123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- /*
- * jfdctint.c
- *
- * This file was part of the Independent JPEG Group's software:
- * Copyright (C) 1991-1996, Thomas G. Lane.
- * libjpeg-turbo Modifications:
- * Copyright (C) 2015, 2020, D. R. Commander.
- * For conditions of distribution and use, see the accompanying README.ijg
- * file.
- *
- * This file contains a slower but more accurate integer implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on an algorithm described in
- * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- * The primary algorithm described there uses 11 multiplies and 29 adds.
- * We use their alternate method with 12 multiplies and 32 adds.
- * The advantage of this method is that no data path contains more than one
- * multiplication; this allows a very simple and accurate implementation in
- * scaled fixed-point arithmetic, with a minimal number of shifts.
- */
- #define JPEG_INTERNALS
- #include "jinclude.h"
- #include "jpeglib.h"
- #include "jdct.h" /* Private declarations for DCT subsystem */
- #ifdef DCT_ISLOW_SUPPORTED
- /*
- * This module is specialized to the case DCTSIZE = 8.
- */
- #if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
- #endif
- /*
- * The poop on this scaling stuff is as follows:
- *
- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
- * larger than the true DCT outputs. The final outputs are therefore
- * a factor of N larger than desired; since N=8 this can be cured by
- * a simple right shift at the end of the algorithm. The advantage of
- * this arrangement is that we save two multiplications per 1-D DCT,
- * because the y0 and y4 outputs need not be divided by sqrt(N).
- * In the IJG code, this factor of 8 is removed by the quantization step
- * (in jcdctmgr.c), NOT in this module.
- *
- * We have to do addition and subtraction of the integer inputs, which
- * is no problem, and multiplication by fractional constants, which is
- * a problem to do in integer arithmetic. We multiply all the constants
- * by CONST_SCALE and convert them to integer constants (thus retaining
- * CONST_BITS bits of precision in the constants). After doing a
- * multiplication we have to divide the product by CONST_SCALE, with proper
- * rounding, to produce the correct output. This division can be done
- * cheaply as a right shift of CONST_BITS bits. We postpone shifting
- * as long as possible so that partial sums can be added together with
- * full fractional precision.
- *
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
- * they are represented to better-than-integral precision. These outputs
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- * with the recommended scaling. (For 12-bit sample data, the intermediate
- * array is JLONG anyway.)
- *
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- * shows that the values given below are the most effective.
- */
- #if BITS_IN_JSAMPLE == 8
- #define CONST_BITS 13
- #define PASS1_BITS 2
- #else
- #define CONST_BITS 13
- #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
- #endif
- /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
- * causing a lot of useless floating-point operations at run time.
- * To get around this we use the following pre-calculated constants.
- * If you change CONST_BITS you may want to add appropriate values.
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
- */
- #if CONST_BITS == 13
- #define FIX_0_298631336 ((JLONG)2446) /* FIX(0.298631336) */
- #define FIX_0_390180644 ((JLONG)3196) /* FIX(0.390180644) */
- #define FIX_0_541196100 ((JLONG)4433) /* FIX(0.541196100) */
- #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */
- #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */
- #define FIX_1_175875602 ((JLONG)9633) /* FIX(1.175875602) */
- #define FIX_1_501321110 ((JLONG)12299) /* FIX(1.501321110) */
- #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */
- #define FIX_1_961570560 ((JLONG)16069) /* FIX(1.961570560) */
- #define FIX_2_053119869 ((JLONG)16819) /* FIX(2.053119869) */
- #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */
- #define FIX_3_072711026 ((JLONG)25172) /* FIX(3.072711026) */
- #else
- #define FIX_0_298631336 FIX(0.298631336)
- #define FIX_0_390180644 FIX(0.390180644)
- #define FIX_0_541196100 FIX(0.541196100)
- #define FIX_0_765366865 FIX(0.765366865)
- #define FIX_0_899976223 FIX(0.899976223)
- #define FIX_1_175875602 FIX(1.175875602)
- #define FIX_1_501321110 FIX(1.501321110)
- #define FIX_1_847759065 FIX(1.847759065)
- #define FIX_1_961570560 FIX(1.961570560)
- #define FIX_2_053119869 FIX(2.053119869)
- #define FIX_2_562915447 FIX(2.562915447)
- #define FIX_3_072711026 FIX(3.072711026)
- #endif
- /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result.
- * For 8-bit samples with the recommended scaling, all the variable
- * and constant values involved are no more than 16 bits wide, so a
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- * For 12-bit samples, a full 32-bit multiplication will be needed.
- */
- #if BITS_IN_JSAMPLE == 8
- #define MULTIPLY(var, const) MULTIPLY16C16(var, const)
- #else
- #define MULTIPLY(var, const) ((var) * (const))
- #endif
- /*
- * Perform the forward DCT on one block of samples.
- */
- GLOBAL(void)
- jpeg_fdct_islow(DCTELEM *data)
- {
- JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- JLONG tmp10, tmp11, tmp12, tmp13;
- JLONG z1, z2, z3, z4, z5;
- DCTELEM *dataptr;
- int ctr;
- SHIFT_TEMPS
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true DCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
- dataptr = data;
- for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
- tmp0 = dataptr[0] + dataptr[7];
- tmp7 = dataptr[0] - dataptr[7];
- tmp1 = dataptr[1] + dataptr[6];
- tmp6 = dataptr[1] - dataptr[6];
- tmp2 = dataptr[2] + dataptr[5];
- tmp5 = dataptr[2] - dataptr[5];
- tmp3 = dataptr[3] + dataptr[4];
- tmp4 = dataptr[3] - dataptr[4];
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- dataptr[0] = (DCTELEM)LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
- dataptr[4] = (DCTELEM)LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr[2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
- CONST_BITS - PASS1_BITS);
- dataptr[6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065),
- CONST_BITS - PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents cos(K*pi/16).
- * i0..i3 in the paper are tmp4..tmp7 here.
- */
- z1 = tmp4 + tmp7;
- z2 = tmp5 + tmp6;
- z3 = tmp4 + tmp6;
- z4 = tmp5 + tmp7;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
- tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
- z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
- z3 += z5;
- z4 += z5;
- dataptr[7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS - PASS1_BITS);
- dataptr[5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS - PASS1_BITS);
- dataptr[3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS - PASS1_BITS);
- dataptr[1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS - PASS1_BITS);
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
- /* Pass 2: process columns.
- * We remove the PASS1_BITS scaling, but leave the results scaled up
- * by an overall factor of 8.
- */
- dataptr = data;
- for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7];
- tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7];
- tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6];
- tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6];
- tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5];
- tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5];
- tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4];
- tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4];
- /* Even part per LL&M figure 1 --- note that published figure is faulty;
- * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
- */
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- dataptr[DCTSIZE * 0] = (DCTELEM)DESCALE(tmp10 + tmp11, PASS1_BITS);
- dataptr[DCTSIZE * 4] = (DCTELEM)DESCALE(tmp10 - tmp11, PASS1_BITS);
- z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr[DCTSIZE * 2] =
- (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
- CONST_BITS + PASS1_BITS);
- dataptr[DCTSIZE * 6] =
- (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065),
- CONST_BITS + PASS1_BITS);
- /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
- * cK represents cos(K*pi/16).
- * i0..i3 in the paper are tmp4..tmp7 here.
- */
- z1 = tmp4 + tmp7;
- z2 = tmp5 + tmp6;
- z3 = tmp4 + tmp6;
- z4 = tmp5 + tmp7;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
- tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
- tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
- tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
- tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
- z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */
- z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
- z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
- z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */
- z3 += z5;
- z4 += z5;
- dataptr[DCTSIZE * 7] = (DCTELEM)DESCALE(tmp4 + z1 + z3,
- CONST_BITS + PASS1_BITS);
- dataptr[DCTSIZE * 5] = (DCTELEM)DESCALE(tmp5 + z2 + z4,
- CONST_BITS + PASS1_BITS);
- dataptr[DCTSIZE * 3] = (DCTELEM)DESCALE(tmp6 + z2 + z3,
- CONST_BITS + PASS1_BITS);
- dataptr[DCTSIZE * 1] = (DCTELEM)DESCALE(tmp7 + z1 + z4,
- CONST_BITS + PASS1_BITS);
- dataptr++; /* advance pointer to next column */
- }
- }
- #endif /* DCT_ISLOW_SUPPORTED */
|