123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- #include "unimodal.h"
- #include "linear_regression.h"
- #include <util/generic/map.h>
- #include <util/generic/ymath.h>
- namespace {
- double SimpleUnimodal(const double value) {
- if (value > 5) {
- return 0.;
- }
- return 1. / (value * value + 1.);
- }
- struct TOptimizationState {
- double Mode = 0.;
- double Normalizer = 1.;
- double RegressionFactor = 0.;
- double RegressionIntercept = 0.;
- double SSE = 0.;
- TOptimizationState(const TVector<double>& values) {
- SSE = InnerProduct(values, values);
- }
- double NoRegressionTransform(const double value) const {
- const double arg = (value - Mode) / Normalizer;
- return SimpleUnimodal(arg);
- }
- double RegressionTransform(const double value) const {
- return NoRegressionTransform(value) * RegressionFactor + RegressionIntercept;
- }
- };
- }
- double TGreedyParams::Point(const size_t step) const {
- Y_ASSERT(step <= StepsCount);
- const double alpha = (double)step / StepsCount;
- return LowerBound * (1 - alpha) + UpperBound * alpha;
- }
- double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimizationParams) {
- TOptimizationState state(values);
- TOptimizationState bestState = state;
- for (size_t modeStep = 0; modeStep <= optimizationParams.ModeParams.StepsCount; ++modeStep) {
- state.Mode = optimizationParams.ModeParams.Point(modeStep);
- for (size_t normalizerStep = 0; normalizerStep <= optimizationParams.NormalizerParams.StepsCount; ++normalizerStep) {
- state.Normalizer = optimizationParams.NormalizerParams.Point(normalizerStep);
- TSLRSolver solver;
- for (size_t i = 0; i < values.size(); ++i) {
- solver.Add(state.NoRegressionTransform(i), values[i]);
- }
- state.SSE = solver.SumSquaredErrors(optimizationParams.RegressionShrinkage);
- if (state.SSE >= bestState.SSE) {
- continue;
- }
- bestState = state;
- solver.Solve(bestState.RegressionFactor, bestState.RegressionIntercept, optimizationParams.RegressionShrinkage);
- }
- }
- for (size_t i = 0; i < values.size(); ++i) {
- values[i] = bestState.RegressionTransform(i);
- }
- const double residualSSE = bestState.SSE;
- const double totalSSE = InnerProduct(values, values);
- const double determination = 1. - residualSSE / totalSSE;
- return determination;
- }
- double MakeUnimodal(TVector<double>& values) {
- return MakeUnimodal(values, TOptimizationParams::Default(values));
- }
- double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, const TOptimizationParams& optimizationParams) {
- Y_ASSERT(values.size() == arguments.size());
- TMap<double, double> mapping;
- for (size_t i = 0; i < values.size(); ++i) {
- mapping[arguments[i]] = values[i];
- }
- TVector<double> preparedValues;
- preparedValues.reserve(mapping.size());
- for (auto&& argWithValue : mapping) {
- preparedValues.push_back(argWithValue.second);
- }
- const double result = MakeUnimodal(preparedValues, optimizationParams);
- size_t pos = 0;
- for (auto&& argWithValue : mapping) {
- argWithValue.second = preparedValues[pos++];
- }
- for (size_t i = 0; i < values.size(); ++i) {
- values[i] = mapping[arguments[i]];
- }
- return result;
- }
- double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments) {
- return MakeUnimodal(values, arguments, TOptimizationParams::Default(values, arguments));
- }
|