123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // The implementation of the y_absl::Duration class, which is declared in
- // //y_absl/time.h. This class behaves like a numeric type; it has no public
- // methods and is used only through the operators defined here.
- //
- // Implementation notes:
- //
- // An y_absl::Duration is represented as
- //
- // rep_hi_ : (int64_t) Whole seconds
- // rep_lo_ : (uint32_t) Fractions of a second
- //
- // The seconds value (rep_hi_) may be positive or negative as appropriate.
- // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_.
- // The API for Duration guarantees at least nanosecond resolution, which
- // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds.
- // However, to utilize more of the available 32 bits of space in rep_lo_,
- // we instead store quarters of a nanosecond in rep_lo_ resulting in a max
- // value of 4B - 1. This allows us to correctly handle calculations like
- // 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual
- // Duration rep using quarters of a nanosecond.
- //
- // 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000
- // -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000}
- //
- // Infinite durations are represented as Durations with the rep_lo_ field set
- // to all 1s.
- //
- // +InfiniteDuration:
- // rep_hi_ : kint64max
- // rep_lo_ : ~0U
- //
- // -InfiniteDuration:
- // rep_hi_ : kint64min
- // rep_lo_ : ~0U
- //
- // Arithmetic overflows/underflows to +/- infinity and saturates.
- #if defined(_MSC_VER)
- #include <winsock2.h> // for timeval
- #endif
- #include <algorithm>
- #include <cassert>
- #include <cctype>
- #include <cerrno>
- #include <cmath>
- #include <cstdint>
- #include <cstdlib>
- #include <cstring>
- #include <ctime>
- #include <functional>
- #include <limits>
- #include <util/generic/string.h>
- #include "y_absl/base/casts.h"
- #include "y_absl/base/macros.h"
- #include "y_absl/numeric/int128.h"
- #include "y_absl/strings/string_view.h"
- #include "y_absl/strings/strip.h"
- #include "y_absl/time/time.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace {
- using time_internal::kTicksPerNanosecond;
- using time_internal::kTicksPerSecond;
- constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
- constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
- // Can't use std::isinfinite() because it doesn't exist on windows.
- inline bool IsFinite(double d) {
- if (std::isnan(d)) return false;
- return d != std::numeric_limits<double>::infinity() &&
- d != -std::numeric_limits<double>::infinity();
- }
- inline bool IsValidDivisor(double d) {
- if (std::isnan(d)) return false;
- return d != 0.0;
- }
- // *sec may be positive or negative. *ticks must be in the range
- // -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it
- // will be normalized to a positive value by adjusting *sec accordingly.
- inline void NormalizeTicks(int64_t* sec, int64_t* ticks) {
- if (*ticks < 0) {
- --*sec;
- *ticks += kTicksPerSecond;
- }
- }
- // Makes a uint128 from the absolute value of the given scalar.
- inline uint128 MakeU128(int64_t a) {
- uint128 u128 = 0;
- if (a < 0) {
- ++u128;
- ++a; // Makes it safe to negate 'a'
- a = -a;
- }
- u128 += static_cast<uint64_t>(a);
- return u128;
- }
- // Makes a uint128 count of ticks out of the absolute value of the Duration.
- inline uint128 MakeU128Ticks(Duration d) {
- int64_t rep_hi = time_internal::GetRepHi(d);
- uint32_t rep_lo = time_internal::GetRepLo(d);
- if (rep_hi < 0) {
- ++rep_hi;
- rep_hi = -rep_hi;
- rep_lo = kTicksPerSecond - rep_lo;
- }
- uint128 u128 = static_cast<uint64_t>(rep_hi);
- u128 *= static_cast<uint64_t>(kTicksPerSecond);
- u128 += rep_lo;
- return u128;
- }
- // Breaks a uint128 of ticks into a Duration.
- inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) {
- int64_t rep_hi;
- uint32_t rep_lo;
- const uint64_t h64 = Uint128High64(u128);
- const uint64_t l64 = Uint128Low64(u128);
- if (h64 == 0) { // fastpath
- const uint64_t hi = l64 / kTicksPerSecond;
- rep_hi = static_cast<int64_t>(hi);
- rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond);
- } else {
- // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond).
- // Any positive tick count whose high 64 bits are >= kMaxRepHi64
- // is not representable as a Duration. A negative tick count can
- // have its high 64 bits == kMaxRepHi64 but only when the low 64
- // bits are all zero, otherwise it is not representable either.
- const uint64_t kMaxRepHi64 = 0x77359400UL;
- if (h64 >= kMaxRepHi64) {
- if (is_neg && h64 == kMaxRepHi64 && l64 == 0) {
- // Avoid trying to represent -kint64min below.
- return time_internal::MakeDuration(kint64min);
- }
- return is_neg ? -InfiniteDuration() : InfiniteDuration();
- }
- const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond);
- const uint128 hi = u128 / kTicksPerSecond128;
- rep_hi = static_cast<int64_t>(Uint128Low64(hi));
- rep_lo =
- static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128));
- }
- if (is_neg) {
- rep_hi = -rep_hi;
- if (rep_lo != 0) {
- --rep_hi;
- rep_lo = kTicksPerSecond - rep_lo;
- }
- }
- return time_internal::MakeDuration(rep_hi, rep_lo);
- }
- // Convert between int64_t and uint64_t, preserving representation. This
- // allows us to do arithmetic in the unsigned domain, where overflow has
- // well-defined behavior. See operator+=() and operator-=().
- //
- // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef
- // name intN_t designates a signed integer type with width N, no padding
- // bits, and a two's complement representation." So, we can convert to
- // and from the corresponding uint64_t value using a bit cast.
- inline uint64_t EncodeTwosComp(int64_t v) {
- return y_absl::bit_cast<uint64_t>(v);
- }
- inline int64_t DecodeTwosComp(uint64_t v) { return y_absl::bit_cast<int64_t>(v); }
- // Note: The overflow detection in this function is done using greater/less *or
- // equal* because kint64max/min is too large to be represented exactly in a
- // double (which only has 53 bits of precision). In order to avoid assigning to
- // rep->hi a double value that is too large for an int64_t (and therefore is
- // undefined), we must consider computations that equal kint64max/min as a
- // double as overflow cases.
- inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) {
- double c = a_hi + b_hi;
- if (c >= static_cast<double>(kint64max)) {
- *d = InfiniteDuration();
- return false;
- }
- if (c <= static_cast<double>(kint64min)) {
- *d = -InfiniteDuration();
- return false;
- }
- *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d));
- return true;
- }
- // A functor that's similar to std::multiplies<T>, except this returns the max
- // T value instead of overflowing. This is only defined for uint128.
- template <typename Ignored>
- struct SafeMultiply {
- uint128 operator()(uint128 a, uint128 b) const {
- // b hi is always zero because it originated as an int64_t.
- assert(Uint128High64(b) == 0);
- // Fastpath to avoid the expensive overflow check with division.
- if (Uint128High64(a) == 0) {
- return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0)
- ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b))
- : a * b;
- }
- return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b;
- }
- };
- // Scales (i.e., multiplies or divides, depending on the Operation template)
- // the Duration d by the int64_t r.
- template <template <typename> class Operation>
- inline Duration ScaleFixed(Duration d, int64_t r) {
- const uint128 a = MakeU128Ticks(d);
- const uint128 b = MakeU128(r);
- const uint128 q = Operation<uint128>()(a, b);
- const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0);
- return MakeDurationFromU128(q, is_neg);
- }
- // Scales (i.e., multiplies or divides, depending on the Operation template)
- // the Duration d by the double r.
- template <template <typename> class Operation>
- inline Duration ScaleDouble(Duration d, double r) {
- Operation<double> op;
- double hi_doub = op(time_internal::GetRepHi(d), r);
- double lo_doub = op(time_internal::GetRepLo(d), r);
- double hi_int = 0;
- double hi_frac = std::modf(hi_doub, &hi_int);
- // Moves hi's fractional bits to lo.
- lo_doub /= kTicksPerSecond;
- lo_doub += hi_frac;
- double lo_int = 0;
- double lo_frac = std::modf(lo_doub, &lo_int);
- // Rolls lo into hi if necessary.
- int64_t lo64 = std::round(lo_frac * kTicksPerSecond);
- Duration ans;
- if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans;
- int64_t hi64 = time_internal::GetRepHi(ans);
- if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans;
- hi64 = time_internal::GetRepHi(ans);
- lo64 %= kTicksPerSecond;
- NormalizeTicks(&hi64, &lo64);
- return time_internal::MakeDuration(hi64, lo64);
- }
- // Tries to divide num by den as fast as possible by looking for common, easy
- // cases. If the division was done, the quotient is in *q and the remainder is
- // in *rem and true will be returned.
- inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q,
- Duration* rem) {
- // Bail if num or den is an infinity.
- if (time_internal::IsInfiniteDuration(num) ||
- time_internal::IsInfiniteDuration(den))
- return false;
- int64_t num_hi = time_internal::GetRepHi(num);
- uint32_t num_lo = time_internal::GetRepLo(num);
- int64_t den_hi = time_internal::GetRepHi(den);
- uint32_t den_lo = time_internal::GetRepLo(den);
- if (den_hi == 0 && den_lo == kTicksPerNanosecond) {
- // Dividing by 1ns
- if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) {
- *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond;
- *rem = time_internal::MakeDuration(0, num_lo % den_lo);
- return true;
- }
- } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) {
- // Dividing by 100ns (common when converting to Universal time)
- if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) {
- *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond);
- *rem = time_internal::MakeDuration(0, num_lo % den_lo);
- return true;
- }
- } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) {
- // Dividing by 1us
- if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) {
- *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond);
- *rem = time_internal::MakeDuration(0, num_lo % den_lo);
- return true;
- }
- } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) {
- // Dividing by 1ms
- if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) {
- *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond);
- *rem = time_internal::MakeDuration(0, num_lo % den_lo);
- return true;
- }
- } else if (den_hi > 0 && den_lo == 0) {
- // Dividing by positive multiple of 1s
- if (num_hi >= 0) {
- if (den_hi == 1) {
- *q = num_hi;
- *rem = time_internal::MakeDuration(0, num_lo);
- return true;
- }
- *q = num_hi / den_hi;
- *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo);
- return true;
- }
- if (num_lo != 0) {
- num_hi += 1;
- }
- int64_t quotient = num_hi / den_hi;
- int64_t rem_sec = num_hi % den_hi;
- if (rem_sec > 0) {
- rem_sec -= den_hi;
- quotient += 1;
- }
- if (num_lo != 0) {
- rem_sec -= 1;
- }
- *q = quotient;
- *rem = time_internal::MakeDuration(rem_sec, num_lo);
- return true;
- }
- return false;
- }
- } // namespace
- namespace time_internal {
- // The 'satq' argument indicates whether the quotient should saturate at the
- // bounds of int64_t. If it does saturate, the difference will spill over to
- // the remainder. If it does not saturate, the remainder remain accurate,
- // but the returned quotient will over/underflow int64_t and should not be used.
- int64_t IDivDuration(bool satq, const Duration num, const Duration den,
- Duration* rem) {
- int64_t q = 0;
- if (IDivFastPath(num, den, &q, rem)) {
- return q;
- }
- const bool num_neg = num < ZeroDuration();
- const bool den_neg = den < ZeroDuration();
- const bool quotient_neg = num_neg != den_neg;
- if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
- *rem = num_neg ? -InfiniteDuration() : InfiniteDuration();
- return quotient_neg ? kint64min : kint64max;
- }
- if (time_internal::IsInfiniteDuration(den)) {
- *rem = num;
- return 0;
- }
- const uint128 a = MakeU128Ticks(num);
- const uint128 b = MakeU128Ticks(den);
- uint128 quotient128 = a / b;
- if (satq) {
- // Limits the quotient to the range of int64_t.
- if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) {
- quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min))
- : uint128(static_cast<uint64_t>(kint64max));
- }
- }
- const uint128 remainder128 = a - quotient128 * b;
- *rem = MakeDurationFromU128(remainder128, num_neg);
- if (!quotient_neg || quotient128 == 0) {
- return Uint128Low64(quotient128) & kint64max;
- }
- // The quotient needs to be negated, but we need to carefully handle
- // quotient128s with the top bit on.
- return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1;
- }
- } // namespace time_internal
- //
- // Additive operators.
- //
- Duration& Duration::operator+=(Duration rhs) {
- if (time_internal::IsInfiniteDuration(*this)) return *this;
- if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs;
- const int64_t orig_rep_hi = rep_hi_.Get();
- rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) +
- EncodeTwosComp(rhs.rep_hi_.Get()));
- if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) {
- rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) + 1);
- rep_lo_ -= kTicksPerSecond;
- }
- rep_lo_ += rhs.rep_lo_;
- if (rhs.rep_hi_.Get() < 0 ? rep_hi_.Get() > orig_rep_hi
- : rep_hi_.Get() < orig_rep_hi) {
- return *this =
- rhs.rep_hi_.Get() < 0 ? -InfiniteDuration() : InfiniteDuration();
- }
- return *this;
- }
- Duration& Duration::operator-=(Duration rhs) {
- if (time_internal::IsInfiniteDuration(*this)) return *this;
- if (time_internal::IsInfiniteDuration(rhs)) {
- return *this = rhs.rep_hi_.Get() >= 0 ? -InfiniteDuration()
- : InfiniteDuration();
- }
- const int64_t orig_rep_hi = rep_hi_.Get();
- rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) -
- EncodeTwosComp(rhs.rep_hi_.Get()));
- if (rep_lo_ < rhs.rep_lo_) {
- rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_.Get()) - 1);
- rep_lo_ += kTicksPerSecond;
- }
- rep_lo_ -= rhs.rep_lo_;
- if (rhs.rep_hi_.Get() < 0 ? rep_hi_.Get() < orig_rep_hi
- : rep_hi_.Get() > orig_rep_hi) {
- return *this = rhs.rep_hi_.Get() >= 0 ? -InfiniteDuration()
- : InfiniteDuration();
- }
- return *this;
- }
- //
- // Multiplicative operators.
- //
- Duration& Duration::operator*=(int64_t r) {
- if (time_internal::IsInfiniteDuration(*this)) {
- const bool is_neg = (r < 0) != (rep_hi_.Get() < 0);
- return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
- }
- return *this = ScaleFixed<SafeMultiply>(*this, r);
- }
- Duration& Duration::operator*=(double r) {
- if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) {
- const bool is_neg = std::signbit(r) != (rep_hi_.Get() < 0);
- return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
- }
- return *this = ScaleDouble<std::multiplies>(*this, r);
- }
- Duration& Duration::operator/=(int64_t r) {
- if (time_internal::IsInfiniteDuration(*this) || r == 0) {
- const bool is_neg = (r < 0) != (rep_hi_.Get() < 0);
- return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
- }
- return *this = ScaleFixed<std::divides>(*this, r);
- }
- Duration& Duration::operator/=(double r) {
- if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) {
- const bool is_neg = std::signbit(r) != (rep_hi_.Get() < 0);
- return *this = is_neg ? -InfiniteDuration() : InfiniteDuration();
- }
- return *this = ScaleDouble<std::divides>(*this, r);
- }
- Duration& Duration::operator%=(Duration rhs) {
- time_internal::IDivDuration(false, *this, rhs, this);
- return *this;
- }
- double FDivDuration(Duration num, Duration den) {
- // Arithmetic with infinity is sticky.
- if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) {
- return (num < ZeroDuration()) == (den < ZeroDuration())
- ? std::numeric_limits<double>::infinity()
- : -std::numeric_limits<double>::infinity();
- }
- if (time_internal::IsInfiniteDuration(den)) return 0.0;
- double a =
- static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond +
- time_internal::GetRepLo(num);
- double b =
- static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond +
- time_internal::GetRepLo(den);
- return a / b;
- }
- //
- // Trunc/Floor/Ceil.
- //
- Duration Trunc(Duration d, Duration unit) {
- return d - (d % unit);
- }
- Duration Floor(const Duration d, const Duration unit) {
- const y_absl::Duration td = Trunc(d, unit);
- return td <= d ? td : td - AbsDuration(unit);
- }
- Duration Ceil(const Duration d, const Duration unit) {
- const y_absl::Duration td = Trunc(d, unit);
- return td >= d ? td : td + AbsDuration(unit);
- }
- //
- // Factory functions.
- //
- Duration DurationFromTimespec(timespec ts) {
- if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) {
- int64_t ticks = ts.tv_nsec * kTicksPerNanosecond;
- return time_internal::MakeDuration(ts.tv_sec, ticks);
- }
- return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec);
- }
- Duration DurationFromTimeval(timeval tv) {
- if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) {
- int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond;
- return time_internal::MakeDuration(tv.tv_sec, ticks);
- }
- return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec);
- }
- //
- // Conversion to other duration types.
- //
- int64_t ToInt64Nanoseconds(Duration d) {
- if (time_internal::GetRepHi(d) >= 0 &&
- time_internal::GetRepHi(d) >> 33 == 0) {
- return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) +
- (time_internal::GetRepLo(d) / kTicksPerNanosecond);
- }
- return d / Nanoseconds(1);
- }
- int64_t ToInt64Microseconds(Duration d) {
- if (time_internal::GetRepHi(d) >= 0 &&
- time_internal::GetRepHi(d) >> 43 == 0) {
- return (time_internal::GetRepHi(d) * 1000 * 1000) +
- (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000));
- }
- return d / Microseconds(1);
- }
- int64_t ToInt64Milliseconds(Duration d) {
- if (time_internal::GetRepHi(d) >= 0 &&
- time_internal::GetRepHi(d) >> 53 == 0) {
- return (time_internal::GetRepHi(d) * 1000) +
- (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000));
- }
- return d / Milliseconds(1);
- }
- int64_t ToInt64Seconds(Duration d) {
- int64_t hi = time_internal::GetRepHi(d);
- if (time_internal::IsInfiniteDuration(d)) return hi;
- if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
- return hi;
- }
- int64_t ToInt64Minutes(Duration d) {
- int64_t hi = time_internal::GetRepHi(d);
- if (time_internal::IsInfiniteDuration(d)) return hi;
- if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
- return hi / 60;
- }
- int64_t ToInt64Hours(Duration d) {
- int64_t hi = time_internal::GetRepHi(d);
- if (time_internal::IsInfiniteDuration(d)) return hi;
- if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi;
- return hi / (60 * 60);
- }
- double ToDoubleNanoseconds(Duration d) {
- return FDivDuration(d, Nanoseconds(1));
- }
- double ToDoubleMicroseconds(Duration d) {
- return FDivDuration(d, Microseconds(1));
- }
- double ToDoubleMilliseconds(Duration d) {
- return FDivDuration(d, Milliseconds(1));
- }
- double ToDoubleSeconds(Duration d) {
- return FDivDuration(d, Seconds(1));
- }
- double ToDoubleMinutes(Duration d) {
- return FDivDuration(d, Minutes(1));
- }
- double ToDoubleHours(Duration d) {
- return FDivDuration(d, Hours(1));
- }
- timespec ToTimespec(Duration d) {
- timespec ts;
- if (!time_internal::IsInfiniteDuration(d)) {
- int64_t rep_hi = time_internal::GetRepHi(d);
- uint32_t rep_lo = time_internal::GetRepLo(d);
- if (rep_hi < 0) {
- // Tweak the fields so that unsigned division of rep_lo
- // maps to truncation (towards zero) for the timespec.
- rep_lo += kTicksPerNanosecond - 1;
- if (rep_lo >= kTicksPerSecond) {
- rep_hi += 1;
- rep_lo -= kTicksPerSecond;
- }
- }
- ts.tv_sec = static_cast<decltype(ts.tv_sec)>(rep_hi);
- if (ts.tv_sec == rep_hi) { // no time_t narrowing
- ts.tv_nsec = rep_lo / kTicksPerNanosecond;
- return ts;
- }
- }
- if (d >= ZeroDuration()) {
- ts.tv_sec = std::numeric_limits<time_t>::max();
- ts.tv_nsec = 1000 * 1000 * 1000 - 1;
- } else {
- ts.tv_sec = std::numeric_limits<time_t>::min();
- ts.tv_nsec = 0;
- }
- return ts;
- }
- timeval ToTimeval(Duration d) {
- timeval tv;
- timespec ts = ToTimespec(d);
- if (ts.tv_sec < 0) {
- // Tweak the fields so that positive division of tv_nsec
- // maps to truncation (towards zero) for the timeval.
- ts.tv_nsec += 1000 - 1;
- if (ts.tv_nsec >= 1000 * 1000 * 1000) {
- ts.tv_sec += 1;
- ts.tv_nsec -= 1000 * 1000 * 1000;
- }
- }
- tv.tv_sec = static_cast<decltype(tv.tv_sec)>(ts.tv_sec);
- if (tv.tv_sec != ts.tv_sec) { // narrowing
- if (ts.tv_sec < 0) {
- tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min();
- tv.tv_usec = 0;
- } else {
- tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max();
- tv.tv_usec = 1000 * 1000 - 1;
- }
- return tv;
- }
- tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t
- return tv;
- }
- std::chrono::nanoseconds ToChronoNanoseconds(Duration d) {
- return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d);
- }
- std::chrono::microseconds ToChronoMicroseconds(Duration d) {
- return time_internal::ToChronoDuration<std::chrono::microseconds>(d);
- }
- std::chrono::milliseconds ToChronoMilliseconds(Duration d) {
- return time_internal::ToChronoDuration<std::chrono::milliseconds>(d);
- }
- std::chrono::seconds ToChronoSeconds(Duration d) {
- return time_internal::ToChronoDuration<std::chrono::seconds>(d);
- }
- std::chrono::minutes ToChronoMinutes(Duration d) {
- return time_internal::ToChronoDuration<std::chrono::minutes>(d);
- }
- std::chrono::hours ToChronoHours(Duration d) {
- return time_internal::ToChronoDuration<std::chrono::hours>(d);
- }
- //
- // To/From string formatting.
- //
- namespace {
- // Formats a positive 64-bit integer in the given field width. Note that
- // it is up to the caller of Format64() to ensure that there is sufficient
- // space before ep to hold the conversion.
- char* Format64(char* ep, int width, int64_t v) {
- do {
- --width;
- *--ep = static_cast<char>('0' + (v % 10)); // contiguous digits
- } while (v /= 10);
- while (--width >= 0) *--ep = '0'; // zero pad
- return ep;
- }
- // Helpers for FormatDuration() that format 'n' and append it to 'out'
- // followed by the given 'unit'. If 'n' formats to "0", nothing is
- // appended (not even the unit).
- // A type that encapsulates how to display a value of a particular unit. For
- // values that are displayed with fractional parts, the precision indicates
- // where to round the value. The precision varies with the display unit because
- // a Duration can hold only quarters of a nanosecond, so displaying information
- // beyond that is just noise.
- //
- // For example, a microsecond value of 42.00025xxxxx should not display beyond 5
- // fractional digits, because it is in the noise of what a Duration can
- // represent.
- struct DisplayUnit {
- y_absl::string_view abbr;
- int prec;
- double pow10;
- };
- Y_ABSL_CONST_INIT const DisplayUnit kDisplayNano = {"ns", 2, 1e2};
- Y_ABSL_CONST_INIT const DisplayUnit kDisplayMicro = {"us", 5, 1e5};
- Y_ABSL_CONST_INIT const DisplayUnit kDisplayMilli = {"ms", 8, 1e8};
- Y_ABSL_CONST_INIT const DisplayUnit kDisplaySec = {"s", 11, 1e11};
- Y_ABSL_CONST_INIT const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored
- Y_ABSL_CONST_INIT const DisplayUnit kDisplayHour = {"h", -1,
- 0.0}; // prec ignored
- void AppendNumberUnit(TString* out, int64_t n, DisplayUnit unit) {
- char buf[sizeof("2562047788015216")]; // hours in max duration
- char* const ep = buf + sizeof(buf);
- char* bp = Format64(ep, 0, n);
- if (*bp != '0' || bp + 1 != ep) {
- out->append(bp, static_cast<size_t>(ep - bp));
- out->append(unit.abbr.data(), unit.abbr.size());
- }
- }
- // Note: unit.prec is limited to double's digits10 value (typically 15) so it
- // always fits in buf[].
- void AppendNumberUnit(TString* out, double n, DisplayUnit unit) {
- constexpr int kBufferSize = std::numeric_limits<double>::digits10;
- const int prec = std::min(kBufferSize, unit.prec);
- char buf[kBufferSize]; // also large enough to hold integer part
- char* ep = buf + sizeof(buf);
- double d = 0;
- int64_t frac_part = std::round(std::modf(n, &d) * unit.pow10);
- int64_t int_part = d;
- if (int_part != 0 || frac_part != 0) {
- char* bp = Format64(ep, 0, int_part); // always < 1000
- out->append(bp, static_cast<size_t>(ep - bp));
- if (frac_part != 0) {
- out->push_back('.');
- bp = Format64(ep, prec, frac_part);
- while (ep[-1] == '0') --ep;
- out->append(bp, static_cast<size_t>(ep - bp));
- }
- out->append(unit.abbr.data(), unit.abbr.size());
- }
- }
- } // namespace
- // From Go's doc at https://golang.org/pkg/time/#Duration.String
- // [FormatDuration] returns a string representing the duration in the
- // form "72h3m0.5s". Leading zero units are omitted. As a special
- // case, durations less than one second format use a smaller unit
- // (milli-, micro-, or nanoseconds) to ensure that the leading digit
- // is non-zero.
- // Unlike Go, we format the zero duration as 0, with no unit.
- TString FormatDuration(Duration d) {
- constexpr Duration kMinDuration = Seconds(kint64min);
- TString s;
- if (d == kMinDuration) {
- // Avoid needing to negate kint64min by directly returning what the
- // following code should produce in that case.
- s = "-2562047788015215h30m8s";
- return s;
- }
- if (d < ZeroDuration()) {
- s.append("-");
- d = -d;
- }
- if (d == InfiniteDuration()) {
- s.append("inf");
- } else if (d < Seconds(1)) {
- // Special case for durations with a magnitude < 1 second. The duration
- // is printed as a fraction of a single unit, e.g., "1.2ms".
- if (d < Microseconds(1)) {
- AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano);
- } else if (d < Milliseconds(1)) {
- AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro);
- } else {
- AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli);
- }
- } else {
- AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour);
- AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin);
- AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec);
- }
- if (s.empty() || s == "-") {
- s = "0";
- }
- return s;
- }
- namespace {
- // A helper for ParseDuration() that parses a leading number from the given
- // string and stores the result in *int_part/*frac_part/*frac_scale. The
- // given string pointer is modified to point to the first unconsumed char.
- bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part,
- int64_t* frac_part, int64_t* frac_scale) {
- *int_part = 0;
- *frac_part = 0;
- *frac_scale = 1; // invariant: *frac_part < *frac_scale
- const char* start = *dpp;
- for (; *dpp != ep; *dpp += 1) {
- const int d = **dpp - '0'; // contiguous digits
- if (d < 0 || 10 <= d) break;
- if (*int_part > kint64max / 10) return false;
- *int_part *= 10;
- if (*int_part > kint64max - d) return false;
- *int_part += d;
- }
- const bool int_part_empty = (*dpp == start);
- if (*dpp == ep || **dpp != '.') return !int_part_empty;
- for (*dpp += 1; *dpp != ep; *dpp += 1) {
- const int d = **dpp - '0'; // contiguous digits
- if (d < 0 || 10 <= d) break;
- if (*frac_scale <= kint64max / 10) {
- *frac_part *= 10;
- *frac_part += d;
- *frac_scale *= 10;
- }
- }
- return !int_part_empty || *frac_scale != 1;
- }
- // A helper for ParseDuration() that parses a leading unit designator (e.g.,
- // ns, us, ms, s, m, h) from the given string and stores the resulting unit
- // in "*unit". The given string pointer is modified to point to the first
- // unconsumed char.
- bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) {
- size_t size = static_cast<size_t>(end - *start);
- switch (size) {
- case 0:
- return false;
- default:
- switch (**start) {
- case 'n':
- if (*(*start + 1) == 's') {
- *start += 2;
- *unit = Nanoseconds(1);
- return true;
- }
- break;
- case 'u':
- if (*(*start + 1) == 's') {
- *start += 2;
- *unit = Microseconds(1);
- return true;
- }
- break;
- case 'm':
- if (*(*start + 1) == 's') {
- *start += 2;
- *unit = Milliseconds(1);
- return true;
- }
- break;
- default:
- break;
- }
- Y_ABSL_FALLTHROUGH_INTENDED;
- case 1:
- switch (**start) {
- case 's':
- *unit = Seconds(1);
- *start += 1;
- return true;
- case 'm':
- *unit = Minutes(1);
- *start += 1;
- return true;
- case 'h':
- *unit = Hours(1);
- *start += 1;
- return true;
- default:
- return false;
- }
- }
- }
- } // namespace
- // From Go's doc at https://golang.org/pkg/time/#ParseDuration
- // [ParseDuration] parses a duration string. A duration string is
- // a possibly signed sequence of decimal numbers, each with optional
- // fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m".
- // Valid time units are "ns", "us" "ms", "s", "m", "h".
- bool ParseDuration(y_absl::string_view dur_sv, Duration* d) {
- int sign = 1;
- if (y_absl::ConsumePrefix(&dur_sv, "-")) {
- sign = -1;
- } else {
- y_absl::ConsumePrefix(&dur_sv, "+");
- }
- if (dur_sv.empty()) return false;
- // Special case for a string of "0".
- if (dur_sv == "0") {
- *d = ZeroDuration();
- return true;
- }
- if (dur_sv == "inf") {
- *d = sign * InfiniteDuration();
- return true;
- }
- const char* start = dur_sv.data();
- const char* end = start + dur_sv.size();
- Duration dur;
- while (start != end) {
- int64_t int_part;
- int64_t frac_part;
- int64_t frac_scale;
- Duration unit;
- if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part,
- &frac_scale) ||
- !ConsumeDurationUnit(&start, end, &unit)) {
- return false;
- }
- if (int_part != 0) dur += sign * int_part * unit;
- if (frac_part != 0) dur += sign * frac_part * unit / frac_scale;
- }
- *d = dur;
- return true;
- }
- bool AbslParseFlag(y_absl::string_view text, Duration* dst, TString*) {
- return ParseDuration(text, dst);
- }
- TString AbslUnparseFlag(Duration d) { return FormatDuration(d); }
- bool ParseFlag(const TString& text, Duration* dst, TString* ) {
- return ParseDuration(text, dst);
- }
- TString UnparseFlag(Duration d) { return FormatDuration(d); }
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
|