123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- /* Copyright (C) 1991, 1993, 1996-1997, 1999-2000, 2003-2004, 2006, 2008-2013
- Free Software Foundation, Inc.
- Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
- with help from Dan Sahlin (dan@sics.se) and
- commentary by Jim Blandy (jimb@ai.mit.edu);
- adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
- and implemented in glibc by Roland McGrath (roland@ai.mit.edu).
- Extension to memchr2 implemented by Eric Blake (ebb9@byu.net).
- This program is free software: you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 3 of the License, or any
- later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>. */
- #include <config.h>
- #include "memchr2.h"
- #include <limits.h>
- #include <stdint.h>
- #include <string.h>
- /* Return the first address of either C1 or C2 (treated as unsigned
- char) that occurs within N bytes of the memory region S. If
- neither byte appears, return NULL. */
- void *
- memchr2 (void const *s, int c1_in, int c2_in, size_t n)
- {
- /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
- long instead of a 64-bit uintmax_t tends to give better
- performance. On 64-bit hardware, unsigned long is generally 64
- bits already. Change this typedef to experiment with
- performance. */
- typedef unsigned long int longword;
- const unsigned char *char_ptr;
- void const *void_ptr;
- const longword *longword_ptr;
- longword repeated_one;
- longword repeated_c1;
- longword repeated_c2;
- unsigned char c1;
- unsigned char c2;
- c1 = (unsigned char) c1_in;
- c2 = (unsigned char) c2_in;
- if (c1 == c2)
- return memchr (s, c1, n);
- /* Handle the first few bytes by reading one byte at a time.
- Do this until VOID_PTR is aligned on a longword boundary. */
- for (void_ptr = s;
- n > 0 && (uintptr_t) void_ptr % sizeof (longword) != 0;
- --n)
- {
- char_ptr = void_ptr;
- if (*char_ptr == c1 || *char_ptr == c2)
- return (void *) void_ptr;
- void_ptr = char_ptr + 1;
- }
- longword_ptr = void_ptr;
- /* All these elucidatory comments refer to 4-byte longwords,
- but the theory applies equally well to any size longwords. */
- /* Compute auxiliary longword values:
- repeated_one is a value which has a 1 in every byte.
- repeated_c1 has c1 in every byte.
- repeated_c2 has c2 in every byte. */
- repeated_one = 0x01010101;
- repeated_c1 = c1 | (c1 << 8);
- repeated_c2 = c2 | (c2 << 8);
- repeated_c1 |= repeated_c1 << 16;
- repeated_c2 |= repeated_c2 << 16;
- if (0xffffffffU < (longword) -1)
- {
- repeated_one |= repeated_one << 31 << 1;
- repeated_c1 |= repeated_c1 << 31 << 1;
- repeated_c2 |= repeated_c2 << 31 << 1;
- if (8 < sizeof (longword))
- {
- size_t i;
- for (i = 64; i < sizeof (longword) * 8; i *= 2)
- {
- repeated_one |= repeated_one << i;
- repeated_c1 |= repeated_c1 << i;
- repeated_c2 |= repeated_c2 << i;
- }
- }
- }
- /* Instead of the traditional loop which tests each byte, we will test a
- longword at a time. The tricky part is testing if *any of the four*
- bytes in the longword in question are equal to c1 or c2. We first use
- an xor with repeated_c1 and repeated_c2, respectively. This reduces
- the task to testing whether *any of the four* bytes in longword1 or
- longword2 is zero.
- Let's consider longword1. We compute tmp1 =
- ((longword1 - repeated_one) & ~longword1) & (repeated_one << 7).
- That is, we perform the following operations:
- 1. Subtract repeated_one.
- 2. & ~longword1.
- 3. & a mask consisting of 0x80 in every byte.
- Consider what happens in each byte:
- - If a byte of longword1 is zero, step 1 and 2 transform it into 0xff,
- and step 3 transforms it into 0x80. A carry can also be propagated
- to more significant bytes.
- - If a byte of longword1 is nonzero, let its lowest 1 bit be at
- position k (0 <= k <= 7); so the lowest k bits are 0. After step 1,
- the byte ends in a single bit of value 0 and k bits of value 1.
- After step 2, the result is just k bits of value 1: 2^k - 1. After
- step 3, the result is 0. And no carry is produced.
- So, if longword1 has only non-zero bytes, tmp1 is zero.
- Whereas if longword1 has a zero byte, call j the position of the least
- significant zero byte. Then the result has a zero at positions 0, ...,
- j-1 and a 0x80 at position j. We cannot predict the result at the more
- significant bytes (positions j+1..3), but it does not matter since we
- already have a non-zero bit at position 8*j+7.
- Similarly, we compute tmp2 =
- ((longword2 - repeated_one) & ~longword2) & (repeated_one << 7).
- The test whether any byte in longword1 or longword2 is zero is equivalent
- to testing whether tmp1 is nonzero or tmp2 is nonzero. We can combine
- this into a single test, whether (tmp1 | tmp2) is nonzero. */
- while (n >= sizeof (longword))
- {
- longword longword1 = *longword_ptr ^ repeated_c1;
- longword longword2 = *longword_ptr ^ repeated_c2;
- if (((((longword1 - repeated_one) & ~longword1)
- | ((longword2 - repeated_one) & ~longword2))
- & (repeated_one << 7)) != 0)
- break;
- longword_ptr++;
- n -= sizeof (longword);
- }
- char_ptr = (const unsigned char *) longword_ptr;
- /* At this point, we know that either n < sizeof (longword), or one of the
- sizeof (longword) bytes starting at char_ptr is == c1 or == c2. On
- little-endian machines, we could determine the first such byte without
- any further memory accesses, just by looking at the (tmp1 | tmp2) result
- from the last loop iteration. But this does not work on big-endian
- machines. Choose code that works in both cases. */
- for (; n > 0; --n, ++char_ptr)
- {
- if (*char_ptr == c1 || *char_ptr == c2)
- return (void *) char_ptr;
- }
- return NULL;
- }
|