123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- #include "linear_model.h"
- #include "linear_regression.h"
- #include <util/generic/ymath.h>
- #ifdef _sse2_
- #include <emmintrin.h>
- #include <xmmintrin.h>
- #endif
- #include <algorithm>
- #include <functional>
- namespace {
- inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix);
- TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector);
- double SumSquaredErrors(const TVector<double>& olsMatrix,
- const TVector<double>& olsVector,
- const TVector<double>& solution,
- const double goalsDeviation);
- }
- bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
- const size_t featuresCount = features.size();
- if (LinearizedOLSMatrix.empty()) {
- LinearizedOLSMatrix.resize((featuresCount + 1) * (featuresCount + 2) / 2);
- OLSVector.resize(featuresCount + 1);
- }
- AddFeaturesProduct(weight, features, LinearizedOLSMatrix);
- const double weightedGoal = goal * weight;
- double* olsVectorElement = OLSVector.data();
- for (const double feature : features) {
- *olsVectorElement += feature * weightedGoal;
- ++olsVectorElement;
- }
- *olsVectorElement += weightedGoal;
- SumSquaredGoals += goal * goal * weight;
- return true;
- }
- bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
- const size_t featuresCount = features.size();
- if (FeatureMeans.empty()) {
- FeatureMeans.resize(featuresCount);
- LastMeans.resize(featuresCount);
- NewMeans.resize(featuresCount);
- LinearizedOLSMatrix.resize(featuresCount * (featuresCount + 1) / 2);
- OLSVector.resize(featuresCount);
- }
- SumWeights += weight;
- if (!SumWeights.Get()) {
- return false;
- }
- for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
- const double feature = features[featureNumber];
- double& featureMean = FeatureMeans[featureNumber];
- LastMeans[featureNumber] = weight * (feature - featureMean);
- featureMean += weight * (feature - featureMean) / SumWeights.Get();
- NewMeans[featureNumber] = feature - featureMean;
- ;
- }
- double* olsMatrixElement = LinearizedOLSMatrix.data();
- const double* lastMean = LastMeans.data();
- const double* newMean = NewMeans.data();
- const double* lastMeansEnd = lastMean + LastMeans.size();
- const double* newMeansEnd = newMean + NewMeans.size();
- #ifdef _sse2_
- for (; lastMean != lastMeansEnd; ++lastMean, ++newMean) {
- __m128d factor = _mm_set_pd(*lastMean, *lastMean);
- const double* secondFeatureMean = newMean;
- for (; secondFeatureMean + 1 < newMeansEnd; secondFeatureMean += 2, olsMatrixElement += 2) {
- __m128d matrixElem = _mm_loadu_pd(olsMatrixElement);
- __m128d secondFeatureMeanElem = _mm_loadu_pd(secondFeatureMean);
- __m128d product = _mm_mul_pd(factor, secondFeatureMeanElem);
- __m128d addition = _mm_add_pd(matrixElem, product);
- _mm_storeu_pd(olsMatrixElement, addition);
- }
- for (; secondFeatureMean < newMeansEnd; ++secondFeatureMean) {
- *olsMatrixElement++ += *lastMean * *secondFeatureMean;
- }
- }
- #else
- for (; lastMean != lastMeansEnd; ++lastMean, ++newMean) {
- for (const double* secondFeatureMean = newMean; secondFeatureMean < newMeansEnd; ++secondFeatureMean) {
- *olsMatrixElement++ += *lastMean * *secondFeatureMean;
- }
- }
- #endif
- for (size_t firstFeatureNumber = 0; firstFeatureNumber < features.size(); ++firstFeatureNumber) {
- OLSVector[firstFeatureNumber] += weight * (features[firstFeatureNumber] - FeatureMeans[firstFeatureNumber]) * (goal - GoalsMean);
- }
- const double oldGoalsMean = GoalsMean;
- GoalsMean += weight * (goal - GoalsMean) / SumWeights.Get();
- GoalsDeviation += weight * (goal - oldGoalsMean) * (goal - GoalsMean);
- return true;
- }
- TLinearModel TFastLinearRegressionSolver::Solve() const {
- TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
- double intercept = 0.;
- if (!coefficients.empty()) {
- intercept = coefficients.back();
- coefficients.pop_back();
- }
- return TLinearModel(std::move(coefficients), intercept);
- }
- TLinearModel TLinearRegressionSolver::Solve() const {
- TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
- double intercept = GoalsMean;
- const size_t featuresCount = OLSVector.size();
- for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
- intercept -= FeatureMeans[featureNumber] * coefficients[featureNumber];
- }
- return TLinearModel(std::move(coefficients), intercept);
- }
- double TFastLinearRegressionSolver::SumSquaredErrors() const {
- const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
- return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, SumSquaredGoals.Get());
- }
- double TLinearRegressionSolver::SumSquaredErrors() const {
- const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
- return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, GoalsDeviation);
- }
- bool TSLRSolver::Add(const double feature, const double goal, const double weight) {
- SumWeights += weight;
- if (!SumWeights.Get()) {
- return false;
- }
- const double weightedFeatureDiff = weight * (feature - FeaturesMean);
- const double weightedGoalDiff = weight * (goal - GoalsMean);
- FeaturesMean += weightedFeatureDiff / SumWeights.Get();
- FeaturesDeviation += weightedFeatureDiff * (feature - FeaturesMean);
- GoalsMean += weightedGoalDiff / SumWeights.Get();
- GoalsDeviation += weightedGoalDiff * (goal - GoalsMean);
- Covariation += weightedFeatureDiff * (goal - GoalsMean);
- return true;
- }
- bool TSLRSolver::Add(const double* featuresBegin,
- const double* featuresEnd,
- const double* goalsBegin) {
- for (; featuresBegin != featuresEnd; ++featuresBegin, ++goalsBegin) {
- Add(*featuresBegin, *goalsBegin);
- }
- return true;
- }
- bool TSLRSolver::Add(const double* featuresBegin,
- const double* featuresEnd,
- const double* goalsBegin,
- const double* weightsBegin) {
- for (; featuresBegin != featuresEnd; ++featuresBegin, ++goalsBegin, ++weightsBegin) {
- Add(*featuresBegin, *goalsBegin, *weightsBegin);
- }
- return true;
- }
- double TSLRSolver::SumSquaredErrors(const double regularizationParameter) const {
- double factor, offset;
- Solve(factor, offset, regularizationParameter);
- return factor * factor * FeaturesDeviation - 2 * factor * Covariation + GoalsDeviation;
- }
- namespace {
- // LDL matrix decomposition, see http://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
- bool LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
- const double regularizationThreshold,
- const double regularizationParameter,
- TVector<double>& decompositionTrace,
- TVector<TVector<double>>& decompositionMatrix) {
- const size_t featuresCount = decompositionTrace.size();
- size_t olsMatrixElementIdx = 0;
- for (size_t rowNumber = 0; rowNumber < featuresCount; ++rowNumber) {
- double& decompositionTraceElement = decompositionTrace[rowNumber];
- decompositionTraceElement = linearizedOLSMatrix[olsMatrixElementIdx] + regularizationParameter;
- TVector<double>& decompositionRow = decompositionMatrix[rowNumber];
- for (size_t i = 0; i < rowNumber; ++i) {
- decompositionTraceElement -= decompositionRow[i] * decompositionRow[i] * decompositionTrace[i];
- }
- if (fabs(decompositionTraceElement) < regularizationThreshold) {
- return false;
- }
- ++olsMatrixElementIdx;
- decompositionRow[rowNumber] = 1.;
- for (size_t columnNumber = rowNumber + 1; columnNumber < featuresCount; ++columnNumber) {
- TVector<double>& secondDecompositionRow = decompositionMatrix[columnNumber];
- double& decompositionMatrixElement = secondDecompositionRow[rowNumber];
- decompositionMatrixElement = linearizedOLSMatrix[olsMatrixElementIdx];
- for (size_t j = 0; j < rowNumber; ++j) {
- decompositionMatrixElement -= decompositionRow[j] * secondDecompositionRow[j] * decompositionTrace[j];
- }
- decompositionMatrixElement /= decompositionTraceElement;
- decompositionRow[columnNumber] = decompositionMatrixElement;
- ++olsMatrixElementIdx;
- }
- }
- return true;
- }
- void LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
- TVector<double>& decompositionTrace,
- TVector<TVector<double>>& decompositionMatrix) {
- const double regularizationThreshold = 1e-5;
- double regularizationParameter = 0.;
- while (!LDLDecomposition(linearizedOLSMatrix,
- regularizationThreshold,
- regularizationParameter,
- decompositionTrace,
- decompositionMatrix)) {
- regularizationParameter = regularizationParameter ? 2 * regularizationParameter : 1e-5;
- }
- }
- TVector<double> SolveLower(const TVector<TVector<double>>& decompositionMatrix,
- const TVector<double>& decompositionTrace,
- const TVector<double>& olsVector) {
- const size_t featuresCount = olsVector.size();
- TVector<double> solution(featuresCount);
- for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
- double& solutionElement = solution[featureNumber];
- solutionElement = olsVector[featureNumber];
- const TVector<double>& decompositionRow = decompositionMatrix[featureNumber];
- for (size_t i = 0; i < featureNumber; ++i) {
- solutionElement -= solution[i] * decompositionRow[i];
- }
- }
- for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
- solution[featureNumber] /= decompositionTrace[featureNumber];
- }
- return solution;
- }
- TVector<double> SolveUpper(const TVector<TVector<double>>& decompositionMatrix,
- const TVector<double>& lowerSolution) {
- const size_t featuresCount = lowerSolution.size();
- TVector<double> solution(featuresCount);
- for (size_t featureNumber = featuresCount; featureNumber > 0; --featureNumber) {
- double& solutionElement = solution[featureNumber - 1];
- solutionElement = lowerSolution[featureNumber - 1];
- const TVector<double>& decompositionRow = decompositionMatrix[featureNumber - 1];
- for (size_t i = featureNumber; i < featuresCount; ++i) {
- solutionElement -= solution[i] * decompositionRow[i];
- }
- }
- return solution;
- }
- TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector) {
- const size_t featuresCount = olsVector.size();
- TVector<double> decompositionTrace(featuresCount);
- TVector<TVector<double>> decompositionMatrix(featuresCount, TVector<double>(featuresCount));
- LDLDecomposition(olsMatrix, decompositionTrace, decompositionMatrix);
- return SolveUpper(decompositionMatrix, SolveLower(decompositionMatrix, decompositionTrace, olsVector));
- }
- double SumSquaredErrors(const TVector<double>& olsMatrix,
- const TVector<double>& olsVector,
- const TVector<double>& solution,
- const double goalsDeviation) {
- const size_t featuresCount = olsVector.size();
- double sumSquaredErrors = goalsDeviation;
- size_t olsMatrixElementIdx = 0;
- for (size_t i = 0; i < featuresCount; ++i) {
- sumSquaredErrors += olsMatrix[olsMatrixElementIdx] * solution[i] * solution[i];
- ++olsMatrixElementIdx;
- for (size_t j = i + 1; j < featuresCount; ++j) {
- sumSquaredErrors += 2 * olsMatrix[olsMatrixElementIdx] * solution[i] * solution[j];
- ++olsMatrixElementIdx;
- }
- sumSquaredErrors -= 2 * solution[i] * olsVector[i];
- }
- return sumSquaredErrors;
- }
- #ifdef _sse2_
- inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix) {
- const double* leftFeature = features.data();
- const double* featuresEnd = features.data() + features.size();
- double* matrixElement = linearizedOLSTriangleMatrix.data();
- size_t unaligned = features.size() & 0x1;
- for (; leftFeature != featuresEnd; ++leftFeature, ++matrixElement) {
- const double weightedFeature = weight * *leftFeature;
- const double* rightFeature = leftFeature;
- __m128d wf = {weightedFeature, weightedFeature};
- for (size_t i = 0; i < unaligned; ++i, ++rightFeature, ++matrixElement) {
- *matrixElement += weightedFeature * *rightFeature;
- }
- unaligned = (unaligned + 1) & 0x1;
- for (; rightFeature != featuresEnd; rightFeature += 2, matrixElement += 2) {
- __m128d rf = _mm_loadu_pd(rightFeature);
- __m128d matrixRow = _mm_loadu_pd(matrixElement);
- __m128d rowAdd = _mm_mul_pd(rf, wf);
- _mm_storeu_pd(matrixElement, _mm_add_pd(rowAdd, matrixRow));
- }
- *matrixElement += weightedFeature;
- }
- linearizedOLSTriangleMatrix.back() += weight;
- }
- #else
- inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedTriangleMatrix) {
- const double* leftFeature = features.data();
- const double* featuresEnd = features.data() + features.size();
- double* matrixElement = linearizedTriangleMatrix.data();
- for (; leftFeature != featuresEnd; ++leftFeature, ++matrixElement) {
- const double weightedFeature = weight * *leftFeature;
- const double* rightFeature = leftFeature;
- for (; rightFeature != featuresEnd; ++rightFeature, ++matrixElement) {
- *matrixElement += weightedFeature * *rightFeature;
- }
- *matrixElement += weightedFeature;
- }
- linearizedTriangleMatrix.back() += weight;
- }
- #endif
- }
- namespace {
- inline double ArgMinPrecise(std::function<double(double)> func, double left, double right) {
- const size_t intervalsCount = 20;
- double points[intervalsCount + 1];
- double values[intervalsCount + 1];
- while (right > left + 1e-5) {
- for (size_t pointNumber = 0; pointNumber <= intervalsCount; ++pointNumber) {
- points[pointNumber] = left + pointNumber * (right - left) / intervalsCount;
- values[pointNumber] = func(points[pointNumber]);
- }
- size_t bestPointNumber = MinElement(values, values + intervalsCount + 1) - values;
- if (bestPointNumber == 0) {
- right = points[bestPointNumber + 1];
- continue;
- }
- if (bestPointNumber == intervalsCount) {
- left = points[bestPointNumber - 1];
- continue;
- }
- right = points[bestPointNumber + 1];
- left = points[bestPointNumber - 1];
- }
- return func(left) < func(right) ? left : right;
- }
- }
- TFeaturesTransformer TFeaturesTransformerLearner::Solve(const size_t iterationsCount /* = 100 */) {
- TTransformationParameters transformationParameters;
- auto updateParameter = [this, &transformationParameters](double TTransformationParameters::*parameter,
- const double left,
- const double right) {
- auto evalParameter = [this, &transformationParameters, parameter](double parameterValue) {
- transformationParameters.*parameter = parameterValue;
- TFeaturesTransformer transformer(TransformationType, transformationParameters);
- double sse = 0.;
- for (const TPoint& point : Points) {
- const double error = transformer.Transformation(point.Argument) - point.Target;
- sse += error * error;
- }
- return sse;
- };
- transformationParameters.*parameter = ArgMinPrecise(evalParameter, left, right);
- };
- auto updateRegressionParameters = [this, &transformationParameters]() {
- TFeaturesTransformer transformer(TransformationType, transformationParameters);
- TSLRSolver slrSolver;
- for (const TPoint& point : Points) {
- slrSolver.Add(transformer.Transformation(point.Argument), point.Target);
- }
- double factor, intercept;
- slrSolver.Solve(factor, intercept);
- transformationParameters.RegressionFactor *= factor;
- transformationParameters.RegressionIntercept *= factor;
- transformationParameters.RegressionIntercept += intercept;
- };
- for (size_t iterationNumber = 0; iterationNumber < iterationsCount; ++iterationNumber) {
- updateParameter(&TTransformationParameters::FeatureOffset, MinimalArgument, MaximalArgument);
- updateParameter(&TTransformationParameters::FeatureNormalizer, 0., MaximalArgument - MinimalArgument);
- updateRegressionParameters();
- }
- return TFeaturesTransformer(TransformationType, transformationParameters);
- }
|