123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "y_absl/strings/charconv.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <limits>
- #include <system_error> // NOLINT(build/c++11)
- #include "y_absl/base/casts.h"
- #include "y_absl/base/config.h"
- #include "y_absl/base/nullability.h"
- #include "y_absl/numeric/bits.h"
- #include "y_absl/numeric/int128.h"
- #include "y_absl/strings/internal/charconv_bigint.h"
- #include "y_absl/strings/internal/charconv_parse.h"
- // The macro Y_ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
- // point numbers have the same endianness in memory as a bitfield struct
- // containing the corresponding parts.
- //
- // When set, we replace calls to ldexp() with manual bit packing, which is
- // faster and is unaffected by floating point environment.
- #ifdef Y_ABSL_BIT_PACK_FLOATS
- #error Y_ABSL_BIT_PACK_FLOATS cannot be directly set
- #elif defined(__x86_64__) || defined(_M_X64)
- #define Y_ABSL_BIT_PACK_FLOATS 1
- #endif
- // A note about subnormals:
- //
- // The code below talks about "normals" and "subnormals". A normal IEEE float
- // has a fixed-width mantissa and power of two exponent. For example, a normal
- // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
- // stored in the representation. The implicit bit buys an extra bit of
- // resolution in the datatype.
- //
- // The downside of this scheme is that there is a large gap between DBL_MIN and
- // zero. (Large, at least, relative to the different between DBL_MIN and the
- // next representable number). This gap is softened by the "subnormal" numbers,
- // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
- // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
- // is represented as a subnormal with an all-bits-zero mantissa.)
- //
- // The code below, in calculations, represents the mantissa as a uint64_t. The
- // end result normally has the 53rd bit set. It represents subnormals by using
- // narrower mantissas.
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace {
- template <typename FloatType>
- struct FloatTraits;
- template <>
- struct FloatTraits<double> {
- using mantissa_t = uint64_t;
- // The number of bits in the given float type.
- static constexpr int kTargetBits = 64;
- // The number of exponent bits in the given float type.
- static constexpr int kTargetExponentBits = 11;
- // The number of mantissa bits in the given float type. This includes the
- // implied high bit.
- static constexpr int kTargetMantissaBits = 53;
- // The largest supported IEEE exponent, in our integral mantissa
- // representation.
- //
- // If `m` is the largest possible int kTargetMantissaBits bits wide, then
- // m * 2**kMaxExponent is exactly equal to DBL_MAX.
- static constexpr int kMaxExponent = 971;
- // The smallest supported IEEE normal exponent, in our integral mantissa
- // representation.
- //
- // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
- // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
- static constexpr int kMinNormalExponent = -1074;
- // The IEEE exponent bias. It equals ((1 << (kTargetExponentBits - 1)) - 1).
- static constexpr int kExponentBias = 1023;
- // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment. It equals (63 - 1 -
- // kTargetMantissaBits).
- static constexpr int kEiselLemireShift = 9;
- // The Eisel-Lemire high64_mask. It equals ((1 << kEiselLemireShift) - 1).
- static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
- // The smallest negative integer N (smallest negative means furthest from
- // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
- // positive. Parsing a smaller (more negative) N will produce zero.
- //
- // Adjusting the decimal point and exponent, without adjusting the value,
- // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
- //
- // 9999999999999999999, with 19 nines but no decimal point, is the largest
- // "repeated nines" integer that fits in a uint64_t.
- static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
- // The smallest positive integer N such that parsing 1eN produces infinity.
- // Parsing a smaller N will produce something finite.
- static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
- static double MakeNan(y_absl::Nonnull<const char*> tagp) {
- #if Y_ABSL_HAVE_BUILTIN(__builtin_nan)
- // Use __builtin_nan() if available since it has a fix for
- // https://bugs.llvm.org/show_bug.cgi?id=37778
- // std::nan may use the glibc implementation.
- return __builtin_nan(tagp);
- #else
- // Support nan no matter which namespace it's in. Some platforms
- // incorrectly don't put it in namespace std.
- using namespace std; // NOLINT
- return nan(tagp);
- #endif
- }
- // Builds a nonzero floating point number out of the provided parts.
- //
- // This is intended to do the same operation as ldexp(mantissa, exponent),
- // but using purely integer math, to avoid -ffastmath and floating
- // point environment issues. Using type punning is also faster. We fall back
- // to ldexp on a per-platform basis for portability.
- //
- // `exponent` must be between kMinNormalExponent and kMaxExponent.
- //
- // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
- // a normal value is made, or it must be less narrow than that, in which case
- // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
- // made.
- static double Make(mantissa_t mantissa, int exponent, bool sign) {
- #ifndef Y_ABSL_BIT_PACK_FLOATS
- // Support ldexp no matter which namespace it's in. Some platforms
- // incorrectly don't put it in namespace std.
- using namespace std; // NOLINT
- return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
- #else
- constexpr uint64_t kMantissaMask =
- (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
- uint64_t dbl = static_cast<uint64_t>(sign) << 63;
- if (mantissa > kMantissaMask) {
- // Normal value.
- // Adjust by 1023 for the exponent representation bias, and an additional
- // 52 due to the implied decimal point in the IEEE mantissa
- // representation.
- dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
- << 52;
- mantissa &= kMantissaMask;
- } else {
- // subnormal value
- assert(exponent == kMinNormalExponent);
- }
- dbl += mantissa;
- return y_absl::bit_cast<double>(dbl);
- #endif // Y_ABSL_BIT_PACK_FLOATS
- }
- };
- // Specialization of floating point traits for the `float` type. See the
- // FloatTraits<double> specialization above for meaning of each of the following
- // members and methods.
- template <>
- struct FloatTraits<float> {
- using mantissa_t = uint32_t;
- static constexpr int kTargetBits = 32;
- static constexpr int kTargetExponentBits = 8;
- static constexpr int kTargetMantissaBits = 24;
- static constexpr int kMaxExponent = 104;
- static constexpr int kMinNormalExponent = -149;
- static constexpr int kExponentBias = 127;
- static constexpr int kEiselLemireShift = 38;
- static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
- static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
- static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
- static float MakeNan(y_absl::Nonnull<const char*> tagp) {
- #if Y_ABSL_HAVE_BUILTIN(__builtin_nanf)
- // Use __builtin_nanf() if available since it has a fix for
- // https://bugs.llvm.org/show_bug.cgi?id=37778
- // std::nanf may use the glibc implementation.
- return __builtin_nanf(tagp);
- #else
- // Support nanf no matter which namespace it's in. Some platforms
- // incorrectly don't put it in namespace std.
- using namespace std; // NOLINT
- return std::nanf(tagp);
- #endif
- }
- static float Make(mantissa_t mantissa, int exponent, bool sign) {
- #ifndef Y_ABSL_BIT_PACK_FLOATS
- // Support ldexpf no matter which namespace it's in. Some platforms
- // incorrectly don't put it in namespace std.
- using namespace std; // NOLINT
- return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
- #else
- constexpr uint32_t kMantissaMask =
- (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
- uint32_t flt = static_cast<uint32_t>(sign) << 31;
- if (mantissa > kMantissaMask) {
- // Normal value.
- // Adjust by 127 for the exponent representation bias, and an additional
- // 23 due to the implied decimal point in the IEEE mantissa
- // representation.
- flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
- << 23;
- mantissa &= kMantissaMask;
- } else {
- // subnormal value
- assert(exponent == kMinNormalExponent);
- }
- flt += mantissa;
- return y_absl::bit_cast<float>(flt);
- #endif // Y_ABSL_BIT_PACK_FLOATS
- }
- };
- // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
- // and a power of 2. The two helper functions Power10Mantissa(n) and
- // Power10Exponent(n) perform this task. Together, these represent a hand-
- // rolled floating point value which is equal to or just less than 10**n.
- //
- // The return values satisfy two range guarantees:
- //
- // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
- // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
- //
- // 2**63 <= Power10Mantissa(n) < 2**64.
- //
- // See the "Table of powers of 10" comment below for a "1e60" example.
- //
- // Lookups into the power-of-10 table must first check the Power10Overflow() and
- // Power10Underflow() functions, to avoid out-of-bounds table access.
- //
- // Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
- // indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
- extern const uint64_t kPower10MantissaHighTable[]; // High 64 of 128 bits.
- extern const uint64_t kPower10MantissaLowTable[]; // Low 64 of 128 bits.
- // The smallest (inclusive) allowed value for use with the Power10Mantissa()
- // and Power10Exponent() functions below. (If a smaller exponent is needed in
- // calculations, the end result is guaranteed to underflow.)
- constexpr int kPower10TableMinInclusive = -342;
- // The largest (exclusive) allowed value for use with the Power10Mantissa() and
- // Power10Exponent() functions below. (If a larger-or-equal exponent is needed
- // in calculations, the end result is guaranteed to overflow.)
- constexpr int kPower10TableMaxExclusive = 309;
- uint64_t Power10Mantissa(int n) {
- return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
- }
- int Power10Exponent(int n) {
- // The 217706 etc magic numbers encode the results as a formula instead of a
- // table. Their equivalence (over the kPower10TableMinInclusive ..
- // kPower10TableMaxExclusive range) is confirmed by
- // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
- return (217706 * n >> 16) - 63;
- }
- // Returns true if n is large enough that 10**n always results in an IEEE
- // overflow.
- bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
- // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
- // always results in an IEEE underflow.
- bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
- // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
- // to 10**n numerically. Put another way, this returns true if there is no
- // truncation error in Power10Mantissa(n).
- bool Power10Exact(int n) { return n >= 0 && n <= 27; }
- // Sentinel exponent values for representing numbers too large or too close to
- // zero to represent in a double.
- constexpr int kOverflow = 99999;
- constexpr int kUnderflow = -99999;
- // Struct representing the calculated conversion result of a positive (nonzero)
- // floating point number.
- //
- // The calculated number is mantissa * 2**exponent (mantissa is treated as an
- // integer.) `mantissa` is chosen to be the correct width for the IEEE float
- // representation being calculated. (`mantissa` will always have the same bit
- // width for normal values, and narrower bit widths for subnormals.)
- //
- // If the result of conversion was an underflow or overflow, exponent is set
- // to kUnderflow or kOverflow.
- struct CalculatedFloat {
- uint64_t mantissa = 0;
- int exponent = 0;
- };
- // Returns the bit width of the given uint128. (Equivalently, returns 128
- // minus the number of leading zero bits.)
- int BitWidth(uint128 value) {
- if (Uint128High64(value) == 0) {
- // This static_cast is only needed when using a std::bit_width()
- // implementation that does not have the fix for LWG 3656 applied.
- return static_cast<int>(bit_width(Uint128Low64(value)));
- }
- return 128 - countl_zero(Uint128High64(value));
- }
- // Calculates how far to the right a mantissa needs to be shifted to create a
- // properly adjusted mantissa for an IEEE floating point number.
- //
- // `mantissa_width` is the bit width of the mantissa to be shifted, and
- // `binary_exponent` is the exponent of the number before the shift.
- //
- // This accounts for subnormal values, and will return a larger-than-normal
- // shift if binary_exponent would otherwise be too low.
- template <typename FloatType>
- int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
- const int normal_shift =
- mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
- const int minimum_shift =
- FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
- return std::max(normal_shift, minimum_shift);
- }
- // Right shifts a uint128 so that it has the requested bit width. (The
- // resulting value will have 128 - bit_width leading zeroes.) The initial
- // `value` must be wider than the requested bit width.
- //
- // Returns the number of bits shifted.
- int TruncateToBitWidth(int bit_width, y_absl::Nonnull<uint128*> value) {
- const int current_bit_width = BitWidth(*value);
- const int shift = current_bit_width - bit_width;
- *value >>= shift;
- return shift;
- }
- // Checks if the given ParsedFloat represents one of the edge cases that are
- // not dependent on number base: zero, infinity, or NaN. If so, sets *value
- // the appropriate double, and returns true.
- template <typename FloatType>
- bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
- y_absl::Nonnull<FloatType*> value) {
- if (input.type == strings_internal::FloatType::kNan) {
- // A bug in both clang < 7 and gcc would cause the compiler to optimize
- // away the buffer we are building below. Declaring the buffer volatile
- // avoids the issue, and has no measurable performance impact in
- // microbenchmarks.
- //
- // https://bugs.llvm.org/show_bug.cgi?id=37778
- // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
- constexpr ptrdiff_t kNanBufferSize = 128;
- #if (defined(__GNUC__) && !defined(__clang__)) || \
- (defined(__clang__) && __clang_major__ < 7)
- volatile char n_char_sequence[kNanBufferSize];
- #else
- char n_char_sequence[kNanBufferSize];
- #endif
- if (input.subrange_begin == nullptr) {
- n_char_sequence[0] = '\0';
- } else {
- ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
- nan_size = std::min(nan_size, kNanBufferSize - 1);
- std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
- n_char_sequence[nan_size] = '\0';
- }
- char* nan_argument = const_cast<char*>(n_char_sequence);
- *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
- : FloatTraits<FloatType>::MakeNan(nan_argument);
- return true;
- }
- if (input.type == strings_internal::FloatType::kInfinity) {
- *value = negative ? -std::numeric_limits<FloatType>::infinity()
- : std::numeric_limits<FloatType>::infinity();
- return true;
- }
- if (input.mantissa == 0) {
- *value = negative ? -0.0 : 0.0;
- return true;
- }
- return false;
- }
- // Given a CalculatedFloat result of a from_chars conversion, generate the
- // correct output values.
- //
- // CalculatedFloat can represent an underflow or overflow, in which case the
- // error code in *result is set. Otherwise, the calculated floating point
- // number is stored in *value.
- template <typename FloatType>
- void EncodeResult(const CalculatedFloat& calculated, bool negative,
- y_absl::Nonnull<y_absl::from_chars_result*> result,
- y_absl::Nonnull<FloatType*> value) {
- if (calculated.exponent == kOverflow) {
- result->ec = std::errc::result_out_of_range;
- *value = negative ? -std::numeric_limits<FloatType>::max()
- : std::numeric_limits<FloatType>::max();
- return;
- } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
- result->ec = std::errc::result_out_of_range;
- *value = negative ? -0.0 : 0.0;
- return;
- }
- *value = FloatTraits<FloatType>::Make(
- static_cast<typename FloatTraits<FloatType>::mantissa_t>(
- calculated.mantissa),
- calculated.exponent, negative);
- }
- // Returns the given uint128 shifted to the right by `shift` bits, and rounds
- // the remaining bits using round_to_nearest logic. The value is returned as a
- // uint64_t, since this is the type used by this library for storing calculated
- // floating point mantissas.
- //
- // It is expected that the width of the input value shifted by `shift` will
- // be the correct bit-width for the target mantissa, which is strictly narrower
- // than a uint64_t.
- //
- // If `input_exact` is false, then a nonzero error epsilon is assumed. For
- // rounding purposes, the true value being rounded is strictly greater than the
- // input value. The error may represent a single lost carry bit.
- //
- // When input_exact, shifted bits of the form 1000000... represent a tie, which
- // is broken by rounding to even -- the rounding direction is chosen so the low
- // bit of the returned value is 0.
- //
- // When !input_exact, shifted bits of the form 10000000... represent a value
- // strictly greater than one half (due to the error epsilon), and so ties are
- // always broken by rounding up.
- //
- // When !input_exact, shifted bits of the form 01111111... are uncertain;
- // the true value may or may not be greater than 10000000..., due to the
- // possible lost carry bit. The correct rounding direction is unknown. In this
- // case, the result is rounded down, and `output_exact` is set to false.
- //
- // Zero and negative values of `shift` are accepted, in which case the word is
- // shifted left, as necessary.
- uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
- y_absl::Nonnull<bool*> output_exact) {
- if (shift <= 0) {
- *output_exact = input_exact;
- return static_cast<uint64_t>(value << -shift);
- }
- if (shift >= 128) {
- // Exponent is so small that we are shifting away all significant bits.
- // Answer will not be representable, even as a subnormal, so return a zero
- // mantissa (which represents underflow).
- *output_exact = true;
- return 0;
- }
- *output_exact = true;
- const uint128 shift_mask = (uint128(1) << shift) - 1;
- const uint128 halfway_point = uint128(1) << (shift - 1);
- const uint128 shifted_bits = value & shift_mask;
- value >>= shift;
- if (shifted_bits > halfway_point) {
- // Shifted bits greater than 10000... require rounding up.
- return static_cast<uint64_t>(value + 1);
- }
- if (shifted_bits == halfway_point) {
- // In exact mode, shifted bits of 10000... mean we're exactly halfway
- // between two numbers, and we must round to even. So only round up if
- // the low bit of `value` is set.
- //
- // In inexact mode, the nonzero error means the actual value is greater
- // than the halfway point and we must always round up.
- if ((value & 1) == 1 || !input_exact) {
- ++value;
- }
- return static_cast<uint64_t>(value);
- }
- if (!input_exact && shifted_bits == halfway_point - 1) {
- // Rounding direction is unclear, due to error.
- *output_exact = false;
- }
- // Otherwise, round down.
- return static_cast<uint64_t>(value);
- }
- // Checks if a floating point guess needs to be rounded up, using high precision
- // math.
- //
- // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
- // number represented by `parsed_decimal`.
- //
- // The exact number represented by `parsed_decimal` must lie between the two
- // numbers:
- // A = `guess_mantissa * 2**guess_exponent`
- // B = `(guess_mantissa + 1) * 2**guess_exponent`
- //
- // This function returns false if `A` is the better guess, and true if `B` is
- // the better guess, with rounding ties broken by rounding to even.
- bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
- const strings_internal::ParsedFloat& parsed_decimal) {
- // 768 is the number of digits needed in the worst case. We could determine a
- // better limit dynamically based on the value of parsed_decimal.exponent.
- // This would optimize pathological input cases only. (Sane inputs won't have
- // hundreds of digits of mantissa.)
- y_absl::strings_internal::BigUnsigned<84> exact_mantissa;
- int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
- // Adjust the `guess` arguments to be halfway between A and B.
- guess_mantissa = guess_mantissa * 2 + 1;
- guess_exponent -= 1;
- // In our comparison:
- // lhs = exact = exact_mantissa * 10**exact_exponent
- // = exact_mantissa * 5**exact_exponent * 2**exact_exponent
- // rhs = guess = guess_mantissa * 2**guess_exponent
- //
- // Because we are doing integer math, we can't directly deal with negative
- // exponents. We instead move these to the other side of the inequality.
- y_absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
- int comparison;
- if (exact_exponent >= 0) {
- lhs.MultiplyByFiveToTheNth(exact_exponent);
- y_absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
- // There are powers of 2 on both sides of the inequality; reduce this to
- // a single bit-shift.
- if (exact_exponent > guess_exponent) {
- lhs.ShiftLeft(exact_exponent - guess_exponent);
- } else {
- rhs.ShiftLeft(guess_exponent - exact_exponent);
- }
- comparison = Compare(lhs, rhs);
- } else {
- // Move the power of 5 to the other side of the equation, giving us:
- // lhs = exact_mantissa * 2**exact_exponent
- // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
- y_absl::strings_internal::BigUnsigned<84> rhs =
- y_absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
- rhs.MultiplyBy(guess_mantissa);
- if (exact_exponent > guess_exponent) {
- lhs.ShiftLeft(exact_exponent - guess_exponent);
- } else {
- rhs.ShiftLeft(guess_exponent - exact_exponent);
- }
- comparison = Compare(lhs, rhs);
- }
- if (comparison < 0) {
- return false;
- } else if (comparison > 0) {
- return true;
- } else {
- // When lhs == rhs, the decimal input is exactly between A and B.
- // Round towards even -- round up only if the low bit of the initial
- // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
- // the beginning of this function, so test the 2nd bit here.
- return (guess_mantissa & 2) == 2;
- }
- }
- // Constructs a CalculatedFloat from a given mantissa and exponent, but
- // with the following normalizations applied:
- //
- // If rounding has caused mantissa to increase just past the allowed bit
- // width, shift and adjust exponent.
- //
- // If exponent is too high, sets kOverflow.
- //
- // If mantissa is zero (representing a non-zero value not representable, even
- // as a subnormal), sets kUnderflow.
- template <typename FloatType>
- CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
- CalculatedFloat result;
- if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
- mantissa >>= 1;
- exponent += 1;
- }
- if (exponent > FloatTraits<FloatType>::kMaxExponent) {
- result.exponent = kOverflow;
- } else if (mantissa == 0) {
- result.exponent = kUnderflow;
- } else {
- result.exponent = exponent;
- result.mantissa = mantissa;
- }
- return result;
- }
- template <typename FloatType>
- CalculatedFloat CalculateFromParsedHexadecimal(
- const strings_internal::ParsedFloat& parsed_hex) {
- uint64_t mantissa = parsed_hex.mantissa;
- int exponent = parsed_hex.exponent;
- // This static_cast is only needed when using a std::bit_width()
- // implementation that does not have the fix for LWG 3656 applied.
- int mantissa_width = static_cast<int>(bit_width(mantissa));
- const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
- bool result_exact;
- exponent += shift;
- mantissa = ShiftRightAndRound(mantissa, shift,
- /* input exact= */ true, &result_exact);
- // ParseFloat handles rounding in the hexadecimal case, so we don't have to
- // check `result_exact` here.
- return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
- }
- template <typename FloatType>
- CalculatedFloat CalculateFromParsedDecimal(
- const strings_internal::ParsedFloat& parsed_decimal) {
- CalculatedFloat result;
- // Large or small enough decimal exponents will always result in overflow
- // or underflow.
- if (Power10Underflow(parsed_decimal.exponent)) {
- result.exponent = kUnderflow;
- return result;
- } else if (Power10Overflow(parsed_decimal.exponent)) {
- result.exponent = kOverflow;
- return result;
- }
- // Otherwise convert our power of 10 into a power of 2 times an integer
- // mantissa, and multiply this by our parsed decimal mantissa.
- uint128 wide_binary_mantissa = parsed_decimal.mantissa;
- wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
- int binary_exponent = Power10Exponent(parsed_decimal.exponent);
- // Discard bits that are inaccurate due to truncation error. The magic
- // `mantissa_width` constants below are justified in
- // https://abseil.io/about/design/charconv. They represent the number of bits
- // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
- // propagation.
- bool mantissa_exact;
- int mantissa_width;
- if (parsed_decimal.subrange_begin) {
- // Truncated mantissa
- mantissa_width = 58;
- mantissa_exact = false;
- binary_exponent +=
- TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
- } else if (!Power10Exact(parsed_decimal.exponent)) {
- // Exact mantissa, truncated power of ten
- mantissa_width = 63;
- mantissa_exact = false;
- binary_exponent +=
- TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
- } else {
- // Product is exact
- mantissa_width = BitWidth(wide_binary_mantissa);
- mantissa_exact = true;
- }
- // Shift into an FloatType-sized mantissa, and round to nearest.
- const int shift =
- NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
- bool result_exact;
- binary_exponent += shift;
- uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
- mantissa_exact, &result_exact);
- if (!result_exact) {
- // We could not determine the rounding direction using int128 math. Use
- // full resolution math instead.
- if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
- binary_mantissa += 1;
- }
- }
- return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
- binary_exponent);
- }
- // As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
- // primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
- // not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
- // the combined approach (falling back to an alternative implementation when
- // this function returns false) is both fast and correct.
- template <typename FloatType>
- bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
- y_absl::Nonnull<FloatType*> value,
- y_absl::Nonnull<std::errc*> ec) {
- uint64_t man = input.mantissa;
- int exp10 = input.exponent;
- if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
- *value = negative ? -0.0 : 0.0;
- *ec = std::errc::result_out_of_range;
- return true;
- } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
- // Return max (a finite value) consistent with from_chars and DR 3081. For
- // SimpleAtod and SimpleAtof, post-processing will return infinity.
- *value = negative ? -std::numeric_limits<FloatType>::max()
- : std::numeric_limits<FloatType>::max();
- *ec = std::errc::result_out_of_range;
- return true;
- }
- // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
- // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
- static_assert(
- FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
- kPower10TableMinInclusive,
- "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
- static_assert(
- FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
- kPower10TableMaxExclusive,
- "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
- // The terse (+) comments in this function body refer to sections of the
- // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
- //
- // That blog post discusses double precision (11 exponent bits with a -1023
- // bias, 52 mantissa bits), but the same approach applies to single precision
- // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
- // computation here happens with 64-bit values (e.g. man) or 128-bit values
- // (e.g. x) before finally converting to 64- or 32-bit floating point.
- //
- // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
- // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
- // (+) Normalization.
- int clz = countl_zero(man);
- man <<= static_cast<unsigned int>(clz);
- // The 217706 etc magic numbers are from the Power10Exponent function.
- uint64_t ret_exp2 =
- static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
- FloatTraits<FloatType>::kExponentBias - clz);
- // (+) Multiplication.
- uint128 x = static_cast<uint128>(man) *
- static_cast<uint128>(
- kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
- // (+) Wider Approximation.
- static constexpr uint64_t high64_mask =
- FloatTraits<FloatType>::kEiselLemireMask;
- if (((Uint128High64(x) & high64_mask) == high64_mask) &&
- (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
- uint128 y =
- static_cast<uint128>(man) *
- static_cast<uint128>(
- kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
- x += Uint128High64(y);
- // For example, parsing "4503599627370497.5" will take the if-true
- // branch here (for double precision), since:
- // - x = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
- // - y = 0x8000000000000BFF_7FFFFFFFFFFFF400
- // - man = 0xA000000000000F00
- // Likewise, when parsing "0.0625" for single precision:
- // - x = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
- // - y = 0x813FFFFFFFFFFFFF_8A00000000000000
- // - man = 0x9C40000000000000
- if (((Uint128High64(x) & high64_mask) == high64_mask) &&
- ((Uint128Low64(x) + 1) == 0) &&
- (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
- return false;
- }
- }
- // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
- uint64_t msb = Uint128High64(x) >> 63;
- uint64_t ret_man =
- Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
- ret_exp2 -= 1 ^ msb;
- // (+) Half-way Ambiguity.
- //
- // For example, parsing "1e+23" will take the if-true branch here (for double
- // precision), since:
- // - x = 0x54B40B1F852BDA00_0000000000000000
- // - ret_man = 0x002A5A058FC295ED
- // Likewise, when parsing "20040229.0" for single precision:
- // - x = 0x4C72894000000000_0000000000000000
- // - ret_man = 0x000000000131CA25
- if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
- ((ret_man & 3) == 1)) {
- return false;
- }
- // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
- ret_man += ret_man & 1; // Line From54a.
- ret_man >>= 1; // Line From54b.
- // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
- // bits after the right shift by 1 at line From54b), so adjust for that.
- //
- // For example, parsing "9223372036854775807" will take the if-true branch
- // here (for double precision), since:
- // - ret_man = 0x0020000000000000 = (1 << 53)
- // Likewise, when parsing "2147483647.0" for single precision:
- // - ret_man = 0x0000000001000000 = (1 << 24)
- if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
- ret_exp2 += 1;
- // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
- // incrementing ret_exp2 in the line immediately above. However, we only
- // get here when line From54a overflowed (after adding a 1), so ret_man
- // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
- // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
- // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
- //
- // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
- // rarely taken) and technically 'more correct', so that mutation tests
- // that would otherwise modify or omit that "ret_man >>= 1" don't complain
- // that such code mutations have no observable effect.
- }
- // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
- // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
- // above means that we're in Inf/NaN space.
- //
- // The if block is equivalent to (but has fewer branches than):
- // if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
- //
- // For example, parsing "4.9406564584124654e-324" will take the if-true
- // branch here, since ret_exp2 = -51.
- static constexpr uint64_t max_exp2 =
- (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
- if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
- return false;
- }
- #ifndef Y_ABSL_BIT_PACK_FLOATS
- if (FloatTraits<FloatType>::kTargetBits == 64) {
- *value = FloatTraits<FloatType>::Make(
- (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
- static_cast<int>(ret_exp2) - 1023 - 52, negative);
- return true;
- } else if (FloatTraits<FloatType>::kTargetBits == 32) {
- *value = FloatTraits<FloatType>::Make(
- (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
- static_cast<int>(ret_exp2) - 127 - 23, negative);
- return true;
- }
- #else
- if (FloatTraits<FloatType>::kTargetBits == 64) {
- uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
- if (negative) {
- ret_bits |= 0x8000000000000000u;
- }
- *value = y_absl::bit_cast<double>(ret_bits);
- return true;
- } else if (FloatTraits<FloatType>::kTargetBits == 32) {
- uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
- (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
- if (negative) {
- ret_bits |= 0x80000000u;
- }
- *value = y_absl::bit_cast<float>(ret_bits);
- return true;
- }
- #endif // Y_ABSL_BIT_PACK_FLOATS
- return false;
- }
- template <typename FloatType>
- from_chars_result FromCharsImpl(y_absl::Nonnull<const char*> first,
- y_absl::Nonnull<const char*> last,
- FloatType& value, chars_format fmt_flags) {
- from_chars_result result;
- result.ptr = first; // overwritten on successful parse
- result.ec = std::errc();
- bool negative = false;
- if (first != last && *first == '-') {
- ++first;
- negative = true;
- }
- // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
- // to parse a hexadecimal float.
- if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
- *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
- const char* hex_first = first + 2;
- strings_internal::ParsedFloat hex_parse =
- strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
- if (hex_parse.end == nullptr ||
- hex_parse.type != strings_internal::FloatType::kNumber) {
- // Either we failed to parse a hex float after the "0x", or we read
- // "0xinf" or "0xnan" which we don't want to match.
- //
- // However, a string that begins with "0x" also begins with "0", which
- // is normally a valid match for the number zero. So we want these
- // strings to match zero unless fmt_flags is `scientific`. (This flag
- // means an exponent is required, which the string "0" does not have.)
- if (fmt_flags == chars_format::scientific) {
- result.ec = std::errc::invalid_argument;
- } else {
- result.ptr = first + 1;
- value = negative ? -0.0 : 0.0;
- }
- return result;
- }
- // We matched a value.
- result.ptr = hex_parse.end;
- if (HandleEdgeCase(hex_parse, negative, &value)) {
- return result;
- }
- CalculatedFloat calculated =
- CalculateFromParsedHexadecimal<FloatType>(hex_parse);
- EncodeResult(calculated, negative, &result, &value);
- return result;
- }
- // Otherwise, we choose the number base based on the flags.
- if ((fmt_flags & chars_format::hex) == chars_format::hex) {
- strings_internal::ParsedFloat hex_parse =
- strings_internal::ParseFloat<16>(first, last, fmt_flags);
- if (hex_parse.end == nullptr) {
- result.ec = std::errc::invalid_argument;
- return result;
- }
- result.ptr = hex_parse.end;
- if (HandleEdgeCase(hex_parse, negative, &value)) {
- return result;
- }
- CalculatedFloat calculated =
- CalculateFromParsedHexadecimal<FloatType>(hex_parse);
- EncodeResult(calculated, negative, &result, &value);
- return result;
- } else {
- strings_internal::ParsedFloat decimal_parse =
- strings_internal::ParseFloat<10>(first, last, fmt_flags);
- if (decimal_parse.end == nullptr) {
- result.ec = std::errc::invalid_argument;
- return result;
- }
- result.ptr = decimal_parse.end;
- if (HandleEdgeCase(decimal_parse, negative, &value)) {
- return result;
- }
- // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
- // (not truncated), a precondition of the Eisel-Lemire algorithm.
- if ((decimal_parse.subrange_begin == nullptr) &&
- EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
- return result;
- }
- CalculatedFloat calculated =
- CalculateFromParsedDecimal<FloatType>(decimal_parse);
- EncodeResult(calculated, negative, &result, &value);
- return result;
- }
- }
- } // namespace
- from_chars_result from_chars(y_absl::Nonnull<const char*> first,
- y_absl::Nonnull<const char*> last, double& value,
- chars_format fmt) {
- return FromCharsImpl(first, last, value, fmt);
- }
- from_chars_result from_chars(y_absl::Nonnull<const char*> first,
- y_absl::Nonnull<const char*> last, float& value,
- chars_format fmt) {
- return FromCharsImpl(first, last, value, fmt);
- }
- namespace {
- // Table of powers of 10, from kPower10TableMinInclusive to
- // kPower10TableMaxExclusive.
- //
- // kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
- // mantissa. The high bit is always on.
- //
- // kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
- //
- // Power10Exponent(i) calculates the power-of-two exponent.
- //
- // For a number i, this gives the unique mantissaHigh and exponent such that
- // (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
- //
- // For example, Python can confirm that the exact hexadecimal value of 1e60 is:
- // >>> a = 1000000000000000000000000000000000000000000000000000000000000
- // >>> hex(a)
- // '0x9f4f2726179a224501d762422c946590d91000000000000000'
- // Adding underscores at every 8th hex digit shows 50 hex digits:
- // '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
- // In this case, the high bit of the first hex digit, 9, is coincidentally set,
- // so we do not have to do further shifting to deduce the 128-bit mantissa:
- // - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
- // - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
- // where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
- // digits are truncated.
- //
- // 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
- // bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
- // >>> b = 0x9f4f2726179a2245
- // >>> ((b+0)<<136) <= a
- // True
- // >>> ((b+1)<<136) <= a
- // False
- //
- // The tables were generated by
- // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
- // after re-formatting its output into two arrays of N uint64_t values (instead
- // of an N element array of uint64_t pairs).
- const uint64_t kPower10MantissaHighTable[] = {
- 0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
- 0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
- 0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
- 0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
- 0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
- 0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
- 0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
- 0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
- 0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
- 0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
- 0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
- 0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
- 0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
- 0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
- 0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
- 0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
- 0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
- 0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
- 0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
- 0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
- 0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
- 0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
- 0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
- 0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
- 0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
- 0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
- 0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
- 0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
- 0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
- 0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
- 0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
- 0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
- 0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
- 0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
- 0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
- 0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
- 0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
- 0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
- 0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
- 0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
- 0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
- 0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
- 0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
- 0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
- 0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
- 0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
- 0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
- 0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
- 0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
- 0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
- 0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
- 0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
- 0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
- 0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
- 0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
- 0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
- 0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
- 0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
- 0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
- 0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
- 0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
- 0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
- 0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
- 0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
- 0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
- 0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
- 0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
- 0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
- 0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
- 0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
- 0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
- 0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
- 0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
- 0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
- 0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
- 0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
- 0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
- 0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
- 0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
- 0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
- 0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
- 0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
- 0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
- 0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
- 0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
- 0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
- 0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
- 0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
- 0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
- 0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
- 0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
- 0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
- 0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
- 0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
- 0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
- 0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
- 0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
- 0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
- 0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
- 0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
- 0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
- 0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
- 0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
- 0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
- 0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
- 0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
- 0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
- 0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
- 0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
- 0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
- 0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
- 0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
- 0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
- 0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
- 0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
- 0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
- 0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
- 0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
- 0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
- 0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
- 0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
- 0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
- 0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
- 0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
- 0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
- 0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
- 0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
- 0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
- 0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
- 0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
- 0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
- 0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
- 0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
- 0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
- 0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
- 0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
- 0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
- 0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
- 0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
- 0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
- 0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
- 0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
- 0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
- 0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
- 0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
- 0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
- 0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
- 0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
- 0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
- 0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
- 0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
- 0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
- 0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
- 0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
- 0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
- 0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
- 0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
- 0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
- 0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
- 0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
- 0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
- 0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
- 0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
- 0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
- 0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
- 0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
- 0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
- 0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
- 0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
- 0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
- 0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
- 0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
- 0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
- 0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
- 0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
- 0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
- 0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
- 0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
- 0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
- 0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
- 0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
- 0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
- 0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
- 0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
- 0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
- 0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
- 0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
- 0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
- 0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
- 0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
- 0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
- 0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
- 0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
- 0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
- 0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
- 0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
- 0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
- 0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
- 0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
- 0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
- 0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
- 0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
- 0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
- 0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
- 0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
- 0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
- 0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
- 0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
- 0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
- 0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
- 0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
- 0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
- 0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
- 0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
- 0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
- 0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
- 0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
- };
- const uint64_t kPower10MantissaLowTable[] = {
- 0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
- 0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
- 0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
- 0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
- 0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
- 0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
- 0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
- 0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
- 0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
- 0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
- 0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
- 0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
- 0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
- 0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
- 0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
- 0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
- 0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
- 0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
- 0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
- 0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
- 0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
- 0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
- 0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
- 0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
- 0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
- 0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
- 0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
- 0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
- 0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
- 0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
- 0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
- 0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
- 0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
- 0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
- 0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
- 0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
- 0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
- 0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
- 0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
- 0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
- 0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
- 0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
- 0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
- 0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
- 0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
- 0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
- 0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
- 0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
- 0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
- 0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
- 0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
- 0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
- 0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
- 0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
- 0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
- 0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
- 0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
- 0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
- 0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
- 0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
- 0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
- 0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
- 0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
- 0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
- 0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
- 0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
- 0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
- 0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
- 0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
- 0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
- 0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
- 0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
- 0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
- 0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
- 0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
- 0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
- 0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
- 0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
- 0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
- 0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
- 0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
- 0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
- 0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
- 0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
- 0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
- 0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
- 0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
- 0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
- 0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
- 0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
- 0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
- 0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
- 0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
- 0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
- 0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
- 0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
- 0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
- 0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
- 0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
- 0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
- 0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
- 0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
- 0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
- 0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
- 0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
- 0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
- 0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
- 0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
- 0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
- 0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
- 0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
- 0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
- 0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
- 0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
- 0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
- 0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
- 0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
- 0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
- 0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
- 0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
- 0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
- 0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
- 0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
- 0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
- 0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
- 0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
- 0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
- 0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
- 0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
- 0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
- 0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
- 0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
- 0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
- 0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
- 0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
- 0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
- 0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
- 0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
- 0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
- 0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
- 0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
- 0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
- 0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
- 0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
- 0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
- 0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
- 0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
- 0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
- 0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
- 0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
- 0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
- 0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
- 0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
- 0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
- 0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
- 0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
- 0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
- 0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
- 0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
- 0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
- 0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
- 0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
- 0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
- 0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
- 0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
- 0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
- 0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
- 0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
- 0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
- 0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
- 0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
- 0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
- 0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
- 0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
- 0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
- 0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
- 0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
- 0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
- 0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
- 0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
- 0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
- 0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
- 0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
- 0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
- 0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
- 0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
- 0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
- 0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
- 0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
- 0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
- 0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
- 0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
- 0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
- 0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
- 0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
- 0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
- 0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
- 0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
- 0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
- 0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
- 0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
- 0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
- 0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
- 0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
- 0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
- 0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
- 0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
- 0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
- };
- } // namespace
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
|