123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- // Copyright 2019 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "absl/profiling/internal/exponential_biased.h"
- #include <stdint.h>
- #include <algorithm>
- #include <atomic>
- #include <cmath>
- #include <limits>
- #include "absl/base/attributes.h"
- #include "absl/base/optimization.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace profiling_internal {
- // The algorithm generates a random number between 0 and 1 and applies the
- // inverse cumulative distribution function for an exponential. Specifically:
- // Let m be the inverse of the sample period, then the probability
- // distribution function is m*exp(-mx) so the CDF is
- // p = 1 - exp(-mx), so
- // q = 1 - p = exp(-mx)
- // log_e(q) = -mx
- // -log_e(q)/m = x
- // log_2(q) * (-log_e(2) * 1/m) = x
- // In the code, q is actually in the range 1 to 2**26, hence the -26 below
- int64_t ExponentialBiased::GetSkipCount(int64_t mean) {
- if (ABSL_PREDICT_FALSE(!initialized_)) {
- Initialize();
- }
- uint64_t rng = NextRandom(rng_);
- rng_ = rng;
- // Take the top 26 bits as the random number
- // (This plus the 1<<58 sampling bound give a max possible step of
- // 5194297183973780480 bytes.)
- // The uint32_t cast is to prevent a (hard-to-reproduce) NAN
- // under piii debug for some binaries.
- double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
- // Put the computed p-value through the CDF of a geometric.
- double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);
- // Very large values of interval overflow int64_t. To avoid that, we will
- // cheat and clamp any huge values to (int64_t max)/2. This is a potential
- // source of bias, but the mean would need to be such a large value that it's
- // not likely to come up. For example, with a mean of 1e18, the probability of
- // hitting this condition is about 1/1000. For a mean of 1e17, standard
- // calculators claim that this event won't happen.
- if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
- // Assume huge values are bias neutral, retain bias for next call.
- return std::numeric_limits<int64_t>::max() / 2;
- }
- double value = std::rint(interval);
- bias_ = interval - value;
- return value;
- }
- int64_t ExponentialBiased::GetStride(int64_t mean) {
- return GetSkipCount(mean - 1) + 1;
- }
- void ExponentialBiased::Initialize() {
- // We don't get well distributed numbers from `this` so we call NextRandom() a
- // bunch to mush the bits around. We use a global_rand to handle the case
- // where the same thread (by memory address) gets created and destroyed
- // repeatedly.
- ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
- uint64_t r = reinterpret_cast<uint64_t>(this) +
- global_rand.fetch_add(1, std::memory_order_relaxed);
- for (int i = 0; i < 20; ++i) {
- r = NextRandom(r);
- }
- rng_ = r;
- initialized_ = true;
- }
- } // namespace profiling_internal
- ABSL_NAMESPACE_END
- } // namespace absl
|