123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// Defines the fixed point number interface.
- /// This is a class for abstracting various operations performed on fixed point
- /// types.
- ///
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_APFIXEDPOINT_H
- #define LLVM_ADT_APFIXEDPOINT_H
- #include "llvm/ADT/APSInt.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/Support/raw_ostream.h"
- namespace llvm {
- class APFloat;
- struct fltSemantics;
- /// The fixed point semantics work similarly to fltSemantics. The width
- /// specifies the whole bit width of the underlying scaled integer (with padding
- /// if any). The scale represents the number of fractional bits in this type.
- /// When HasUnsignedPadding is true and this type is unsigned, the first bit
- /// in the value this represents is treated as padding.
- class FixedPointSemantics {
- public:
- static constexpr unsigned WidthBitWidth = 16;
- static constexpr unsigned LsbWeightBitWidth = 13;
- /// Used to differentiate between constructors with Width and Lsb from the
- /// default Width and scale
- struct Lsb {
- int LsbWeight;
- };
- FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned,
- bool IsSaturated, bool HasUnsignedPadding)
- : FixedPointSemantics(Width, Lsb{-static_cast<int>(Scale)}, IsSigned,
- IsSaturated, HasUnsignedPadding) {}
- FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned,
- bool IsSaturated, bool HasUnsignedPadding)
- : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned),
- IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) {
- assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight));
- assert(!(IsSigned && HasUnsignedPadding) &&
- "Cannot have unsigned padding on a signed type.");
- }
- /// Check if the Semantic follow the requirements of an older more limited
- /// version of this class
- bool isValidLegacySema() const {
- return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight;
- }
- unsigned getWidth() const { return Width; }
- unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; }
- int getLsbWeight() const { return LsbWeight; }
- int getMsbWeight() const {
- return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/;
- }
- bool isSigned() const { return IsSigned; }
- bool isSaturated() const { return IsSaturated; }
- bool hasUnsignedPadding() const { return HasUnsignedPadding; }
- void setSaturated(bool Saturated) { IsSaturated = Saturated; }
- /// return true if the first bit doesn't have a strictly positive weight
- bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; }
- /// Return the number of integral bits represented by these semantics. These
- /// are separate from the fractional bits and do not include the sign or
- /// padding bit.
- unsigned getIntegralBits() const {
- return std::max(getMsbWeight() + 1 - hasSignOrPaddingBit(), 0);
- }
- /// Return the FixedPointSemantics that allows for calculating the full
- /// precision semantic that can precisely represent the precision and ranges
- /// of both input values. This does not compute the resulting semantics for a
- /// given binary operation.
- FixedPointSemantics
- getCommonSemantics(const FixedPointSemantics &Other) const;
- /// Print semantics for debug purposes
- void print(llvm::raw_ostream& OS) const;
- /// Returns true if this fixed-point semantic with its value bits interpreted
- /// as an integer can fit in the given floating point semantic without
- /// overflowing to infinity.
- /// For example, a signed 8-bit fixed-point semantic has a maximum and
- /// minimum integer representation of 127 and -128, respectively. If both of
- /// these values can be represented (possibly inexactly) in the floating
- /// point semantic without overflowing, this returns true.
- bool fitsInFloatSemantics(const fltSemantics &FloatSema) const;
- /// Return the FixedPointSemantics for an integer type.
- static FixedPointSemantics GetIntegerSemantics(unsigned Width,
- bool IsSigned) {
- return FixedPointSemantics(Width, /*Scale=*/0, IsSigned,
- /*IsSaturated=*/false,
- /*HasUnsignedPadding=*/false);
- }
- bool operator==(FixedPointSemantics Other) const {
- return Width == Other.Width && LsbWeight == Other.LsbWeight &&
- IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated &&
- HasUnsignedPadding == Other.HasUnsignedPadding;
- }
- bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); }
- private:
- unsigned Width : WidthBitWidth;
- signed int LsbWeight : LsbWeightBitWidth;
- unsigned IsSigned : 1;
- unsigned IsSaturated : 1;
- unsigned HasUnsignedPadding : 1;
- };
- static_assert(sizeof(FixedPointSemantics) == 4, "");
- inline hash_code hash_value(const FixedPointSemantics &Val) {
- return hash_value(bit_cast<uint32_t>(Val));
- }
- template <> struct DenseMapInfo<FixedPointSemantics> {
- static inline FixedPointSemantics getEmptyKey() {
- return FixedPointSemantics(0, 0, false, false, false);
- }
- static inline FixedPointSemantics getTombstoneKey() {
- return FixedPointSemantics(0, 1, false, false, false);
- }
- static unsigned getHashValue(const FixedPointSemantics &Val) {
- return hash_value(Val);
- }
- static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; }
- };
- /// The APFixedPoint class works similarly to APInt/APSInt in that it is a
- /// functional replacement for a scaled integer. It supports a wide range of
- /// semantics including the one used by fixed point types proposed in ISO/IEC
- /// JTC1 SC22 WG14 N1169. The class carries the value and semantics of
- /// a fixed point, and provides different operations that would normally be
- /// performed on fixed point types.
- class APFixedPoint {
- public:
- APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema)
- : Val(Val, !Sema.isSigned()), Sema(Sema) {
- assert(Val.getBitWidth() == Sema.getWidth() &&
- "The value should have a bit width that matches the Sema width");
- }
- APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema)
- : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {}
- // Zero initialization.
- APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {}
- APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); }
- inline unsigned getWidth() const { return Sema.getWidth(); }
- inline unsigned getScale() const { return Sema.getScale(); }
- int getLsbWeight() const { return Sema.getLsbWeight(); }
- int getMsbWeight() const { return Sema.getMsbWeight(); }
- inline bool isSaturated() const { return Sema.isSaturated(); }
- inline bool isSigned() const { return Sema.isSigned(); }
- inline bool hasPadding() const { return Sema.hasUnsignedPadding(); }
- FixedPointSemantics getSemantics() const { return Sema; }
- bool getBoolValue() const { return Val.getBoolValue(); }
- // Convert this number to match the semantics provided. If the overflow
- // parameter is provided, set this value to true or false to indicate if this
- // operation results in an overflow.
- APFixedPoint convert(const FixedPointSemantics &DstSema,
- bool *Overflow = nullptr) const;
- // Perform binary operations on a fixed point type. The resulting fixed point
- // value will be in the common, full precision semantics that can represent
- // the precision and ranges of both input values. See convert() for an
- // explanation of the Overflow parameter.
- APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const;
- APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const;
- APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const;
- APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const;
- // Perform shift operations on a fixed point type. Unlike the other binary
- // operations, the resulting fixed point value will be in the original
- // semantic.
- APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const;
- APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const {
- // Right shift cannot overflow.
- if (Overflow)
- *Overflow = false;
- return APFixedPoint(Val >> Amt, Sema);
- }
- /// Perform a unary negation (-X) on this fixed point type, taking into
- /// account saturation if applicable.
- APFixedPoint negate(bool *Overflow = nullptr) const;
- /// Return the integral part of this fixed point number, rounded towards
- /// zero. (-2.5k -> -2)
- APSInt getIntPart() const {
- if (getMsbWeight() < 0)
- return APSInt(APInt::getZero(getWidth()), Val.isUnsigned());
- APSInt ExtVal =
- (getLsbWeight() > 0) ? Val.extend(getWidth() + getLsbWeight()) : Val;
- if (Val < 0 && Val != -Val) // Cover the case when we have the min val
- return -((-ExtVal).relativeShl(getLsbWeight()));
- return ExtVal.relativeShl(getLsbWeight());
- }
- /// Return the integral part of this fixed point number, rounded towards
- /// zero. The value is stored into an APSInt with the provided width and sign.
- /// If the overflow parameter is provided, and the integral value is not able
- /// to be fully stored in the provided width and sign, the overflow parameter
- /// is set to true.
- APSInt convertToInt(unsigned DstWidth, bool DstSign,
- bool *Overflow = nullptr) const;
- /// Convert this fixed point number to a floating point value with the
- /// provided semantics.
- APFloat convertToFloat(const fltSemantics &FloatSema) const;
- void toString(SmallVectorImpl<char> &Str) const;
- std::string toString() const {
- SmallString<40> S;
- toString(S);
- return std::string(S.str());
- }
- void print(raw_ostream &) const;
- void dump() const;
- // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1.
- int compare(const APFixedPoint &Other) const;
- bool operator==(const APFixedPoint &Other) const {
- return compare(Other) == 0;
- }
- bool operator!=(const APFixedPoint &Other) const {
- return compare(Other) != 0;
- }
- bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; }
- bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; }
- bool operator>=(const APFixedPoint &Other) const {
- return compare(Other) >= 0;
- }
- bool operator<=(const APFixedPoint &Other) const {
- return compare(Other) <= 0;
- }
- static APFixedPoint getMax(const FixedPointSemantics &Sema);
- static APFixedPoint getMin(const FixedPointSemantics &Sema);
- /// Given a floating point semantic, return the next floating point semantic
- /// with a larger exponent and larger or equal mantissa.
- static const fltSemantics *promoteFloatSemantics(const fltSemantics *S);
- /// Create an APFixedPoint with a value equal to that of the provided integer,
- /// and in the same semantics as the provided target semantics. If the value
- /// is not able to fit in the specified fixed point semantics, and the
- /// overflow parameter is provided, it is set to true.
- static APFixedPoint getFromIntValue(const APSInt &Value,
- const FixedPointSemantics &DstFXSema,
- bool *Overflow = nullptr);
- /// Create an APFixedPoint with a value equal to that of the provided
- /// floating point value, in the provided target semantics. If the value is
- /// not able to fit in the specified fixed point semantics and the overflow
- /// parameter is specified, it is set to true.
- /// For NaN, the Overflow flag is always set. For +inf and -inf, if the
- /// semantic is saturating, the value saturates. Otherwise, the Overflow flag
- /// is set.
- static APFixedPoint getFromFloatValue(const APFloat &Value,
- const FixedPointSemantics &DstFXSema,
- bool *Overflow = nullptr);
- private:
- APSInt Val;
- FixedPointSemantics Sema;
- };
- inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) {
- OS << FX.toString();
- return OS;
- }
- inline hash_code hash_value(const APFixedPoint &Val) {
- return hash_combine(Val.getSemantics(), Val.getValue());
- }
- template <> struct DenseMapInfo<APFixedPoint> {
- static inline APFixedPoint getEmptyKey() {
- return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getEmptyKey());
- }
- static inline APFixedPoint getTombstoneKey() {
- return APFixedPoint(DenseMapInfo<FixedPointSemantics>::getTombstoneKey());
- }
- static unsigned getHashValue(const APFixedPoint &Val) {
- return hash_value(Val);
- }
- static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) {
- return LHS.getSemantics() == RHS.getSemantics() &&
- LHS.getValue() == RHS.getValue();
- }
- };
- } // namespace llvm
- #endif
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|