123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705 |
- /* Drop in replacement for heapq.py
- C implementation derived directly from heapq.py in Py2.3
- which was written by Kevin O'Connor, augmented by Tim Peters,
- annotated by François Pinard, and converted to C by Raymond Hettinger.
- */
- #ifndef Py_BUILD_CORE_BUILTIN
- # define Py_BUILD_CORE_MODULE 1
- #endif
- #include "Python.h"
- #include "pycore_list.h" // _PyList_ITEMS()
- #include "clinic/_heapqmodule.c.h"
- /*[clinic input]
- module _heapq
- [clinic start generated code]*/
- /*[clinic end generated code: output=da39a3ee5e6b4b0d input=d7cca0a2e4c0ceb3]*/
- static int
- siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
- {
- PyObject *newitem, *parent, **arr;
- Py_ssize_t parentpos, size;
- int cmp;
- assert(PyList_Check(heap));
- size = PyList_GET_SIZE(heap);
- if (pos >= size) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return -1;
- }
- /* Follow the path to the root, moving parents down until finding
- a place newitem fits. */
- arr = _PyList_ITEMS(heap);
- newitem = arr[pos];
- while (pos > startpos) {
- parentpos = (pos - 1) >> 1;
- parent = arr[parentpos];
- Py_INCREF(newitem);
- Py_INCREF(parent);
- cmp = PyObject_RichCompareBool(newitem, parent, Py_LT);
- Py_DECREF(parent);
- Py_DECREF(newitem);
- if (cmp < 0)
- return -1;
- if (size != PyList_GET_SIZE(heap)) {
- PyErr_SetString(PyExc_RuntimeError,
- "list changed size during iteration");
- return -1;
- }
- if (cmp == 0)
- break;
- arr = _PyList_ITEMS(heap);
- parent = arr[parentpos];
- newitem = arr[pos];
- arr[parentpos] = newitem;
- arr[pos] = parent;
- pos = parentpos;
- }
- return 0;
- }
- static int
- siftup(PyListObject *heap, Py_ssize_t pos)
- {
- Py_ssize_t startpos, endpos, childpos, limit;
- PyObject *tmp1, *tmp2, **arr;
- int cmp;
- assert(PyList_Check(heap));
- endpos = PyList_GET_SIZE(heap);
- startpos = pos;
- if (pos >= endpos) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return -1;
- }
- /* Bubble up the smaller child until hitting a leaf. */
- arr = _PyList_ITEMS(heap);
- limit = endpos >> 1; /* smallest pos that has no child */
- while (pos < limit) {
- /* Set childpos to index of smaller child. */
- childpos = 2*pos + 1; /* leftmost child position */
- if (childpos + 1 < endpos) {
- PyObject* a = arr[childpos];
- PyObject* b = arr[childpos + 1];
- Py_INCREF(a);
- Py_INCREF(b);
- cmp = PyObject_RichCompareBool(a, b, Py_LT);
- Py_DECREF(a);
- Py_DECREF(b);
- if (cmp < 0)
- return -1;
- childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */
- arr = _PyList_ITEMS(heap); /* arr may have changed */
- if (endpos != PyList_GET_SIZE(heap)) {
- PyErr_SetString(PyExc_RuntimeError,
- "list changed size during iteration");
- return -1;
- }
- }
- /* Move the smaller child up. */
- tmp1 = arr[childpos];
- tmp2 = arr[pos];
- arr[childpos] = tmp2;
- arr[pos] = tmp1;
- pos = childpos;
- }
- /* Bubble it up to its final resting place (by sifting its parents down). */
- return siftdown(heap, startpos, pos);
- }
- /*[clinic input]
- _heapq.heappush
- heap: object(subclass_of='&PyList_Type')
- item: object
- /
- Push item onto heap, maintaining the heap invariant.
- [clinic start generated code]*/
- static PyObject *
- _heapq_heappush_impl(PyObject *module, PyObject *heap, PyObject *item)
- /*[clinic end generated code: output=912c094f47663935 input=7c69611f3698aceb]*/
- {
- if (PyList_Append(heap, item))
- return NULL;
- if (siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1))
- return NULL;
- Py_RETURN_NONE;
- }
- static PyObject *
- heappop_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
- {
- PyObject *lastelt, *returnitem;
- Py_ssize_t n;
- /* raises IndexError if the heap is empty */
- n = PyList_GET_SIZE(heap);
- if (n == 0) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
- }
- lastelt = PyList_GET_ITEM(heap, n-1) ;
- Py_INCREF(lastelt);
- if (PyList_SetSlice(heap, n-1, n, NULL)) {
- Py_DECREF(lastelt);
- return NULL;
- }
- n--;
- if (!n)
- return lastelt;
- returnitem = PyList_GET_ITEM(heap, 0);
- PyList_SET_ITEM(heap, 0, lastelt);
- if (siftup_func((PyListObject *)heap, 0)) {
- Py_DECREF(returnitem);
- return NULL;
- }
- return returnitem;
- }
- /*[clinic input]
- _heapq.heappop
- heap: object(subclass_of='&PyList_Type')
- /
- Pop the smallest item off the heap, maintaining the heap invariant.
- [clinic start generated code]*/
- static PyObject *
- _heapq_heappop_impl(PyObject *module, PyObject *heap)
- /*[clinic end generated code: output=96dfe82d37d9af76 input=91487987a583c856]*/
- {
- return heappop_internal(heap, siftup);
- }
- static PyObject *
- heapreplace_internal(PyObject *heap, PyObject *item, int siftup_func(PyListObject *, Py_ssize_t))
- {
- PyObject *returnitem;
- if (PyList_GET_SIZE(heap) == 0) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
- }
- returnitem = PyList_GET_ITEM(heap, 0);
- PyList_SET_ITEM(heap, 0, Py_NewRef(item));
- if (siftup_func((PyListObject *)heap, 0)) {
- Py_DECREF(returnitem);
- return NULL;
- }
- return returnitem;
- }
- /*[clinic input]
- _heapq.heapreplace
- heap: object(subclass_of='&PyList_Type')
- item: object
- /
- Pop and return the current smallest value, and add the new item.
- This is more efficient than heappop() followed by heappush(), and can be
- more appropriate when using a fixed-size heap. Note that the value
- returned may be larger than item! That constrains reasonable uses of
- this routine unless written as part of a conditional replacement:
- if item > heap[0]:
- item = heapreplace(heap, item)
- [clinic start generated code]*/
- static PyObject *
- _heapq_heapreplace_impl(PyObject *module, PyObject *heap, PyObject *item)
- /*[clinic end generated code: output=82ea55be8fbe24b4 input=719202ac02ba10c8]*/
- {
- return heapreplace_internal(heap, item, siftup);
- }
- /*[clinic input]
- _heapq.heappushpop
- heap: object(subclass_of='&PyList_Type')
- item: object
- /
- Push item on the heap, then pop and return the smallest item from the heap.
- The combined action runs more efficiently than heappush() followed by
- a separate call to heappop().
- [clinic start generated code]*/
- static PyObject *
- _heapq_heappushpop_impl(PyObject *module, PyObject *heap, PyObject *item)
- /*[clinic end generated code: output=67231dc98ed5774f input=5dc701f1eb4a4aa7]*/
- {
- PyObject *returnitem;
- int cmp;
- if (PyList_GET_SIZE(heap) == 0) {
- return Py_NewRef(item);
- }
- PyObject* top = PyList_GET_ITEM(heap, 0);
- Py_INCREF(top);
- cmp = PyObject_RichCompareBool(top, item, Py_LT);
- Py_DECREF(top);
- if (cmp < 0)
- return NULL;
- if (cmp == 0) {
- return Py_NewRef(item);
- }
- if (PyList_GET_SIZE(heap) == 0) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return NULL;
- }
- returnitem = PyList_GET_ITEM(heap, 0);
- PyList_SET_ITEM(heap, 0, Py_NewRef(item));
- if (siftup((PyListObject *)heap, 0)) {
- Py_DECREF(returnitem);
- return NULL;
- }
- return returnitem;
- }
- static Py_ssize_t
- keep_top_bit(Py_ssize_t n)
- {
- int i = 0;
- while (n > 1) {
- n >>= 1;
- i++;
- }
- return n << i;
- }
- /* Cache friendly version of heapify()
- -----------------------------------
- Build-up a heap in O(n) time by performing siftup() operations
- on nodes whose children are already heaps.
- The simplest way is to sift the nodes in reverse order from
- n//2-1 to 0 inclusive. The downside is that children may be
- out of cache by the time their parent is reached.
- A better way is to not wait for the children to go out of cache.
- Once a sibling pair of child nodes have been sifted, immediately
- sift their parent node (while the children are still in cache).
- Both ways build child heaps before their parents, so both ways
- do the exact same number of comparisons and produce exactly
- the same heap. The only difference is that the traversal
- order is optimized for cache efficiency.
- */
- static PyObject *
- cache_friendly_heapify(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
- {
- Py_ssize_t i, j, m, mhalf, leftmost;
- m = PyList_GET_SIZE(heap) >> 1; /* index of first childless node */
- leftmost = keep_top_bit(m + 1) - 1; /* leftmost node in row of m */
- mhalf = m >> 1; /* parent of first childless node */
- for (i = leftmost - 1 ; i >= mhalf ; i--) {
- j = i;
- while (1) {
- if (siftup_func((PyListObject *)heap, j))
- return NULL;
- if (!(j & 1))
- break;
- j >>= 1;
- }
- }
- for (i = m - 1 ; i >= leftmost ; i--) {
- j = i;
- while (1) {
- if (siftup_func((PyListObject *)heap, j))
- return NULL;
- if (!(j & 1))
- break;
- j >>= 1;
- }
- }
- Py_RETURN_NONE;
- }
- static PyObject *
- heapify_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
- {
- Py_ssize_t i, n;
- /* For heaps likely to be bigger than L1 cache, we use the cache
- friendly heapify function. For smaller heaps that fit entirely
- in cache, we prefer the simpler algorithm with less branching.
- */
- n = PyList_GET_SIZE(heap);
- if (n > 2500)
- return cache_friendly_heapify(heap, siftup_func);
- /* Transform bottom-up. The largest index there's any point to
- looking at is the largest with a child index in-range, so must
- have 2*i + 1 < n, or i < (n-1)/2. If n is even = 2*j, this is
- (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1. If
- n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
- and that's again n//2-1.
- */
- for (i = (n >> 1) - 1 ; i >= 0 ; i--)
- if (siftup_func((PyListObject *)heap, i))
- return NULL;
- Py_RETURN_NONE;
- }
- /*[clinic input]
- _heapq.heapify
- heap: object(subclass_of='&PyList_Type')
- /
- Transform list into a heap, in-place, in O(len(heap)) time.
- [clinic start generated code]*/
- static PyObject *
- _heapq_heapify_impl(PyObject *module, PyObject *heap)
- /*[clinic end generated code: output=e63a636fcf83d6d0 input=53bb7a2166febb73]*/
- {
- return heapify_internal(heap, siftup);
- }
- static int
- siftdown_max(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
- {
- PyObject *newitem, *parent, **arr;
- Py_ssize_t parentpos, size;
- int cmp;
- assert(PyList_Check(heap));
- size = PyList_GET_SIZE(heap);
- if (pos >= size) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return -1;
- }
- /* Follow the path to the root, moving parents down until finding
- a place newitem fits. */
- arr = _PyList_ITEMS(heap);
- newitem = arr[pos];
- while (pos > startpos) {
- parentpos = (pos - 1) >> 1;
- parent = Py_NewRef(arr[parentpos]);
- Py_INCREF(newitem);
- cmp = PyObject_RichCompareBool(parent, newitem, Py_LT);
- Py_DECREF(parent);
- Py_DECREF(newitem);
- if (cmp < 0)
- return -1;
- if (size != PyList_GET_SIZE(heap)) {
- PyErr_SetString(PyExc_RuntimeError,
- "list changed size during iteration");
- return -1;
- }
- if (cmp == 0)
- break;
- arr = _PyList_ITEMS(heap);
- parent = arr[parentpos];
- newitem = arr[pos];
- arr[parentpos] = newitem;
- arr[pos] = parent;
- pos = parentpos;
- }
- return 0;
- }
- static int
- siftup_max(PyListObject *heap, Py_ssize_t pos)
- {
- Py_ssize_t startpos, endpos, childpos, limit;
- PyObject *tmp1, *tmp2, **arr;
- int cmp;
- assert(PyList_Check(heap));
- endpos = PyList_GET_SIZE(heap);
- startpos = pos;
- if (pos >= endpos) {
- PyErr_SetString(PyExc_IndexError, "index out of range");
- return -1;
- }
- /* Bubble up the smaller child until hitting a leaf. */
- arr = _PyList_ITEMS(heap);
- limit = endpos >> 1; /* smallest pos that has no child */
- while (pos < limit) {
- /* Set childpos to index of smaller child. */
- childpos = 2*pos + 1; /* leftmost child position */
- if (childpos + 1 < endpos) {
- PyObject* a = arr[childpos + 1];
- PyObject* b = arr[childpos];
- Py_INCREF(a);
- Py_INCREF(b);
- cmp = PyObject_RichCompareBool(a, b, Py_LT);
- Py_DECREF(a);
- Py_DECREF(b);
- if (cmp < 0)
- return -1;
- childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */
- arr = _PyList_ITEMS(heap); /* arr may have changed */
- if (endpos != PyList_GET_SIZE(heap)) {
- PyErr_SetString(PyExc_RuntimeError,
- "list changed size during iteration");
- return -1;
- }
- }
- /* Move the smaller child up. */
- tmp1 = arr[childpos];
- tmp2 = arr[pos];
- arr[childpos] = tmp2;
- arr[pos] = tmp1;
- pos = childpos;
- }
- /* Bubble it up to its final resting place (by sifting its parents down). */
- return siftdown_max(heap, startpos, pos);
- }
- /*[clinic input]
- _heapq._heappop_max
- heap: object(subclass_of='&PyList_Type')
- /
- Maxheap variant of heappop.
- [clinic start generated code]*/
- static PyObject *
- _heapq__heappop_max_impl(PyObject *module, PyObject *heap)
- /*[clinic end generated code: output=9e77aadd4e6a8760 input=362c06e1c7484793]*/
- {
- return heappop_internal(heap, siftup_max);
- }
- /*[clinic input]
- _heapq._heapreplace_max
- heap: object(subclass_of='&PyList_Type')
- item: object
- /
- Maxheap variant of heapreplace.
- [clinic start generated code]*/
- static PyObject *
- _heapq__heapreplace_max_impl(PyObject *module, PyObject *heap,
- PyObject *item)
- /*[clinic end generated code: output=8ad7545e4a5e8adb input=f2dd27cbadb948d7]*/
- {
- return heapreplace_internal(heap, item, siftup_max);
- }
- /*[clinic input]
- _heapq._heapify_max
- heap: object(subclass_of='&PyList_Type')
- /
- Maxheap variant of heapify.
- [clinic start generated code]*/
- static PyObject *
- _heapq__heapify_max_impl(PyObject *module, PyObject *heap)
- /*[clinic end generated code: output=2cb028beb4a8b65e input=c1f765ee69f124b8]*/
- {
- return heapify_internal(heap, siftup_max);
- }
- static PyMethodDef heapq_methods[] = {
- _HEAPQ_HEAPPUSH_METHODDEF
- _HEAPQ_HEAPPUSHPOP_METHODDEF
- _HEAPQ_HEAPPOP_METHODDEF
- _HEAPQ_HEAPREPLACE_METHODDEF
- _HEAPQ_HEAPIFY_METHODDEF
- _HEAPQ__HEAPPOP_MAX_METHODDEF
- _HEAPQ__HEAPIFY_MAX_METHODDEF
- _HEAPQ__HEAPREPLACE_MAX_METHODDEF
- {NULL, NULL} /* sentinel */
- };
- PyDoc_STRVAR(module_doc,
- "Heap queue algorithm (a.k.a. priority queue).\n\
- \n\
- Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
- all k, counting elements from 0. For the sake of comparison,\n\
- non-existing elements are considered to be infinite. The interesting\n\
- property of a heap is that a[0] is always its smallest element.\n\
- \n\
- Usage:\n\
- \n\
- heap = [] # creates an empty heap\n\
- heappush(heap, item) # pushes a new item on the heap\n\
- item = heappop(heap) # pops the smallest item from the heap\n\
- item = heap[0] # smallest item on the heap without popping it\n\
- heapify(x) # transforms list into a heap, in-place, in linear time\n\
- item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
- # new item; the heap size is unchanged\n\
- \n\
- Our API differs from textbook heap algorithms as follows:\n\
- \n\
- - We use 0-based indexing. This makes the relationship between the\n\
- index for a node and the indexes for its children slightly less\n\
- obvious, but is more suitable since Python uses 0-based indexing.\n\
- \n\
- - Our heappop() method returns the smallest item, not the largest.\n\
- \n\
- These two make it possible to view the heap as a regular Python list\n\
- without surprises: heap[0] is the smallest item, and heap.sort()\n\
- maintains the heap invariant!\n");
- PyDoc_STRVAR(__about__,
- "Heap queues\n\
- \n\
- [explanation by Fran\xc3\xa7ois Pinard]\n\
- \n\
- Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
- all k, counting elements from 0. For the sake of comparison,\n\
- non-existing elements are considered to be infinite. The interesting\n\
- property of a heap is that a[0] is always its smallest element.\n"
- "\n\
- The strange invariant above is meant to be an efficient memory\n\
- representation for a tournament. The numbers below are `k', not a[k]:\n\
- \n\
- 0\n\
- \n\
- 1 2\n\
- \n\
- 3 4 5 6\n\
- \n\
- 7 8 9 10 11 12 13 14\n\
- \n\
- 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30\n\
- \n\
- \n\
- In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In\n\
- a usual binary tournament we see in sports, each cell is the winner\n\
- over the two cells it tops, and we can trace the winner down the tree\n\
- to see all opponents s/he had. However, in many computer applications\n\
- of such tournaments, we do not need to trace the history of a winner.\n\
- To be more memory efficient, when a winner is promoted, we try to\n\
- replace it by something else at a lower level, and the rule becomes\n\
- that a cell and the two cells it tops contain three different items,\n\
- but the top cell \"wins\" over the two topped cells.\n"
- "\n\
- If this heap invariant is protected at all time, index 0 is clearly\n\
- the overall winner. The simplest algorithmic way to remove it and\n\
- find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
- diagram above) into the 0 position, and then percolate this new 0 down\n\
- the tree, exchanging values, until the invariant is re-established.\n\
- This is clearly logarithmic on the total number of items in the tree.\n\
- By iterating over all items, you get an O(n ln n) sort.\n"
- "\n\
- A nice feature of this sort is that you can efficiently insert new\n\
- items while the sort is going on, provided that the inserted items are\n\
- not \"better\" than the last 0'th element you extracted. This is\n\
- especially useful in simulation contexts, where the tree holds all\n\
- incoming events, and the \"win\" condition means the smallest scheduled\n\
- time. When an event schedule other events for execution, they are\n\
- scheduled into the future, so they can easily go into the heap. So, a\n\
- heap is a good structure for implementing schedulers (this is what I\n\
- used for my MIDI sequencer :-).\n"
- "\n\
- Various structures for implementing schedulers have been extensively\n\
- studied, and heaps are good for this, as they are reasonably speedy,\n\
- the speed is almost constant, and the worst case is not much different\n\
- than the average case. However, there are other representations which\n\
- are more efficient overall, yet the worst cases might be terrible.\n"
- "\n\
- Heaps are also very useful in big disk sorts. You most probably all\n\
- know that a big sort implies producing \"runs\" (which are pre-sorted\n\
- sequences, which size is usually related to the amount of CPU memory),\n\
- followed by a merging passes for these runs, which merging is often\n\
- very cleverly organised[1]. It is very important that the initial\n\
- sort produces the longest runs possible. Tournaments are a good way\n\
- to that. If, using all the memory available to hold a tournament, you\n\
- replace and percolate items that happen to fit the current run, you'll\n\
- produce runs which are twice the size of the memory for random input,\n\
- and much better for input fuzzily ordered.\n"
- "\n\
- Moreover, if you output the 0'th item on disk and get an input which\n\
- may not fit in the current tournament (because the value \"wins\" over\n\
- the last output value), it cannot fit in the heap, so the size of the\n\
- heap decreases. The freed memory could be cleverly reused immediately\n\
- for progressively building a second heap, which grows at exactly the\n\
- same rate the first heap is melting. When the first heap completely\n\
- vanishes, you switch heaps and start a new run. Clever and quite\n\
- effective!\n\
- \n\
- In a word, heaps are useful memory structures to know. I use them in\n\
- a few applications, and I think it is good to keep a `heap' module\n\
- around. :-)\n"
- "\n\
- --------------------\n\
- [1] The disk balancing algorithms which are current, nowadays, are\n\
- more annoying than clever, and this is a consequence of the seeking\n\
- capabilities of the disks. On devices which cannot seek, like big\n\
- tape drives, the story was quite different, and one had to be very\n\
- clever to ensure (far in advance) that each tape movement will be the\n\
- most effective possible (that is, will best participate at\n\
- \"progressing\" the merge). Some tapes were even able to read\n\
- backwards, and this was also used to avoid the rewinding time.\n\
- Believe me, real good tape sorts were quite spectacular to watch!\n\
- From all times, sorting has always been a Great Art! :-)\n");
- static int
- heapq_exec(PyObject *m)
- {
- PyObject *about = PyUnicode_FromString(__about__);
- if (PyModule_AddObject(m, "__about__", about) < 0) {
- Py_DECREF(about);
- return -1;
- }
- return 0;
- }
- static struct PyModuleDef_Slot heapq_slots[] = {
- {Py_mod_exec, heapq_exec},
- {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
- {0, NULL}
- };
- static struct PyModuleDef _heapqmodule = {
- PyModuleDef_HEAD_INIT,
- "_heapq",
- module_doc,
- 0,
- heapq_methods,
- heapq_slots,
- NULL,
- NULL,
- NULL
- };
- PyMODINIT_FUNC
- PyInit__heapq(void)
- {
- return PyModuleDef_Init(&_heapqmodule);
- }
|