Cur.getSUnit();
- if (Visited.count(SuccSU) || SuccSU->isBoundaryNode())
- continue;
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
- if (it == InstrToCycle.end())
- continue;
- LateCycle = std::max(LateCycle, it->second);
- for (const auto &SI : SuccSU->Succs)
- if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
- Worklist.push_back(SI);
- Visited.insert(SuccSU);
- }
- return LateCycle;
- }
- /// If an instruction has a use that spans multiple iterations, then
- /// return true. These instructions are characterized by having a back-ege
- /// to a Phi, which contains a reference to another Phi.
- static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
- for (auto &P : SU->Preds)
- if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
- for (auto &S : P.getSUnit()->Succs)
- if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
- return P.getSUnit();
- return nullptr;
- }
- /// Compute the scheduling start slot for the instruction. The start slot
- /// depends on any predecessor or successor nodes scheduled already.
- void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
- int *MinEnd, int *MaxStart, int II,
- SwingSchedulerDAG *DAG) {
- // Iterate over each instruction that has been scheduled already. The start
- // slot computation depends on whether the previously scheduled instruction
- // is a predecessor or successor of the specified instruction.
- for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
- // Iterate over each instruction in the current cycle.
- for (SUnit *I : getInstructions(cycle)) {
- // Because we're processing a DAG for the dependences, we recognize
- // the back-edge in recurrences by anti dependences.
- for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
- const SDep &Dep = SU->Preds[i];
- if (Dep.getSUnit() == I) {
- if (!DAG->isBackedge(SU, Dep)) {
- int EarlyStart = cycle + Dep.getLatency() -
- DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
- *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
- if (DAG->isLoopCarriedDep(SU, Dep, false)) {
- int End = earliestCycleInChain(Dep) + (II - 1);
- *MinEnd = std::min(*MinEnd, End);
- }
- } else {
- int LateStart = cycle - Dep.getLatency() +
- DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
- *MinLateStart = std::min(*MinLateStart, LateStart);
- }
- }
- // For instruction that requires multiple iterations, make sure that
- // the dependent instruction is not scheduled past the definition.
- SUnit *BE = multipleIterations(I, DAG);
- if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
- !SU->isPred(I))
- *MinLateStart = std::min(*MinLateStart, cycle);
- }
- for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
- if (SU->Succs[i].getSUnit() == I) {
- const SDep &Dep = SU->Succs[i];
- if (!DAG->isBackedge(SU, Dep)) {
- int LateStart = cycle - Dep.getLatency() +
- DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
- *MinLateStart = std::min(*MinLateStart, LateStart);
- if (DAG->isLoopCarriedDep(SU, Dep)) {
- int Start = latestCycleInChain(Dep) + 1 - II;
- *MaxStart = std::max(*MaxStart, Start);
- }
- } else {
- int EarlyStart = cycle + Dep.getLatency() -
- DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
- *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
- }
- }
- }
- }
- }
- }
- /// Order the instructions within a cycle so that the definitions occur
- /// before the uses. Returns true if the instruction is added to the start
- /// of the list, or false if added to the end.
- void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
- std::deque<SUnit *> &Insts) {
- MachineInstr *MI = SU->getInstr();
- bool OrderBeforeUse = false;
- bool OrderAfterDef = false;
- bool OrderBeforeDef = false;
- unsigned MoveDef = 0;
- unsigned MoveUse = 0;
- int StageInst1 = stageScheduled(SU);
- unsigned Pos = 0;
- for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
- ++I, ++Pos) {
- for (MachineOperand &MO : MI->operands()) {
- if (!MO.isReg() || !MO.getReg().isVirtual())
- continue;
- Register Reg = MO.getReg();
- unsigned BasePos, OffsetPos;
- if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
- if (MI->getOperand(BasePos).getReg() == Reg)
- if (unsigned NewReg = SSD->getInstrBaseReg(SU))
- Reg = NewReg;
- bool Reads, Writes;
- std::tie(Reads, Writes) =
- (*I)->getInstr()->readsWritesVirtualRegister(Reg);
- if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
- // Add the instruction after the scheduled instruction.
- OrderAfterDef = true;
- MoveDef = Pos;
- } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
- if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else {
- OrderAfterDef = true;
- MoveDef = Pos;
- }
- } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- if (MoveUse != 0) {
- OrderAfterDef = true;
- MoveDef = Pos - 1;
- }
- } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
- // Add the instruction before the scheduled instruction.
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
- isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
- if (MoveUse == 0) {
- OrderBeforeDef = true;
- MoveUse = Pos;
- }
- }
- }
- // Check for order dependences between instructions. Make sure the source
- // is ordered before the destination.
- for (auto &S : SU->Succs) {
- if (S.getSUnit() != *I)
- continue;
- if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
- OrderBeforeUse = true;
- if (Pos < MoveUse)
- MoveUse = Pos;
- }
- // We did not handle HW dependences in previous for loop,
- // and we normally set Latency = 0 for Anti deps,
- // so may have nodes in same cycle with Anti denpendent on HW regs.
- else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
- OrderBeforeUse = true;
- if ((MoveUse == 0) || (Pos < MoveUse))
- MoveUse = Pos;
- }
- }
- for (auto &P : SU->Preds) {
- if (P.getSUnit() != *I)
- continue;
- if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
- OrderAfterDef = true;
- MoveDef = Pos;
- }
- }
- }
- // A circular dependence.
- if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
- OrderBeforeUse = false;
- // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
- // to a loop-carried dependence.
- if (OrderBeforeDef)
- OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
- // The uncommon case when the instruction order needs to be updated because
- // there is both a use and def.
- if (OrderBeforeUse && OrderAfterDef) {
- SUnit *UseSU = Insts.at(MoveUse);
- SUnit *DefSU = Insts.at(MoveDef);
- if (MoveUse > MoveDef) {
- Insts.erase(Insts.begin() + MoveUse);
- Insts.erase(Insts.begin() + MoveDef);
- } else {
- Insts.erase(Insts.begin() + MoveDef);
- Insts.erase(Insts.begin() + MoveUse);
- }
- orderDependence(SSD, UseSU, Insts);
- orderDependence(SSD, SU, Insts);
- orderDependence(SSD, DefSU, Insts);
- return;
- }
- // Put the new instruction first if there is a use in the list. Otherwise,
- // put it at the end of the list.
- if (OrderBeforeUse)
- Insts.push_front(SU);
- else
- Insts.push_back(SU);
- }
- /// Return true if the scheduled Phi has a loop carried operand.
- bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
- if (!Phi.isPHI())
- return false;
- assert(Phi.isPHI() && "Expecting a Phi.");
- SUnit *DefSU = SSD->getSUnit(&Phi);
- unsigned DefCycle = cycleScheduled(DefSU);
- int DefStage = stageScheduled(DefSU);
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
- SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
- if (!UseSU)
- return true;
- if (UseSU->getInstr()->isPHI())
- return true;
- unsigned LoopCycle = cycleScheduled(UseSU);
- int LoopStage = stageScheduled(UseSU);
- return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
- }
- /// Return true if the instruction is a definition that is loop carried
- /// and defines the use on the next iteration.
- /// v1 = phi(v2, v3)
- /// (Def) v3 = op v1
- /// (MO) = v1
- /// If MO appears before Def, then then v1 and v3 may get assigned to the same
- /// register.
- bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
- MachineInstr *Def, MachineOperand &MO) {
- if (!MO.isReg())
- return false;
- if (Def->isPHI())
- return false;
- MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
- if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
- return false;
- if (!isLoopCarried(SSD, *Phi))
- return false;
- unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
- for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
- MachineOperand &DMO = Def->getOperand(i);
- if (!DMO.isReg() || !DMO.isDef())
- continue;
- if (DMO.getReg() == LoopReg)
- return true;
- }
- return false;
- }
- /// Determine transitive dependences of unpipelineable instructions
- SmallSet<SUnit *, 8> SMSchedule::computeUnpipelineableNodes(
- SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
- SmallSet<SUnit *, 8> DoNotPipeline;
- SmallVector<SUnit *, 8> Worklist;
- for (auto &SU : SSD->SUnits)
- if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr()))
- Worklist.push_back(&SU);
- while (!Worklist.empty()) {
- auto SU = Worklist.pop_back_val();
- if (DoNotPipeline.count(SU))
- continue;
- LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n");
- DoNotPipeline.insert(SU);
- for (auto &Dep : SU->Preds)
- Worklist.push_back(Dep.getSUnit());
- if (SU->getInstr()->isPHI())
- for (auto &Dep : SU->Succs)
- if (Dep.getKind() == SDep::Anti)
- Worklist.push_back(Dep.getSUnit());
- }
- return DoNotPipeline;
- }
- // Determine all instructions upon which any unpipelineable instruction depends
- // and ensure that they are in stage 0. If unable to do so, return false.
- bool SMSchedule::normalizeNonPipelinedInstructions(
- SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) {
- SmallSet<SUnit *, 8> DNP = computeUnpipelineableNodes(SSD, PLI);
- int NewLastCycle = INT_MIN;
- for (SUnit &SU : SSD->SUnits) {
- if (!SU.isInstr())
- continue;
- if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) {
- NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]);
- continue;
- }
- // Put the non-pipelined instruction as early as possible in the schedule
- int NewCycle = getFirstCycle();
- for (auto &Dep : SU.Preds)
- NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle);
- int OldCycle = InstrToCycle[&SU];
- if (OldCycle != NewCycle) {
- InstrToCycle[&SU] = NewCycle;
- auto &OldS = getInstructions(OldCycle);
- llvm::erase_value(OldS, &SU);
- getInstructions(NewCycle).emplace_back(&SU);
- LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum
- << ") is not pipelined; moving from cycle " << OldCycle
- << " to " << NewCycle << " Instr:" << *SU.getInstr());
- }
- NewLastCycle = std::max(NewLastCycle, NewCycle);
- }
- LastCycle = NewLastCycle;
- return true;
- }
- // Check if the generated schedule is valid. This function checks if
- // an instruction that uses a physical register is scheduled in a
- // different stage than the definition. The pipeliner does not handle
- // physical register values that may cross a basic block boundary.
- // Furthermore, if a physical def/use pair is assigned to the same
- // cycle, orderDependence does not guarantee def/use ordering, so that
- // case should be considered invalid. (The test checks for both
- // earlier and same-cycle use to be more robust.)
- bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
- for (SUnit &SU : SSD->SUnits) {
- if (!SU.hasPhysRegDefs)
- continue;
- int StageDef = stageScheduled(&SU);
- int CycleDef = InstrToCycle[&SU];
- assert(StageDef != -1 && "Instruction should have been scheduled.");
- for (auto &SI : SU.Succs)
- if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode())
- if (Register::isPhysicalRegister(SI.getReg())) {
- if (stageScheduled(SI.getSUnit()) != StageDef)
- return false;
- if (InstrToCycle[SI.getSUnit()] <= CycleDef)
- return false;
- }
- }
- return true;
- }
- /// A property of the node order in swing-modulo-scheduling is
- /// that for nodes outside circuits the following holds:
- /// none of them is scheduled after both a successor and a
- /// predecessor.
- /// The method below checks whether the property is met.
- /// If not, debug information is printed and statistics information updated.
- /// Note that we do not use an assert statement.
- /// The reason is that although an invalid node oder may prevent
- /// the pipeliner from finding a pipelined schedule for arbitrary II,
- /// it does not lead to the generation of incorrect code.
- void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
- // a sorted vector that maps each SUnit to its index in the NodeOrder
- typedef std::pair<SUnit *, unsigned> UnitIndex;
- std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
- for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
- Indices.push_back(std::make_pair(NodeOrder[i], i));
- auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
- return std::get<0>(i1) < std::get<0>(i2);
- };
- // sort, so that we can perform a binary search
- llvm::sort(Indices, CompareKey);
- bool Valid = true;
- (void)Valid;
- // for each SUnit in the NodeOrder, check whether
- // it appears after both a successor and a predecessor
- // of the SUnit. If this is the case, and the SUnit
- // is not part of circuit, then the NodeOrder is not
- // valid.
- for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
- SUnit *SU = NodeOrder[i];
- unsigned Index = i;
- bool PredBefore = false;
- bool SuccBefore = false;
- SUnit *Succ;
- SUnit *Pred;
- (void)Succ;
- (void)Pred;
- for (SDep &PredEdge : SU->Preds) {
- SUnit *PredSU = PredEdge.getSUnit();
- unsigned PredIndex = std::get<1>(
- *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
- if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
- PredBefore = true;
- Pred = PredSU;
- break;
- }
- }
- for (SDep &SuccEdge : SU->Succs) {
- SUnit *SuccSU = SuccEdge.getSUnit();
- // Do not process a boundary node, it was not included in NodeOrder,
- // hence not in Indices either, call to std::lower_bound() below will
- // return Indices.end().
- if (SuccSU->isBoundaryNode())
- continue;
- unsigned SuccIndex = std::get<1>(
- *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
- if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
- SuccBefore = true;
- Succ = SuccSU;
- break;
- }
- }
- if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
- // instructions in circuits are allowed to be scheduled
- // after both a successor and predecessor.
- bool InCircuit = llvm::any_of(
- Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
- if (InCircuit)
- LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
- else {
- Valid = false;
- NumNodeOrderIssues++;
- LLVM_DEBUG(dbgs() << "Predecessor ";);
- }
- LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
- << " are scheduled before node " << SU->NodeNum
- << "\n";);
- }
- }
- LLVM_DEBUG({
- if (!Valid)
- dbgs() << "Invalid node order found!\n";
- });
- }
- /// Attempt to fix the degenerate cases when the instruction serialization
- /// causes the register lifetimes to overlap. For example,
- /// p' = store_pi(p, b)
- /// = load p, offset
- /// In this case p and p' overlap, which means that two registers are needed.
- /// Instead, this function changes the load to use p' and updates the offset.
- void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
- unsigned OverlapReg = 0;
- unsigned NewBaseReg = 0;
- for (SUnit *SU : Instrs) {
- MachineInstr *MI = SU->getInstr();
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- // Look for an instruction that uses p. The instruction occurs in the
- // same cycle but occurs later in the serialized order.
- if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
- // Check that the instruction appears in the InstrChanges structure,
- // which contains instructions that can have the offset updated.
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end()) {
- unsigned BasePos, OffsetPos;
- // Update the base register and adjust the offset.
- if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- NewMI->getOperand(BasePos).setReg(NewBaseReg);
- int64_t NewOffset =
- MI->getOperand(OffsetPos).getImm() - It->second.second;
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- SU->setInstr(NewMI);
- MISUnitMap[NewMI] = SU;
- NewMIs[MI] = NewMI;
- }
- }
- OverlapReg = 0;
- NewBaseReg = 0;
- break;
- }
- // Look for an instruction of the form p' = op(p), which uses and defines
- // two virtual registers that get allocated to the same physical register.
- unsigned TiedUseIdx = 0;
- if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
- // OverlapReg is p in the example above.
- OverlapReg = MI->getOperand(TiedUseIdx).getReg();
- // NewBaseReg is p' in the example above.
- NewBaseReg = MI->getOperand(i).getReg();
- break;
- }
- }
- }
- }
- /// After the schedule has been formed, call this function to combine
- /// the instructions from the different stages/cycles. That is, this
- /// function creates a schedule that represents a single iteration.
- void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
- // Move all instructions to the first stage from later stages.
- for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
- for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
- ++stage) {
- std::deque<SUnit *> &cycleInstrs =
- ScheduledInstrs[cycle + (stage * InitiationInterval)];
- for (SUnit *SU : llvm::reverse(cycleInstrs))
- ScheduledInstrs[cycle].push_front(SU);
- }
- }
- // Erase all the elements in the later stages. Only one iteration should
- // remain in the scheduled list, and it contains all the instructions.
- for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
- ScheduledInstrs.erase(cycle);
- // Change the registers in instruction as specified in the InstrChanges
- // map. We need to use the new registers to create the correct order.
- for (const SUnit &SU : SSD->SUnits)
- SSD->applyInstrChange(SU.getInstr(), *this);
- // Reorder the instructions in each cycle to fix and improve the
- // generated code.
- for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
- std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
- std::deque<SUnit *> newOrderPhi;
- for (SUnit *SU : cycleInstrs) {
- if (SU->getInstr()->isPHI())
- newOrderPhi.push_back(SU);
- }
- std::deque<SUnit *> newOrderI;
- for (SUnit *SU : cycleInstrs) {
- if (!SU->getInstr()->isPHI())
- orderDependence(SSD, SU, newOrderI);
- }
- // Replace the old order with the new order.
- cycleInstrs.swap(newOrderPhi);
- llvm::append_range(cycleInstrs, newOrderI);
- SSD->fixupRegisterOverlaps(cycleInstrs);
- }
- LLVM_DEBUG(dump(););
- }
- void NodeSet::print(raw_ostream &os) const {
- os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
- << " depth " << MaxDepth << " col " << Colocate << "\n";
- for (const auto &I : Nodes)
- os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
- os << "\n";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- /// Print the schedule information to the given output.
- void SMSchedule::print(raw_ostream &os) const {
- // Iterate over each cycle.
- for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
- // Iterate over each instruction in the cycle.
- const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
- for (SUnit *CI : cycleInstrs->second) {
- os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
- os << "(" << CI->NodeNum << ") ";
- CI->getInstr()->print(os);
- os << "\n";
- }
- }
- }
- /// Utility function used for debugging to print the schedule.
- LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
- LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
- void ResourceManager::dumpMRT() const {
- LLVM_DEBUG({
- if (UseDFA)
- return;
- std::stringstream SS;
- SS << "MRT:\n";
- SS << std::setw(4) << "Slot";
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
- SS << std::setw(3) << I;
- SS << std::setw(7) << "#Mops"
- << "\n";
- for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
- SS << std::setw(4) << Slot;
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I)
- SS << std::setw(3) << MRT[Slot][I];
- SS << std::setw(7) << NumScheduledMops[Slot] << "\n";
- }
- dbgs() << SS.str();
- });
- }
- #endif
- void ResourceManager::initProcResourceVectors(
- const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
- unsigned ProcResourceID = 0;
- // We currently limit the resource kinds to 64 and below so that we can use
- // uint64_t for Masks
- assert(SM.getNumProcResourceKinds() < 64 &&
- "Too many kinds of resources, unsupported");
- // Create a unique bitmask for every processor resource unit.
- // Skip resource at index 0, since it always references 'InvalidUnit'.
- Masks.resize(SM.getNumProcResourceKinds());
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc &Desc = *SM.getProcResource(I);
- if (Desc.SubUnitsIdxBegin)
- continue;
- Masks[I] = 1ULL << ProcResourceID;
- ProcResourceID++;
- }
- // Create a unique bitmask for every processor resource group.
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc &Desc = *SM.getProcResource(I);
- if (!Desc.SubUnitsIdxBegin)
- continue;
- Masks[I] = 1ULL << ProcResourceID;
- for (unsigned U = 0; U < Desc.NumUnits; ++U)
- Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
- ProcResourceID++;
- }
- LLVM_DEBUG({
- if (SwpShowResMask) {
- dbgs() << "ProcResourceDesc:\n";
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
- dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
- ProcResource->Name, I, Masks[I],
- ProcResource->NumUnits);
- }
- dbgs() << " -----------------\n";
- }
- });
- }
- bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) {
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "canReserveResources:\n";
- });
- if (UseDFA)
- return DFAResources[positiveModulo(Cycle, InitiationInterval)]
- ->canReserveResources(&SU.getInstr()->getDesc());
- const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
- if (!SCDesc->isValid()) {
- LLVM_DEBUG({
- dbgs() << "No valid Schedule Class Desc for schedClass!\n";
- dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
- });
- return true;
- }
- reserveResources(SCDesc, Cycle);
- bool Result = !isOverbooked();
- unreserveResources(SCDesc, Cycle);
- LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";);
- return Result;
- }
- void ResourceManager::reserveResources(SUnit &SU, int Cycle) {
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "reserveResources:\n";
- });
- if (UseDFA)
- return DFAResources[positiveModulo(Cycle, InitiationInterval)]
- ->reserveResources(&SU.getInstr()->getDesc());
- const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
- if (!SCDesc->isValid()) {
- LLVM_DEBUG({
- dbgs() << "No valid Schedule Class Desc for schedClass!\n";
- dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n";
- });
- return;
- }
- reserveResources(SCDesc, Cycle);
- LLVM_DEBUG({
- if (SwpDebugResource) {
- dumpMRT();
- dbgs() << "reserveResources: done!\n\n";
- }
- });
- }
- void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc,
- int Cycle) {
- assert(!UseDFA);
- for (const MCWriteProcResEntry &PRE : make_range(
- STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
- for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
- ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
- for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
- ++NumScheduledMops[positiveModulo(C, InitiationInterval)];
- }
- void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc,
- int Cycle) {
- assert(!UseDFA);
- for (const MCWriteProcResEntry &PRE : make_range(
- STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc)))
- for (int C = Cycle; C < Cycle + PRE.Cycles; ++C)
- --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx];
- for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C)
- --NumScheduledMops[positiveModulo(C, InitiationInterval)];
- }
- bool ResourceManager::isOverbooked() const {
- assert(!UseDFA);
- for (int Slot = 0; Slot < InitiationInterval; ++Slot) {
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc *Desc = SM.getProcResource(I);
- if (MRT[Slot][I] > Desc->NumUnits)
- return true;
- }
- if (NumScheduledMops[Slot] > IssueWidth)
- return true;
- }
- return false;
- }
- int ResourceManager::calculateResMIIDFA() const {
- assert(UseDFA);
- // Sort the instructions by the number of available choices for scheduling,
- // least to most. Use the number of critical resources as the tie breaker.
- FuncUnitSorter FUS = FuncUnitSorter(*ST);
- for (SUnit &SU : DAG->SUnits)
- FUS.calcCriticalResources(*SU.getInstr());
- PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
- FuncUnitOrder(FUS);
- for (SUnit &SU : DAG->SUnits)
- FuncUnitOrder.push(SU.getInstr());
- SmallVector<std::unique_ptr<DFAPacketizer>, 8> Resources;
- Resources.push_back(
- std::unique_ptr<DFAPacketizer>(TII->CreateTargetScheduleState(*ST)));
- while (!FuncUnitOrder.empty()) {
- MachineInstr *MI = FuncUnitOrder.top();
- FuncUnitOrder.pop();
- if (TII->isZeroCost(MI->getOpcode()))
- continue;
- // Attempt to reserve the instruction in an existing DFA. At least one
- // DFA is needed for each cycle.
- unsigned NumCycles = DAG->getSUnit(MI)->Latency;
- unsigned ReservedCycles = 0;
- auto *RI = Resources.begin();
- auto *RE = Resources.end();
- LLVM_DEBUG({
- dbgs() << "Trying to reserve resource for " << NumCycles
- << " cycles for \n";
- MI->dump();
- });
- for (unsigned C = 0; C < NumCycles; ++C)
- while (RI != RE) {
- if ((*RI)->canReserveResources(*MI)) {
- (*RI)->reserveResources(*MI);
- ++ReservedCycles;
- break;
- }
- RI++;
- }
- LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
- << ", NumCycles:" << NumCycles << "\n");
- // Add new DFAs, if needed, to reserve resources.
- for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
- LLVM_DEBUG(if (SwpDebugResource) dbgs()
- << "NewResource created to reserve resources"
- << "\n");
- auto *NewResource = TII->CreateTargetScheduleState(*ST);
- assert(NewResource->canReserveResources(*MI) && "Reserve error.");
- NewResource->reserveResources(*MI);
- Resources.push_back(std::unique_ptr<DFAPacketizer>(NewResource));
- }
- }
- int Resmii = Resources.size();
- LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
- return Resmii;
- }
- int ResourceManager::calculateResMII() const {
- if (UseDFA)
- return calculateResMIIDFA();
- // Count each resource consumption and divide it by the number of units.
- // ResMII is the max value among them.
- int NumMops = 0;
- SmallVector<uint64_t> ResourceCount(SM.getNumProcResourceKinds());
- for (SUnit &SU : DAG->SUnits) {
- if (TII->isZeroCost(SU.getInstr()->getOpcode()))
- continue;
- const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU);
- if (!SCDesc->isValid())
- continue;
- LLVM_DEBUG({
- if (SwpDebugResource) {
- DAG->dumpNode(SU);
- dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n"
- << " WriteProcRes: ";
- }
- });
- NumMops += SCDesc->NumMicroOps;
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- LLVM_DEBUG({
- if (SwpDebugResource) {
- const MCProcResourceDesc *Desc =
- SM.getProcResource(PRE.ProcResourceIdx);
- dbgs() << Desc->Name << ": " << PRE.Cycles << ", ";
- }
- });
- ResourceCount[PRE.ProcResourceIdx] += PRE.Cycles;
- }
- LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n");
- }
- int Result = (NumMops + IssueWidth - 1) / IssueWidth;
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "#Mops: " << NumMops << ", "
- << "IssueWidth: " << IssueWidth << ", "
- << "Cycles: " << Result << "\n";
- });
- LLVM_DEBUG({
- if (SwpDebugResource) {
- std::stringstream SS;
- SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10)
- << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles"
- << "\n";
- dbgs() << SS.str();
- }
- });
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc *Desc = SM.getProcResource(I);
- int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits;
- LLVM_DEBUG({
- if (SwpDebugResource) {
- std::stringstream SS;
- SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10)
- << Desc->NumUnits << std::setw(10) << ResourceCount[I]
- << std::setw(10) << Cycles << "\n";
- dbgs() << SS.str();
- }
- });
- if (Cycles > Result)
- Result = Cycles;
- }
- return Result;
- }
- void ResourceManager::init(int II) {
- InitiationInterval = II;
- DFAResources.clear();
- DFAResources.resize(II);
- for (auto &I : DFAResources)
- I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST));
- MRT.clear();
- MRT.resize(II, SmallVector<uint64_t>(SM.getNumProcResourceKinds()));
- NumScheduledMops.clear();
- NumScheduledMops.resize(II);
- }
|