123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797 |
- //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Represent a range of possible values that may occur when the program is run
- // for an integral value. This keeps track of a lower and upper bound for the
- // constant, which MAY wrap around the end of the numeric range. To do this, it
- // keeps track of a [lower, upper) bound, which specifies an interval just like
- // STL iterators. When used with boolean values, the following are important
- // ranges (other integral ranges use min/max values for special range values):
- //
- // [F, F) = {} = Empty set
- // [T, F) = {T}
- // [F, T) = {F}
- // [T, T) = {F, T} = Full set
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- using namespace llvm;
- ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
- : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
- Upper(Lower) {}
- ConstantRange::ConstantRange(APInt V)
- : Lower(std::move(V)), Upper(Lower + 1) {}
- ConstantRange::ConstantRange(APInt L, APInt U)
- : Lower(std::move(L)), Upper(std::move(U)) {
- assert(Lower.getBitWidth() == Upper.getBitWidth() &&
- "ConstantRange with unequal bit widths");
- assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
- "Lower == Upper, but they aren't min or max value!");
- }
- ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
- bool IsSigned) {
- assert(!Known.hasConflict() && "Expected valid KnownBits");
- if (Known.isUnknown())
- return getFull(Known.getBitWidth());
- // For unsigned ranges, or signed ranges with known sign bit, create a simple
- // range between the smallest and largest possible value.
- if (!IsSigned || Known.isNegative() || Known.isNonNegative())
- return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
- // If we don't know the sign bit, pick the lower bound as a negative number
- // and the upper bound as a non-negative one.
- APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
- Lower.setSignBit();
- Upper.clearSignBit();
- return ConstantRange(Lower, Upper + 1);
- }
- ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
- const ConstantRange &CR) {
- if (CR.isEmptySet())
- return CR;
- uint32_t W = CR.getBitWidth();
- switch (Pred) {
- default:
- llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
- case CmpInst::ICMP_EQ:
- return CR;
- case CmpInst::ICMP_NE:
- if (CR.isSingleElement())
- return ConstantRange(CR.getUpper(), CR.getLower());
- return getFull(W);
- case CmpInst::ICMP_ULT: {
- APInt UMax(CR.getUnsignedMax());
- if (UMax.isMinValue())
- return getEmpty(W);
- return ConstantRange(APInt::getMinValue(W), std::move(UMax));
- }
- case CmpInst::ICMP_SLT: {
- APInt SMax(CR.getSignedMax());
- if (SMax.isMinSignedValue())
- return getEmpty(W);
- return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
- }
- case CmpInst::ICMP_ULE:
- return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
- case CmpInst::ICMP_SLE:
- return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
- case CmpInst::ICMP_UGT: {
- APInt UMin(CR.getUnsignedMin());
- if (UMin.isMaxValue())
- return getEmpty(W);
- return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
- }
- case CmpInst::ICMP_SGT: {
- APInt SMin(CR.getSignedMin());
- if (SMin.isMaxSignedValue())
- return getEmpty(W);
- return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
- }
- case CmpInst::ICMP_UGE:
- return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
- case CmpInst::ICMP_SGE:
- return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
- }
- }
- ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
- const ConstantRange &CR) {
- // Follows from De-Morgan's laws:
- //
- // ~(~A union ~B) == A intersect B.
- //
- return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
- .inverse();
- }
- ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
- const APInt &C) {
- // Computes the exact range that is equal to both the constant ranges returned
- // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
- // when RHS is a singleton such as an APInt and so the assert is valid.
- // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
- // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
- //
- assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
- return makeAllowedICmpRegion(Pred, C);
- }
- bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
- const ConstantRange &CR1, const ConstantRange &CR2) {
- if (CR1.isEmptySet() || CR2.isEmptySet())
- return true;
- return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
- (CR1.isAllNegative() && CR2.isAllNegative());
- }
- bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
- const ConstantRange &CR1, const ConstantRange &CR2) {
- if (CR1.isEmptySet() || CR2.isEmptySet())
- return true;
- return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
- (CR1.isAllNegative() && CR2.isAllNonNegative());
- }
- CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
- CmpInst::Predicate Pred, const ConstantRange &CR1,
- const ConstantRange &CR2) {
- assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
- "Only for relational integer predicates!");
- CmpInst::Predicate FlippedSignednessPred =
- CmpInst::getFlippedSignednessPredicate(Pred);
- if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
- return FlippedSignednessPred;
- if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
- return CmpInst::getInversePredicate(FlippedSignednessPred);
- return CmpInst::Predicate::BAD_ICMP_PREDICATE;
- }
- void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
- APInt &RHS, APInt &Offset) const {
- Offset = APInt(getBitWidth(), 0);
- if (isFullSet() || isEmptySet()) {
- Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
- RHS = APInt(getBitWidth(), 0);
- } else if (auto *OnlyElt = getSingleElement()) {
- Pred = CmpInst::ICMP_EQ;
- RHS = *OnlyElt;
- } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
- Pred = CmpInst::ICMP_NE;
- RHS = *OnlyMissingElt;
- } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
- Pred =
- getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
- RHS = getUpper();
- } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
- Pred =
- getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
- RHS = getLower();
- } else {
- Pred = CmpInst::ICMP_ULT;
- RHS = getUpper() - getLower();
- Offset = -getLower();
- }
- assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
- "Bad result!");
- }
- bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
- APInt &RHS) const {
- APInt Offset;
- getEquivalentICmp(Pred, RHS, Offset);
- return Offset.isZero();
- }
- bool ConstantRange::icmp(CmpInst::Predicate Pred,
- const ConstantRange &Other) const {
- return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
- }
- /// Exact mul nuw region for single element RHS.
- static ConstantRange makeExactMulNUWRegion(const APInt &V) {
- unsigned BitWidth = V.getBitWidth();
- if (V == 0)
- return ConstantRange::getFull(V.getBitWidth());
- return ConstantRange::getNonEmpty(
- APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
- APInt::Rounding::UP),
- APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
- APInt::Rounding::DOWN) + 1);
- }
- /// Exact mul nsw region for single element RHS.
- static ConstantRange makeExactMulNSWRegion(const APInt &V) {
- // Handle special case for 0, -1 and 1. See the last for reason why we
- // specialize -1 and 1.
- unsigned BitWidth = V.getBitWidth();
- if (V == 0 || V.isOne())
- return ConstantRange::getFull(BitWidth);
- APInt MinValue = APInt::getSignedMinValue(BitWidth);
- APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
- // e.g. Returning [-127, 127], represented as [-127, -128).
- if (V.isAllOnes())
- return ConstantRange(-MaxValue, MinValue);
- APInt Lower, Upper;
- if (V.isNegative()) {
- Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
- } else {
- Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
- Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
- }
- // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
- // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
- // and 1 are already handled as special cases.
- return ConstantRange(Lower, Upper + 1);
- }
- ConstantRange
- ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
- const ConstantRange &Other,
- unsigned NoWrapKind) {
- using OBO = OverflowingBinaryOperator;
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
- assert((NoWrapKind == OBO::NoSignedWrap ||
- NoWrapKind == OBO::NoUnsignedWrap) &&
- "NoWrapKind invalid!");
- bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
- unsigned BitWidth = Other.getBitWidth();
- switch (BinOp) {
- default:
- llvm_unreachable("Unsupported binary op");
- case Instruction::Add: {
- if (Unsigned)
- return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
- APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
- APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
- return getNonEmpty(
- SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
- SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
- }
- case Instruction::Sub: {
- if (Unsigned)
- return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
- APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
- APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
- return getNonEmpty(
- SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
- SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
- }
- case Instruction::Mul:
- if (Unsigned)
- return makeExactMulNUWRegion(Other.getUnsignedMax());
- return makeExactMulNSWRegion(Other.getSignedMin())
- .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
- case Instruction::Shl: {
- // For given range of shift amounts, if we ignore all illegal shift amounts
- // (that always produce poison), what shift amount range is left?
- ConstantRange ShAmt = Other.intersectWith(
- ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
- if (ShAmt.isEmptySet()) {
- // If the entire range of shift amounts is already poison-producing,
- // then we can freely add more poison-producing flags ontop of that.
- return getFull(BitWidth);
- }
- // There are some legal shift amounts, we can compute conservatively-correct
- // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
- // to be at most bitwidth-1, which results in most conservative range.
- APInt ShAmtUMax = ShAmt.getUnsignedMax();
- if (Unsigned)
- return getNonEmpty(APInt::getZero(BitWidth),
- APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
- return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
- APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
- }
- }
- }
- ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
- const APInt &Other,
- unsigned NoWrapKind) {
- // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
- // "for all" and "for any" coincide in this case.
- return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
- }
- bool ConstantRange::isFullSet() const {
- return Lower == Upper && Lower.isMaxValue();
- }
- bool ConstantRange::isEmptySet() const {
- return Lower == Upper && Lower.isMinValue();
- }
- bool ConstantRange::isWrappedSet() const {
- return Lower.ugt(Upper) && !Upper.isZero();
- }
- bool ConstantRange::isUpperWrapped() const {
- return Lower.ugt(Upper);
- }
- bool ConstantRange::isSignWrappedSet() const {
- return Lower.sgt(Upper) && !Upper.isMinSignedValue();
- }
- bool ConstantRange::isUpperSignWrapped() const {
- return Lower.sgt(Upper);
- }
- bool
- ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
- assert(getBitWidth() == Other.getBitWidth());
- if (isFullSet())
- return false;
- if (Other.isFullSet())
- return true;
- return (Upper - Lower).ult(Other.Upper - Other.Lower);
- }
- bool
- ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
- // If this a full set, we need special handling to avoid needing an extra bit
- // to represent the size.
- if (isFullSet())
- return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
- return (Upper - Lower).ugt(MaxSize);
- }
- bool ConstantRange::isAllNegative() const {
- // Empty set is all negative, full set is not.
- if (isEmptySet())
- return true;
- if (isFullSet())
- return false;
- return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
- }
- bool ConstantRange::isAllNonNegative() const {
- // Empty and full set are automatically treated correctly.
- return !isSignWrappedSet() && Lower.isNonNegative();
- }
- APInt ConstantRange::getUnsignedMax() const {
- if (isFullSet() || isUpperWrapped())
- return APInt::getMaxValue(getBitWidth());
- return getUpper() - 1;
- }
- APInt ConstantRange::getUnsignedMin() const {
- if (isFullSet() || isWrappedSet())
- return APInt::getMinValue(getBitWidth());
- return getLower();
- }
- APInt ConstantRange::getSignedMax() const {
- if (isFullSet() || isUpperSignWrapped())
- return APInt::getSignedMaxValue(getBitWidth());
- return getUpper() - 1;
- }
- APInt ConstantRange::getSignedMin() const {
- if (isFullSet() || isSignWrappedSet())
- return APInt::getSignedMinValue(getBitWidth());
- return getLower();
- }
- bool ConstantRange::contains(const APInt &V) const {
- if (Lower == Upper)
- return isFullSet();
- if (!isUpperWrapped())
- return Lower.ule(V) && V.ult(Upper);
- return Lower.ule(V) || V.ult(Upper);
- }
- bool ConstantRange::contains(const ConstantRange &Other) const {
- if (isFullSet() || Other.isEmptySet()) return true;
- if (isEmptySet() || Other.isFullSet()) return false;
- if (!isUpperWrapped()) {
- if (Other.isUpperWrapped())
- return false;
- return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
- }
- if (!Other.isUpperWrapped())
- return Other.getUpper().ule(Upper) ||
- Lower.ule(Other.getLower());
- return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
- }
- unsigned ConstantRange::getActiveBits() const {
- if (isEmptySet())
- return 0;
- return getUnsignedMax().getActiveBits();
- }
- unsigned ConstantRange::getMinSignedBits() const {
- if (isEmptySet())
- return 0;
- return std::max(getSignedMin().getMinSignedBits(),
- getSignedMax().getMinSignedBits());
- }
- ConstantRange ConstantRange::subtract(const APInt &Val) const {
- assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
- // If the set is empty or full, don't modify the endpoints.
- if (Lower == Upper)
- return *this;
- return ConstantRange(Lower - Val, Upper - Val);
- }
- ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
- return intersectWith(CR.inverse());
- }
- static ConstantRange getPreferredRange(
- const ConstantRange &CR1, const ConstantRange &CR2,
- ConstantRange::PreferredRangeType Type) {
- if (Type == ConstantRange::Unsigned) {
- if (!CR1.isWrappedSet() && CR2.isWrappedSet())
- return CR1;
- if (CR1.isWrappedSet() && !CR2.isWrappedSet())
- return CR2;
- } else if (Type == ConstantRange::Signed) {
- if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
- return CR1;
- if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
- return CR2;
- }
- if (CR1.isSizeStrictlySmallerThan(CR2))
- return CR1;
- return CR2;
- }
- ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
- PreferredRangeType Type) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
- // Handle common cases.
- if ( isEmptySet() || CR.isFullSet()) return *this;
- if (CR.isEmptySet() || isFullSet()) return CR;
- if (!isUpperWrapped() && CR.isUpperWrapped())
- return CR.intersectWith(*this, Type);
- if (!isUpperWrapped() && !CR.isUpperWrapped()) {
- if (Lower.ult(CR.Lower)) {
- // L---U : this
- // L---U : CR
- if (Upper.ule(CR.Lower))
- return getEmpty();
- // L---U : this
- // L---U : CR
- if (Upper.ult(CR.Upper))
- return ConstantRange(CR.Lower, Upper);
- // L-------U : this
- // L---U : CR
- return CR;
- }
- // L---U : this
- // L-------U : CR
- if (Upper.ult(CR.Upper))
- return *this;
- // L-----U : this
- // L-----U : CR
- if (Lower.ult(CR.Upper))
- return ConstantRange(Lower, CR.Upper);
- // L---U : this
- // L---U : CR
- return getEmpty();
- }
- if (isUpperWrapped() && !CR.isUpperWrapped()) {
- if (CR.Lower.ult(Upper)) {
- // ------U L--- : this
- // L--U : CR
- if (CR.Upper.ult(Upper))
- return CR;
- // ------U L--- : this
- // L------U : CR
- if (CR.Upper.ule(Lower))
- return ConstantRange(CR.Lower, Upper);
- // ------U L--- : this
- // L----------U : CR
- return getPreferredRange(*this, CR, Type);
- }
- if (CR.Lower.ult(Lower)) {
- // --U L---- : this
- // L--U : CR
- if (CR.Upper.ule(Lower))
- return getEmpty();
- // --U L---- : this
- // L------U : CR
- return ConstantRange(Lower, CR.Upper);
- }
- // --U L------ : this
- // L--U : CR
- return CR;
- }
- if (CR.Upper.ult(Upper)) {
- // ------U L-- : this
- // --U L------ : CR
- if (CR.Lower.ult(Upper))
- return getPreferredRange(*this, CR, Type);
- // ----U L-- : this
- // --U L---- : CR
- if (CR.Lower.ult(Lower))
- return ConstantRange(Lower, CR.Upper);
- // ----U L---- : this
- // --U L-- : CR
- return CR;
- }
- if (CR.Upper.ule(Lower)) {
- // --U L-- : this
- // ----U L---- : CR
- if (CR.Lower.ult(Lower))
- return *this;
- // --U L---- : this
- // ----U L-- : CR
- return ConstantRange(CR.Lower, Upper);
- }
- // --U L------ : this
- // ------U L-- : CR
- return getPreferredRange(*this, CR, Type);
- }
- ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
- PreferredRangeType Type) const {
- assert(getBitWidth() == CR.getBitWidth() &&
- "ConstantRange types don't agree!");
- if ( isFullSet() || CR.isEmptySet()) return *this;
- if (CR.isFullSet() || isEmptySet()) return CR;
- if (!isUpperWrapped() && CR.isUpperWrapped())
- return CR.unionWith(*this, Type);
- if (!isUpperWrapped() && !CR.isUpperWrapped()) {
- // L---U and L---U : this
- // L---U L---U : CR
- // result in one of
- // L---------U
- // -----U L-----
- if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
- return getPreferredRange(
- ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
- APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
- APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
- if (L.isZero() && U.isZero())
- return getFull();
- return ConstantRange(std::move(L), std::move(U));
- }
- if (!CR.isUpperWrapped()) {
- // ------U L----- and ------U L----- : this
- // L--U L--U : CR
- if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
- return *this;
- // ------U L----- : this
- // L---------U : CR
- if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
- return getFull();
- // ----U L---- : this
- // L---U : CR
- // results in one of
- // ----------U L----
- // ----U L----------
- if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
- return getPreferredRange(
- ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
- // ----U L----- : this
- // L----U : CR
- if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
- return ConstantRange(CR.Lower, Upper);
- // ------U L---- : this
- // L-----U : CR
- assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
- "ConstantRange::unionWith missed a case with one range wrapped");
- return ConstantRange(Lower, CR.Upper);
- }
- // ------U L---- and ------U L---- : this
- // -U L----------- and ------------U L : CR
- if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
- return getFull();
- APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
- APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
- return ConstantRange(std::move(L), std::move(U));
- }
- Optional<ConstantRange>
- ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
- // TODO: This can be implemented more efficiently.
- ConstantRange Result = intersectWith(CR);
- if (Result == inverse().unionWith(CR.inverse()).inverse())
- return Result;
- return None;
- }
- Optional<ConstantRange>
- ConstantRange::exactUnionWith(const ConstantRange &CR) const {
- // TODO: This can be implemented more efficiently.
- ConstantRange Result = unionWith(CR);
- if (Result == inverse().intersectWith(CR.inverse()).inverse())
- return Result;
- return None;
- }
- ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
- uint32_t ResultBitWidth) const {
- switch (CastOp) {
- default:
- llvm_unreachable("unsupported cast type");
- case Instruction::Trunc:
- return truncate(ResultBitWidth);
- case Instruction::SExt:
- return signExtend(ResultBitWidth);
- case Instruction::ZExt:
- return zeroExtend(ResultBitWidth);
- case Instruction::BitCast:
- return *this;
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- if (getBitWidth() == ResultBitWidth)
- return *this;
- else
- return getFull(ResultBitWidth);
- case Instruction::UIToFP: {
- // TODO: use input range if available
- auto BW = getBitWidth();
- APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
- APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
- return ConstantRange(std::move(Min), std::move(Max));
- }
- case Instruction::SIToFP: {
- // TODO: use input range if available
- auto BW = getBitWidth();
- APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
- APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
- return ConstantRange(std::move(SMin), std::move(SMax));
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- case Instruction::AddrSpaceCast:
- // Conservatively return getFull set.
- return getFull(ResultBitWidth);
- };
- }
- ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
- if (isEmptySet()) return getEmpty(DstTySize);
- unsigned SrcTySize = getBitWidth();
- assert(SrcTySize < DstTySize && "Not a value extension");
- if (isFullSet() || isUpperWrapped()) {
- // Change into [0, 1 << src bit width)
- APInt LowerExt(DstTySize, 0);
- if (!Upper) // special case: [X, 0) -- not really wrapping around
- LowerExt = Lower.zext(DstTySize);
- return ConstantRange(std::move(LowerExt),
- APInt::getOneBitSet(DstTySize, SrcTySize));
- }
- return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
- }
- ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
- if (isEmptySet()) return getEmpty(DstTySize);
- unsigned SrcTySize = getBitWidth();
- assert(SrcTySize < DstTySize && "Not a value extension");
- // special case: [X, INT_MIN) -- not really wrapping around
- if (Upper.isMinSignedValue())
- return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
- if (isFullSet() || isSignWrappedSet()) {
- return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
- APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
- }
- return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
- }
- ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
- assert(getBitWidth() > DstTySize && "Not a value truncation");
- if (isEmptySet())
- return getEmpty(DstTySize);
- if (isFullSet())
- return getFull(DstTySize);
- APInt LowerDiv(Lower), UpperDiv(Upper);
- ConstantRange Union(DstTySize, /*isFullSet=*/false);
- // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
- // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
- // then we do the union with [MaxValue, Upper)
- if (isUpperWrapped()) {
- // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
- // truncated range.
- if (Upper.getActiveBits() > DstTySize ||
- Upper.countTrailingOnes() == DstTySize)
- return getFull(DstTySize);
- Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
- UpperDiv.setAllBits();
- // Union covers the MaxValue case, so return if the remaining range is just
- // MaxValue(DstTy).
- if (LowerDiv == UpperDiv)
- return Union;
- }
- // Chop off the most significant bits that are past the destination bitwidth.
- if (LowerDiv.getActiveBits() > DstTySize) {
- // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
- APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
- LowerDiv -= Adjust;
- UpperDiv -= Adjust;
- }
- unsigned UpperDivWidth = UpperDiv.getActiveBits();
- if (UpperDivWidth <= DstTySize)
- return ConstantRange(LowerDiv.trunc(DstTySize),
- UpperDiv.trunc(DstTySize)).unionWith(Union);
- // The truncated value wraps around. Check if we can do better than fullset.
- if (UpperDivWidth == DstTySize + 1) {
- // Clear the MSB so that UpperDiv wraps around.
- UpperDiv.clearBit(DstTySize);
- if (UpperDiv.ult(LowerDiv))
- return ConstantRange(LowerDiv.trunc(DstTySize),
- UpperDiv.trunc(DstTySize)).unionWith(Union);
- }
- return getFull(DstTySize);
- }
- ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
- unsigned SrcTySize = getBitWidth();
- if (SrcTySize > DstTySize)
- return truncate(DstTySize);
- if (SrcTySize < DstTySize)
- return zeroExtend(DstTySize);
- return *this;
- }
- ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
- unsigned SrcTySize = getBitWidth();
- if (SrcTySize > DstTySize)
- return truncate(DstTySize);
- if (SrcTySize < DstTySize)
- return signExtend(DstTySize);
- return *this;
- }
- ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
- const ConstantRange &Other) const {
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
- switch (BinOp) {
- case Instruction::Add:
- return add(Other);
- case Instruction::Sub:
- return sub(Other);
- case Instruction::Mul:
- return multiply(Other);
- case Instruction::UDiv:
- return udiv(Other);
- case Instruction::SDiv:
- return sdiv(Other);
- case Instruction::URem:
- return urem(Other);
- case Instruction::SRem:
- return srem(Other);
- case Instruction::Shl:
- return shl(Other);
- case Instruction::LShr:
- return lshr(Other);
- case Instruction::AShr:
- return ashr(Other);
- case Instruction::And:
- return binaryAnd(Other);
- case Instruction::Or:
- return binaryOr(Other);
- case Instruction::Xor:
- return binaryXor(Other);
- // Note: floating point operations applied to abstract ranges are just
- // ideal integer operations with a lossy representation
- case Instruction::FAdd:
- return add(Other);
- case Instruction::FSub:
- return sub(Other);
- case Instruction::FMul:
- return multiply(Other);
- default:
- // Conservatively return getFull set.
- return getFull();
- }
- }
- ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
- const ConstantRange &Other,
- unsigned NoWrapKind) const {
- assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
- switch (BinOp) {
- case Instruction::Add:
- return addWithNoWrap(Other, NoWrapKind);
- case Instruction::Sub:
- return subWithNoWrap(Other, NoWrapKind);
- default:
- // Don't know about this Overflowing Binary Operation.
- // Conservatively fallback to plain binop handling.
- return binaryOp(BinOp, Other);
- }
- }
- bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
- switch (IntrinsicID) {
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat:
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::umin:
- case Intrinsic::umax:
- case Intrinsic::smin:
- case Intrinsic::smax:
- case Intrinsic::abs:
- return true;
- default:
- return false;
- }
- }
- ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
- ArrayRef<ConstantRange> Ops) {
- switch (IntrinsicID) {
- case Intrinsic::uadd_sat:
- return Ops[0].uadd_sat(Ops[1]);
- case Intrinsic::usub_sat:
- return Ops[0].usub_sat(Ops[1]);
- case Intrinsic::sadd_sat:
- return Ops[0].sadd_sat(Ops[1]);
- case Intrinsic::ssub_sat:
- return Ops[0].ssub_sat(Ops[1]);
- case Intrinsic::umin:
- return Ops[0].umin(Ops[1]);
- case Intrinsic::umax:
- return Ops[0].umax(Ops[1]);
- case Intrinsic::smin:
- return Ops[0].smin(Ops[1]);
- case Intrinsic::smax:
- return Ops[0].smax(Ops[1]);
- case Intrinsic::abs: {
- const APInt *IntMinIsPoison = Ops[1].getSingleElement();
- assert(IntMinIsPoison && "Must be known (immarg)");
- assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
- return Ops[0].abs(IntMinIsPoison->getBoolValue());
- }
- default:
- assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
- llvm_unreachable("Unsupported intrinsic");
- }
- }
- ConstantRange
- ConstantRange::add(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() || Other.isFullSet())
- return getFull();
- APInt NewLower = getLower() + Other.getLower();
- APInt NewUpper = getUpper() + Other.getUpper() - 1;
- if (NewLower == NewUpper)
- return getFull();
- ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
- if (X.isSizeStrictlySmallerThan(*this) ||
- X.isSizeStrictlySmallerThan(Other))
- // We've wrapped, therefore, full set.
- return getFull();
- return X;
- }
- ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
- unsigned NoWrapKind,
- PreferredRangeType RangeType) const {
- // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
- // (X is from this, and Y is from Other)
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() && Other.isFullSet())
- return getFull();
- using OBO = OverflowingBinaryOperator;
- ConstantRange Result = add(Other);
- // If an overflow happens for every value pair in these two constant ranges,
- // we must return Empty set. In this case, we get that for free, because we
- // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
- // in an empty set.
- if (NoWrapKind & OBO::NoSignedWrap)
- Result = Result.intersectWith(sadd_sat(Other), RangeType);
- if (NoWrapKind & OBO::NoUnsignedWrap)
- Result = Result.intersectWith(uadd_sat(Other), RangeType);
- return Result;
- }
- ConstantRange
- ConstantRange::sub(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() || Other.isFullSet())
- return getFull();
- APInt NewLower = getLower() - Other.getUpper() + 1;
- APInt NewUpper = getUpper() - Other.getLower();
- if (NewLower == NewUpper)
- return getFull();
- ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
- if (X.isSizeStrictlySmallerThan(*this) ||
- X.isSizeStrictlySmallerThan(Other))
- // We've wrapped, therefore, full set.
- return getFull();
- return X;
- }
- ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
- unsigned NoWrapKind,
- PreferredRangeType RangeType) const {
- // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
- // (X is from this, and Y is from Other)
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- if (isFullSet() && Other.isFullSet())
- return getFull();
- using OBO = OverflowingBinaryOperator;
- ConstantRange Result = sub(Other);
- // If an overflow happens for every value pair in these two constant ranges,
- // we must return Empty set. In signed case, we get that for free, because we
- // get lucky that intersection of sub() with ssub_sat() results in an
- // empty set. But for unsigned we must perform the overflow check manually.
- if (NoWrapKind & OBO::NoSignedWrap)
- Result = Result.intersectWith(ssub_sat(Other), RangeType);
- if (NoWrapKind & OBO::NoUnsignedWrap) {
- if (getUnsignedMax().ult(Other.getUnsignedMin()))
- return getEmpty(); // Always overflows.
- Result = Result.intersectWith(usub_sat(Other), RangeType);
- }
- return Result;
- }
- ConstantRange
- ConstantRange::multiply(const ConstantRange &Other) const {
- // TODO: If either operand is a single element and the multiply is known to
- // be non-wrapping, round the result min and max value to the appropriate
- // multiple of that element. If wrapping is possible, at least adjust the
- // range according to the greatest power-of-two factor of the single element.
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Multiplication is signedness-independent. However different ranges can be
- // obtained depending on how the input ranges are treated. These different
- // ranges are all conservatively correct, but one might be better than the
- // other. We calculate two ranges; one treating the inputs as unsigned
- // and the other signed, then return the smallest of these ranges.
- // Unsigned range first.
- APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
- APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
- APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
- APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
- ConstantRange Result_zext = ConstantRange(this_min * Other_min,
- this_max * Other_max + 1);
- ConstantRange UR = Result_zext.truncate(getBitWidth());
- // If the unsigned range doesn't wrap, and isn't negative then it's a range
- // from one positive number to another which is as good as we can generate.
- // In this case, skip the extra work of generating signed ranges which aren't
- // going to be better than this range.
- if (!UR.isUpperWrapped() &&
- (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
- return UR;
- // Now the signed range. Because we could be dealing with negative numbers
- // here, the lower bound is the smallest of the cartesian product of the
- // lower and upper ranges; for example:
- // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
- // Similarly for the upper bound, swapping min for max.
- this_min = getSignedMin().sext(getBitWidth() * 2);
- this_max = getSignedMax().sext(getBitWidth() * 2);
- Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
- Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
- auto L = {this_min * Other_min, this_min * Other_max,
- this_max * Other_min, this_max * Other_max};
- auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
- ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
- ConstantRange SR = Result_sext.truncate(getBitWidth());
- return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
- }
- ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt Min = getSignedMin();
- APInt Max = getSignedMax();
- APInt OtherMin = Other.getSignedMin();
- APInt OtherMax = Other.getSignedMax();
- bool O1, O2, O3, O4;
- auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
- Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
- if (O1 || O2 || O3 || O4)
- return getFull();
- auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
- return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
- }
- ConstantRange
- ConstantRange::smax(const ConstantRange &Other) const {
- // X smax Y is: range(smax(X_smin, Y_smin),
- // smax(X_smax, Y_smax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
- APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
- ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
- if (isSignWrappedSet() || Other.isSignWrappedSet())
- return Res.intersectWith(unionWith(Other, Signed), Signed);
- return Res;
- }
- ConstantRange
- ConstantRange::umax(const ConstantRange &Other) const {
- // X umax Y is: range(umax(X_umin, Y_umin),
- // umax(X_umax, Y_umax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
- APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
- ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
- if (isWrappedSet() || Other.isWrappedSet())
- return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
- return Res;
- }
- ConstantRange
- ConstantRange::smin(const ConstantRange &Other) const {
- // X smin Y is: range(smin(X_smin, Y_smin),
- // smin(X_smax, Y_smax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
- APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
- ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
- if (isSignWrappedSet() || Other.isSignWrappedSet())
- return Res.intersectWith(unionWith(Other, Signed), Signed);
- return Res;
- }
- ConstantRange
- ConstantRange::umin(const ConstantRange &Other) const {
- // X umin Y is: range(umin(X_umin, Y_umin),
- // umin(X_umax, Y_umax))
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
- APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
- ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
- if (isWrappedSet() || Other.isWrappedSet())
- return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
- return Res;
- }
- ConstantRange
- ConstantRange::udiv(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
- return getEmpty();
- APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
- APInt RHS_umin = RHS.getUnsignedMin();
- if (RHS_umin.isZero()) {
- // We want the lowest value in RHS excluding zero. Usually that would be 1
- // except for a range in the form of [X, 1) in which case it would be X.
- if (RHS.getUpper() == 1)
- RHS_umin = RHS.getLower();
- else
- RHS_umin = 1;
- }
- APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
- return getNonEmpty(std::move(Lower), std::move(Upper));
- }
- ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
- // We split up the LHS and RHS into positive and negative components
- // and then also compute the positive and negative components of the result
- // separately by combining division results with the appropriate signs.
- APInt Zero = APInt::getZero(getBitWidth());
- APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
- ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
- ConstantRange NegFilter(SignedMin, Zero);
- ConstantRange PosL = intersectWith(PosFilter);
- ConstantRange NegL = intersectWith(NegFilter);
- ConstantRange PosR = RHS.intersectWith(PosFilter);
- ConstantRange NegR = RHS.intersectWith(NegFilter);
- ConstantRange PosRes = getEmpty();
- if (!PosL.isEmptySet() && !PosR.isEmptySet())
- // pos / pos = pos.
- PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
- (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
- if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
- // neg / neg = pos.
- //
- // We need to deal with one tricky case here: SignedMin / -1 is UB on the
- // IR level, so we'll want to exclude this case when calculating bounds.
- // (For APInts the operation is well-defined and yields SignedMin.) We
- // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
- APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
- if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
- // Remove -1 from the LHS. Skip if it's the only element, as this would
- // leave us with an empty set.
- if (!NegR.Lower.isAllOnes()) {
- APInt AdjNegRUpper;
- if (RHS.Lower.isAllOnes())
- // Negative part of [-1, X] without -1 is [SignedMin, X].
- AdjNegRUpper = RHS.Upper;
- else
- // [X, -1] without -1 is [X, -2].
- AdjNegRUpper = NegR.Upper - 1;
- PosRes = PosRes.unionWith(
- ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
- }
- // Remove SignedMin from the RHS. Skip if it's the only element, as this
- // would leave us with an empty set.
- if (NegL.Upper != SignedMin + 1) {
- APInt AdjNegLLower;
- if (Upper == SignedMin + 1)
- // Negative part of [X, SignedMin] without SignedMin is [X, -1].
- AdjNegLLower = Lower;
- else
- // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
- AdjNegLLower = NegL.Lower + 1;
- PosRes = PosRes.unionWith(
- ConstantRange(std::move(Lo),
- AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
- }
- } else {
- PosRes = PosRes.unionWith(
- ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
- }
- }
- ConstantRange NegRes = getEmpty();
- if (!PosL.isEmptySet() && !NegR.isEmptySet())
- // pos / neg = neg.
- NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
- PosL.Lower.sdiv(NegR.Lower) + 1);
- if (!NegL.isEmptySet() && !PosR.isEmptySet())
- // neg / pos = neg.
- NegRes = NegRes.unionWith(
- ConstantRange(NegL.Lower.sdiv(PosR.Lower),
- (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
- // Prefer a non-wrapping signed range here.
- ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
- // Preserve the zero that we dropped when splitting the LHS by sign.
- if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
- Res = Res.unionWith(ConstantRange(Zero));
- return Res;
- }
- ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
- return getEmpty();
- if (const APInt *RHSInt = RHS.getSingleElement()) {
- // UREM by null is UB.
- if (RHSInt->isZero())
- return getEmpty();
- // Use APInt's implementation of UREM for single element ranges.
- if (const APInt *LHSInt = getSingleElement())
- return {LHSInt->urem(*RHSInt)};
- }
- // L % R for L < R is L.
- if (getUnsignedMax().ult(RHS.getUnsignedMin()))
- return *this;
- // L % R is <= L and < R.
- APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
- return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
- }
- ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
- if (isEmptySet() || RHS.isEmptySet())
- return getEmpty();
- if (const APInt *RHSInt = RHS.getSingleElement()) {
- // SREM by null is UB.
- if (RHSInt->isZero())
- return getEmpty();
- // Use APInt's implementation of SREM for single element ranges.
- if (const APInt *LHSInt = getSingleElement())
- return {LHSInt->srem(*RHSInt)};
- }
- ConstantRange AbsRHS = RHS.abs();
- APInt MinAbsRHS = AbsRHS.getUnsignedMin();
- APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
- // Modulus by zero is UB.
- if (MaxAbsRHS.isZero())
- return getEmpty();
- if (MinAbsRHS.isZero())
- ++MinAbsRHS;
- APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
- if (MinLHS.isNonNegative()) {
- // L % R for L < R is L.
- if (MaxLHS.ult(MinAbsRHS))
- return *this;
- // L % R is <= L and < R.
- APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
- return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
- }
- // Same basic logic as above, but the result is negative.
- if (MaxLHS.isNegative()) {
- if (MinLHS.ugt(-MinAbsRHS))
- return *this;
- APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
- return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
- }
- // LHS range crosses zero.
- APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
- APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
- return ConstantRange(std::move(Lower), std::move(Upper));
- }
- ConstantRange ConstantRange::binaryNot() const {
- return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
- }
- ConstantRange
- ConstantRange::binaryAnd(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Use APInt's implementation of AND for single element ranges.
- if (isSingleElement() && Other.isSingleElement())
- return {*getSingleElement() & *Other.getSingleElement()};
- // TODO: replace this with something less conservative
- APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
- return getNonEmpty(APInt::getZero(getBitWidth()), std::move(umin) + 1);
- }
- ConstantRange
- ConstantRange::binaryOr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Use APInt's implementation of OR for single element ranges.
- if (isSingleElement() && Other.isSingleElement())
- return {*getSingleElement() | *Other.getSingleElement()};
- // TODO: replace this with something less conservative
- APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
- return getNonEmpty(std::move(umax), APInt::getZero(getBitWidth()));
- }
- ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Use APInt's implementation of XOR for single element ranges.
- if (isSingleElement() && Other.isSingleElement())
- return {*getSingleElement() ^ *Other.getSingleElement()};
- // Special-case binary complement, since we can give a precise answer.
- if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
- return binaryNot();
- if (isSingleElement() && getSingleElement()->isAllOnes())
- return Other.binaryNot();
- // TODO: replace this with something less conservative
- return getFull();
- }
- ConstantRange
- ConstantRange::shl(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt Min = getUnsignedMin();
- APInt Max = getUnsignedMax();
- if (const APInt *RHS = Other.getSingleElement()) {
- unsigned BW = getBitWidth();
- if (RHS->uge(BW))
- return getEmpty();
- unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros();
- if (RHS->ule(EqualLeadingBits))
- return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
- return getNonEmpty(APInt::getZero(BW),
- APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
- }
- APInt OtherMax = Other.getUnsignedMax();
- // There's overflow!
- if (OtherMax.ugt(Max.countLeadingZeros()))
- return getFull();
- // FIXME: implement the other tricky cases
- Min <<= Other.getUnsignedMin();
- Max <<= OtherMax;
- return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
- }
- ConstantRange
- ConstantRange::lshr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
- APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
- return getNonEmpty(std::move(min), std::move(max));
- }
- ConstantRange
- ConstantRange::ashr(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // May straddle zero, so handle both positive and negative cases.
- // 'PosMax' is the upper bound of the result of the ashr
- // operation, when Upper of the LHS of ashr is a non-negative.
- // number. Since ashr of a non-negative number will result in a
- // smaller number, the Upper value of LHS is shifted right with
- // the minimum value of 'Other' instead of the maximum value.
- APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
- // 'PosMin' is the lower bound of the result of the ashr
- // operation, when Lower of the LHS is a non-negative number.
- // Since ashr of a non-negative number will result in a smaller
- // number, the Lower value of LHS is shifted right with the
- // maximum value of 'Other'.
- APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
- // 'NegMax' is the upper bound of the result of the ashr
- // operation, when Upper of the LHS of ashr is a negative number.
- // Since 'ashr' of a negative number will result in a bigger
- // number, the Upper value of LHS is shifted right with the
- // maximum value of 'Other'.
- APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
- // 'NegMin' is the lower bound of the result of the ashr
- // operation, when Lower of the LHS of ashr is a negative number.
- // Since 'ashr' of a negative number will result in a bigger
- // number, the Lower value of LHS is shifted right with the
- // minimum value of 'Other'.
- APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
- APInt max, min;
- if (getSignedMin().isNonNegative()) {
- // Upper and Lower of LHS are non-negative.
- min = PosMin;
- max = PosMax;
- } else if (getSignedMax().isNegative()) {
- // Upper and Lower of LHS are negative.
- min = NegMin;
- max = NegMax;
- } else {
- // Upper is non-negative and Lower is negative.
- min = NegMin;
- max = PosMax;
- }
- return getNonEmpty(std::move(min), std::move(max));
- }
- ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
- APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
- APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
- APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
- APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
- APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- // Because we could be dealing with negative numbers here, the lower bound is
- // the smallest of the cartesian product of the lower and upper ranges;
- // for example:
- // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
- // Similarly for the upper bound, swapping min for max.
- APInt Min = getSignedMin();
- APInt Max = getSignedMax();
- APInt OtherMin = Other.getSignedMin();
- APInt OtherMax = Other.getSignedMax();
- auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
- Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
- auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
- return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
- }
- ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
- APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return getEmpty();
- APInt Min = getSignedMin(), Max = getSignedMax();
- APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
- APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
- APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
- return getNonEmpty(std::move(NewL), std::move(NewU));
- }
- ConstantRange ConstantRange::inverse() const {
- if (isFullSet())
- return getEmpty();
- if (isEmptySet())
- return getFull();
- return ConstantRange(Upper, Lower);
- }
- ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
- if (isEmptySet())
- return getEmpty();
- if (isSignWrappedSet()) {
- APInt Lo;
- // Check whether the range crosses zero.
- if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
- Lo = APInt::getZero(getBitWidth());
- else
- Lo = APIntOps::umin(Lower, -Upper + 1);
- // If SignedMin is not poison, then it is included in the result range.
- if (IntMinIsPoison)
- return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
- else
- return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
- }
- APInt SMin = getSignedMin(), SMax = getSignedMax();
- // Skip SignedMin if it is poison.
- if (IntMinIsPoison && SMin.isMinSignedValue()) {
- // The range may become empty if it *only* contains SignedMin.
- if (SMax.isMinSignedValue())
- return getEmpty();
- ++SMin;
- }
- // All non-negative.
- if (SMin.isNonNegative())
- return *this;
- // All negative.
- if (SMax.isNegative())
- return ConstantRange(-SMax, -SMin + 1);
- // Range crosses zero.
- return ConstantRange(APInt::getZero(getBitWidth()),
- APIntOps::umax(-SMin, SMax) + 1);
- }
- ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getUnsignedMin(), Max = getUnsignedMax();
- APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
- // a u+ b overflows high iff a u> ~b.
- if (Min.ugt(~OtherMin))
- return OverflowResult::AlwaysOverflowsHigh;
- if (Max.ugt(~OtherMax))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getSignedMin(), Max = getSignedMax();
- APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
- APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
- APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
- // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
- // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
- if (Min.isNonNegative() && OtherMin.isNonNegative() &&
- Min.sgt(SignedMax - OtherMin))
- return OverflowResult::AlwaysOverflowsHigh;
- if (Max.isNegative() && OtherMax.isNegative() &&
- Max.slt(SignedMin - OtherMax))
- return OverflowResult::AlwaysOverflowsLow;
- if (Max.isNonNegative() && OtherMax.isNonNegative() &&
- Max.sgt(SignedMax - OtherMax))
- return OverflowResult::MayOverflow;
- if (Min.isNegative() && OtherMin.isNegative() &&
- Min.slt(SignedMin - OtherMin))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getUnsignedMin(), Max = getUnsignedMax();
- APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
- // a u- b overflows low iff a u< b.
- if (Max.ult(OtherMin))
- return OverflowResult::AlwaysOverflowsLow;
- if (Min.ult(OtherMax))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getSignedMin(), Max = getSignedMax();
- APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
- APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
- APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
- // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
- // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
- if (Min.isNonNegative() && OtherMax.isNegative() &&
- Min.sgt(SignedMax + OtherMax))
- return OverflowResult::AlwaysOverflowsHigh;
- if (Max.isNegative() && OtherMin.isNonNegative() &&
- Max.slt(SignedMin + OtherMin))
- return OverflowResult::AlwaysOverflowsLow;
- if (Max.isNonNegative() && OtherMin.isNegative() &&
- Max.sgt(SignedMax + OtherMin))
- return OverflowResult::MayOverflow;
- if (Min.isNegative() && OtherMax.isNonNegative() &&
- Min.slt(SignedMin + OtherMax))
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
- const ConstantRange &Other) const {
- if (isEmptySet() || Other.isEmptySet())
- return OverflowResult::MayOverflow;
- APInt Min = getUnsignedMin(), Max = getUnsignedMax();
- APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
- bool Overflow;
- (void) Min.umul_ov(OtherMin, Overflow);
- if (Overflow)
- return OverflowResult::AlwaysOverflowsHigh;
- (void) Max.umul_ov(OtherMax, Overflow);
- if (Overflow)
- return OverflowResult::MayOverflow;
- return OverflowResult::NeverOverflows;
- }
- void ConstantRange::print(raw_ostream &OS) const {
- if (isFullSet())
- OS << "full-set";
- else if (isEmptySet())
- OS << "empty-set";
- else
- OS << "[" << Lower << "," << Upper << ")";
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void ConstantRange::dump() const {
- print(dbgs());
- }
- #endif
- ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
- const unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1 && "Must have at least one range!");
- assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
- auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
- auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
- ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
- for (unsigned i = 1; i < NumRanges; ++i) {
- auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
- // Note: unionWith will potentially create a range that contains values not
- // contained in any of the original N ranges.
- CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
- }
- return CR;
- }
|