123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- //=-lib/fp_extend_impl.inc - low precision -> high precision conversion -*-- -//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is dual licensed under the MIT and the University of Illinois Open
- // Source Licenses. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a fairly generic conversion from a narrower to a wider
- // IEEE-754 floating-point type. The constants and types defined following the
- // includes below parameterize the conversion.
- //
- // It does not support types that don't use the usual IEEE-754 interchange
- // formats; specifically, some work would be needed to adapt it to
- // (for example) the Intel 80-bit format or PowerPC double-double format.
- //
- // Note please, however, that this implementation is only intended to support
- // *widening* operations; if you need to convert to a *narrower* floating-point
- // type (e.g. double -> float), then this routine will not do what you want it
- // to.
- //
- // It also requires that integer types at least as large as both formats
- // are available on the target platform; this may pose a problem when trying
- // to add support for quad on some 32-bit systems, for example. You also may
- // run into trouble finding an appropriate CLZ function for wide source types;
- // you will likely need to roll your own on some platforms.
- //
- // Finally, the following assumptions are made:
- //
- // 1. floating-point types and integer types have the same endianness on the
- // target platform
- //
- // 2. quiet NaNs, if supported, are indicated by the leading bit of the
- // significand field being set
- //
- //===----------------------------------------------------------------------===//
- #include "fp_extend.h"
- static __inline dst_t __extendXfYf2__(src_t a) {
- // Various constants whose values follow from the type parameters.
- // Any reasonable optimizer will fold and propagate all of these.
- const int srcBits = sizeof(src_t)*CHAR_BIT;
- const int srcExpBits = srcBits - srcSigBits - 1;
- const int srcInfExp = (1 << srcExpBits) - 1;
- const int srcExpBias = srcInfExp >> 1;
- const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
- const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
- const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
- const src_rep_t srcAbsMask = srcSignMask - 1;
- const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
- const src_rep_t srcNaNCode = srcQNaN - 1;
- const int dstBits = sizeof(dst_t)*CHAR_BIT;
- const int dstExpBits = dstBits - dstSigBits - 1;
- const int dstInfExp = (1 << dstExpBits) - 1;
- const int dstExpBias = dstInfExp >> 1;
- const dst_rep_t dstMinNormal = DST_REP_C(1) << dstSigBits;
- // Break a into a sign and representation of the absolute value
- const src_rep_t aRep = srcToRep(a);
- const src_rep_t aAbs = aRep & srcAbsMask;
- const src_rep_t sign = aRep & srcSignMask;
- dst_rep_t absResult;
- // If sizeof(src_rep_t) < sizeof(int), the subtraction result is promoted
- // to (signed) int. To avoid that, explicitly cast to src_rep_t.
- if ((src_rep_t)(aAbs - srcMinNormal) < srcInfinity - srcMinNormal) {
- // a is a normal number.
- // Extend to the destination type by shifting the significand and
- // exponent into the proper position and rebiasing the exponent.
- absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits);
- absResult += (dst_rep_t)(dstExpBias - srcExpBias) << dstSigBits;
- }
- else if (aAbs >= srcInfinity) {
- // a is NaN or infinity.
- // Conjure the result by beginning with infinity, then setting the qNaN
- // bit (if needed) and right-aligning the rest of the trailing NaN
- // payload field.
- absResult = (dst_rep_t)dstInfExp << dstSigBits;
- absResult |= (dst_rep_t)(aAbs & srcQNaN) << (dstSigBits - srcSigBits);
- absResult |= (dst_rep_t)(aAbs & srcNaNCode) << (dstSigBits - srcSigBits);
- }
- else if (aAbs) {
- // a is denormal.
- // renormalize the significand and clear the leading bit, then insert
- // the correct adjusted exponent in the destination type.
- const int scale = src_rep_t_clz(aAbs) - src_rep_t_clz(srcMinNormal);
- absResult = (dst_rep_t)aAbs << (dstSigBits - srcSigBits + scale);
- absResult ^= dstMinNormal;
- const int resultExponent = dstExpBias - srcExpBias - scale + 1;
- absResult |= (dst_rep_t)resultExponent << dstSigBits;
- }
- else {
- // a is zero.
- absResult = 0;
- }
- // Apply the signbit to (dst_t)abs(a).
- const dst_rep_t result = absResult | (dst_rep_t)sign << (dstBits - srcBits);
- return dstFromRep(result);
- }
|