123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- /* statistics accelerator C extension: _statistics module. */
- #include "Python.h"
- #include "clinic/_statisticsmodule.c.h"
- /*[clinic input]
- module _statistics
- [clinic start generated code]*/
- /*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/
- /*
- * There is no closed-form solution to the inverse CDF for the normal
- * distribution, so we use a rational approximation instead:
- * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
- * Normal Distribution". Applied Statistics. Blackwell Publishing. 37
- * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
- */
- /*[clinic input]
- _statistics._normal_dist_inv_cdf -> double
- p: double
- mu: double
- sigma: double
- /
- [clinic start generated code]*/
- static double
- _statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
- double sigma)
- /*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/
- {
- double q, num, den, r, x;
- if (p <= 0.0 || p >= 1.0) {
- goto error;
- }
- q = p - 0.5;
- if(fabs(q) <= 0.425) {
- r = 0.180625 - q * q;
- // Hash sum-55.8831928806149014439
- num = (((((((2.5090809287301226727e+3 * r +
- 3.3430575583588128105e+4) * r +
- 6.7265770927008700853e+4) * r +
- 4.5921953931549871457e+4) * r +
- 1.3731693765509461125e+4) * r +
- 1.9715909503065514427e+3) * r +
- 1.3314166789178437745e+2) * r +
- 3.3871328727963666080e+0) * q;
- den = (((((((5.2264952788528545610e+3 * r +
- 2.8729085735721942674e+4) * r +
- 3.9307895800092710610e+4) * r +
- 2.1213794301586595867e+4) * r +
- 5.3941960214247511077e+3) * r +
- 6.8718700749205790830e+2) * r +
- 4.2313330701600911252e+1) * r +
- 1.0);
- if (den == 0.0) {
- goto error;
- }
- x = num / den;
- return mu + (x * sigma);
- }
- r = (q <= 0.0) ? p : (1.0 - p);
- if (r <= 0.0 || r >= 1.0) {
- goto error;
- }
- r = sqrt(-log(r));
- if (r <= 5.0) {
- r = r - 1.6;
- // Hash sum-49.33206503301610289036
- num = (((((((7.74545014278341407640e-4 * r +
- 2.27238449892691845833e-2) * r +
- 2.41780725177450611770e-1) * r +
- 1.27045825245236838258e+0) * r +
- 3.64784832476320460504e+0) * r +
- 5.76949722146069140550e+0) * r +
- 4.63033784615654529590e+0) * r +
- 1.42343711074968357734e+0);
- den = (((((((1.05075007164441684324e-9 * r +
- 5.47593808499534494600e-4) * r +
- 1.51986665636164571966e-2) * r +
- 1.48103976427480074590e-1) * r +
- 6.89767334985100004550e-1) * r +
- 1.67638483018380384940e+0) * r +
- 2.05319162663775882187e+0) * r +
- 1.0);
- } else {
- r -= 5.0;
- // Hash sum-47.52583317549289671629
- num = (((((((2.01033439929228813265e-7 * r +
- 2.71155556874348757815e-5) * r +
- 1.24266094738807843860e-3) * r +
- 2.65321895265761230930e-2) * r +
- 2.96560571828504891230e-1) * r +
- 1.78482653991729133580e+0) * r +
- 5.46378491116411436990e+0) * r +
- 6.65790464350110377720e+0);
- den = (((((((2.04426310338993978564e-15 * r +
- 1.42151175831644588870e-7) * r +
- 1.84631831751005468180e-5) * r +
- 7.86869131145613259100e-4) * r +
- 1.48753612908506148525e-2) * r +
- 1.36929880922735805310e-1) * r +
- 5.99832206555887937690e-1) * r +
- 1.0);
- }
- if (den == 0.0) {
- goto error;
- }
- x = num / den;
- if (q < 0.0) {
- x = -x;
- }
- return mu + (x * sigma);
- error:
- PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters");
- return -1.0;
- }
- static PyMethodDef statistics_methods[] = {
- _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF
- {NULL, NULL, 0, NULL}
- };
- PyDoc_STRVAR(statistics_doc,
- "Accelerators for the statistics module.\n");
- static struct PyModuleDef_Slot _statisticsmodule_slots[] = {
- {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
- {0, NULL}
- };
- static struct PyModuleDef statisticsmodule = {
- PyModuleDef_HEAD_INIT,
- "_statistics",
- statistics_doc,
- 0,
- statistics_methods,
- _statisticsmodule_slots,
- NULL,
- NULL,
- NULL
- };
- PyMODINIT_FUNC
- PyInit__statistics(void)
- {
- return PyModuleDef_Init(&statisticsmodule);
- }
|