123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- //===- MLRegAllocPriorityAdvisor.cpp - ML priority advisor-----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Implementation of the ML priority advisor and reward injection pass
- //
- //===----------------------------------------------------------------------===//
- #include "AllocationOrder.h"
- #include "RegAllocGreedy.h"
- #include "RegAllocPriorityAdvisor.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/MLModelRunner.h"
- #include "llvm/Analysis/ReleaseModeModelRunner.h"
- #include "llvm/Analysis/TensorSpec.h"
- #include "llvm/CodeGen/CalcSpillWeights.h"
- #include "llvm/CodeGen/LiveRegMatrix.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/Passes.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/SlotIndexes.h"
- #include "llvm/CodeGen/VirtRegMap.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/PassRegistry.h"
- #include "llvm/Support/CommandLine.h"
- #if defined(LLVM_HAVE_TFLITE)
- #include "llvm/Analysis/ModelUnderTrainingRunner.h"
- #include "llvm/Analysis/NoInferenceModelRunner.h"
- #include "llvm/Analysis/Utils/TrainingLogger.h"
- #endif
- using namespace llvm;
- // Options that only make sense in development mode
- #ifdef LLVM_HAVE_TFLITE
- #include "RegAllocScore.h"
- #include "llvm/Analysis/Utils/TFUtils.h"
- static cl::opt<std::string> TrainingLog(
- "regalloc-priority-training-log", cl::Hidden,
- cl::desc("Training log for the register allocator priority model"));
- static cl::opt<std::string> ModelUnderTraining(
- "regalloc-priority-model", cl::Hidden,
- cl::desc("The model being trained for register allocation priority"));
- #endif // #ifdef LLVM_HAVE_TFLITE
- namespace llvm {
- static const std::vector<int64_t> PerLiveRangeShape{1};
- #define RA_PRIORITY_FEATURES_LIST(M) \
- M(int64_t, li_size, PerLiveRangeShape, "size") \
- M(int64_t, stage, PerLiveRangeShape, "stage") \
- M(float, weight, PerLiveRangeShape, "weight")
- #define DecisionName "priority"
- // Named features index.
- enum FeatureIDs {
- #define _FEATURE_IDX(_, name, __, ___) name,
- RA_PRIORITY_FEATURES_LIST(_FEATURE_IDX)
- #undef _FEATURE_IDX
- FeatureCount
- };
- class MLPriorityAdvisor : public RegAllocPriorityAdvisor {
- public:
- MLPriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
- SlotIndexes *const Indexes, MLModelRunner *Runner);
- protected:
- const RegAllocPriorityAdvisor &getDefaultAdvisor() const {
- return static_cast<const RegAllocPriorityAdvisor &>(DefaultAdvisor);
- }
- // The assumption is that if the Runner could not be constructed, we emit-ed
- // error, and we shouldn't be asking for it here.
- const MLModelRunner &getRunner() const { return *Runner; }
- float getPriorityImpl(const LiveInterval &LI) const;
- unsigned getPriority(const LiveInterval &LI) const override;
- private:
- const DefaultPriorityAdvisor DefaultAdvisor;
- MLModelRunner *const Runner;
- };
- #define _DECL_FEATURES(type, name, shape, _) \
- TensorSpec::createSpec<type>(#name, shape),
- static const std::vector<TensorSpec> InputFeatures{
- {RA_PRIORITY_FEATURES_LIST(_DECL_FEATURES)},
- };
- #undef _DECL_FEATURES
- // ===================================
- // Release (AOT) - specifics
- // ===================================
- class ReleaseModePriorityAdvisorAnalysis final
- : public RegAllocPriorityAdvisorAnalysis {
- public:
- ReleaseModePriorityAdvisorAnalysis()
- : RegAllocPriorityAdvisorAnalysis(AdvisorMode::Release) {}
- // support for isa<> and dyn_cast.
- static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
- return R->getAdvisorMode() == AdvisorMode::Release;
- }
- private:
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<SlotIndexes>();
- RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
- }
- std::unique_ptr<RegAllocPriorityAdvisor>
- getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
- if (!Runner)
- Runner = std::make_unique<ReleaseModeModelRunner<NoopSavedModelImpl>>(
- MF.getFunction().getContext(), InputFeatures, DecisionName);
- return std::make_unique<MLPriorityAdvisor>(
- MF, RA, &getAnalysis<SlotIndexes>(), Runner.get());
- }
- std::unique_ptr<ReleaseModeModelRunner<NoopSavedModelImpl>> Runner;
- };
- // ===================================
- // Development mode-specifics
- // ===================================
- //
- // Features we log
- #ifdef LLVM_HAVE_TFLITE
- static const TensorSpec Output =
- TensorSpec::createSpec<float>(DecisionName, {1});
- static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
- #define _DECL_TRAIN_FEATURES(type, name, shape, _) \
- TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
- static const std::vector<TensorSpec> TrainingInputFeatures{
- {RA_PRIORITY_FEATURES_LIST(_DECL_TRAIN_FEATURES)
- TensorSpec::createSpec<float>("action_discount", {1}),
- TensorSpec::createSpec<int32_t>("action_step_type", {1}),
- TensorSpec::createSpec<float>("action_reward", {1})}};
- #undef _DECL_TRAIN_FEATURES
- class DevelopmentModePriorityAdvisor : public MLPriorityAdvisor {
- public:
- DevelopmentModePriorityAdvisor(const MachineFunction &MF, const RAGreedy &RA,
- SlotIndexes *const Indexes,
- MLModelRunner *Runner, Logger *Log)
- : MLPriorityAdvisor(MF, RA, Indexes, Runner), Log(Log) {}
- private:
- unsigned getPriority(const LiveInterval &LI) const override;
- Logger *const Log;
- };
- class DevelopmentModePriorityAdvisorAnalysis final
- : public RegAllocPriorityAdvisorAnalysis {
- public:
- DevelopmentModePriorityAdvisorAnalysis()
- : RegAllocPriorityAdvisorAnalysis(AdvisorMode::Development) {}
- // support for isa<> and dyn_cast.
- static bool classof(const RegAllocPriorityAdvisorAnalysis *R) {
- return R->getAdvisorMode() == AdvisorMode::Development;
- }
- void logRewardIfNeeded(const MachineFunction &MF,
- llvm::function_ref<float()> GetReward) override {
- if (!Log)
- return;
- // The function pass manager would run all the function passes for a
- // function, so we assume the last context belongs to this function. If
- // this invariant ever changes, we can implement at that time switching
- // contexts. At this point, it'd be an error
- if (Log->currentContext() != MF.getName()) {
- MF.getFunction().getContext().emitError(
- "The training log context shouldn't have had changed.");
- }
- if (Log->hasObservationInProgress())
- Log->logReward<float>(GetReward());
- }
- private:
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<SlotIndexes>();
- RegAllocPriorityAdvisorAnalysis::getAnalysisUsage(AU);
- }
- // Save all the logs (when requested).
- bool doInitialization(Module &M) override {
- LLVMContext &Ctx = M.getContext();
- if (ModelUnderTraining.empty() && TrainingLog.empty()) {
- Ctx.emitError("Regalloc development mode should be requested with at "
- "least logging enabled and/or a training model");
- return false;
- }
- if (ModelUnderTraining.empty())
- Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
- else
- Runner = ModelUnderTrainingRunner::createAndEnsureValid(
- Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
- if (!Runner) {
- Ctx.emitError("Regalloc: could not set up the model runner");
- return false;
- }
- if (TrainingLog.empty())
- return false;
- std::error_code EC;
- auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
- if (EC) {
- M.getContext().emitError(EC.message() + ":" + TrainingLog);
- return false;
- }
- std::vector<TensorSpec> LFS = InputFeatures;
- if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
- append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
- // We always log the output; in particular, if we're not evaluating, we
- // don't have an output spec json file. That's why we handle the
- // 'normal' output separately.
- LFS.push_back(Output);
- Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
- /*IncludeReward*/ true);
- return false;
- }
- std::unique_ptr<RegAllocPriorityAdvisor>
- getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
- if (!Runner)
- return nullptr;
- if (Log) {
- Log->switchContext(MF.getName());
- }
- return std::make_unique<DevelopmentModePriorityAdvisor>(
- MF, RA, &getAnalysis<SlotIndexes>(), Runner.get(), Log.get());
- }
- std::unique_ptr<MLModelRunner> Runner;
- std::unique_ptr<Logger> Log;
- };
- #endif //#ifdef LLVM_HAVE_TFLITE
- } // namespace llvm
- RegAllocPriorityAdvisorAnalysis *llvm::createReleaseModePriorityAdvisor() {
- return new ReleaseModePriorityAdvisorAnalysis();
- }
- MLPriorityAdvisor::MLPriorityAdvisor(const MachineFunction &MF,
- const RAGreedy &RA,
- SlotIndexes *const Indexes,
- MLModelRunner *Runner)
- : RegAllocPriorityAdvisor(MF, RA, Indexes), DefaultAdvisor(MF, RA, Indexes),
- Runner(std::move(Runner)) {
- assert(this->Runner);
- }
- float MLPriorityAdvisor::getPriorityImpl(const LiveInterval &LI) const {
- const unsigned Size = LI.getSize();
- LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
- *Runner->getTensor<int64_t>(0) = static_cast<int64_t>(Size);
- *Runner->getTensor<int64_t>(1) = static_cast<int64_t>(Stage);
- *Runner->getTensor<float>(2) = static_cast<float>(LI.weight());
- return Runner->evaluate<float>();
- }
- unsigned MLPriorityAdvisor::getPriority(const LiveInterval &LI) const {
- return static_cast<unsigned>(getPriorityImpl(LI));
- }
- #ifdef LLVM_HAVE_TFLITE
- RegAllocPriorityAdvisorAnalysis *llvm::createDevelopmentModePriorityAdvisor() {
- return new DevelopmentModePriorityAdvisorAnalysis();
- }
- unsigned
- DevelopmentModePriorityAdvisor::getPriority(const LiveInterval &LI) const {
- double Prio = 0;
- if (isa<ModelUnderTrainingRunner>(getRunner())) {
- Prio = MLPriorityAdvisor::getPriorityImpl(LI);
- } else {
- Prio = getDefaultAdvisor().getPriority(LI);
- }
- if (TrainingLog.empty())
- return Prio;
- // TODO(mtrofin): when we support optional rewards, this can go away. In the
- // meantime, we log the "pretend" reward (0) for the previous observation
- // before starting a new one.
- if (Log->hasObservationInProgress())
- Log->logReward<float>(0.0);
- Log->startObservation();
- size_t CurrentFeature = 0;
- for (; CurrentFeature < InputFeatures.size(); ++CurrentFeature) {
- Log->logTensorValue(CurrentFeature,
- reinterpret_cast<const char *>(
- getRunner().getTensorUntyped(CurrentFeature)));
- }
- if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) {
- for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
- ++I, ++CurrentFeature)
- Log->logTensorValue(
- CurrentFeature,
- reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
- }
- float Ret = static_cast<float>(Prio);
- Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
- Log->endObservation();
- return static_cast<unsigned>(Prio);
- }
- #endif // #ifdef LLVM_HAVE_TFLITE
|