1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // mutex.h
- // -----------------------------------------------------------------------------
- //
- // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
- // most common type of synchronization primitive for facilitating locks on
- // shared resources. A mutex is used to prevent multiple threads from accessing
- // and/or writing to a shared resource concurrently.
- //
- // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
- // features:
- // * Conditional predicates intrinsic to the `Mutex` object
- // * Shared/reader locks, in addition to standard exclusive/writer locks
- // * Deadlock detection and debug support.
- //
- // The following helper classes are also defined within this file:
- //
- // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
- // write access within the current scope.
- //
- // ReaderMutexLock
- // - An RAII wrapper to acquire and release a `Mutex` for shared/read
- // access within the current scope.
- //
- // WriterMutexLock
- // - Effectively an alias for `MutexLock` above, designed for use in
- // distinguishing reader and writer locks within code.
- //
- // In addition to simple mutex locks, this file also defines ways to perform
- // locking under certain conditions.
- //
- // Condition - (Preferred) Used to wait for a particular predicate that
- // depends on state protected by the `Mutex` to become true.
- // CondVar - A lower-level variant of `Condition` that relies on
- // application code to explicitly signal the `CondVar` when
- // a condition has been met.
- //
- // See below for more information on using `Condition` or `CondVar`.
- //
- // Mutexes and mutex behavior can be quite complicated. The information within
- // this header file is limited, as a result. Please consult the Mutex guide for
- // more complete information and examples.
- #ifndef Y_ABSL_SYNCHRONIZATION_MUTEX_H_
- #define Y_ABSL_SYNCHRONIZATION_MUTEX_H_
- #include <atomic>
- #include <cstdint>
- #include <cstring>
- #include <iterator>
- #include <util/generic/string.h>
- #include "y_absl/base/const_init.h"
- #include "y_absl/base/internal/identity.h"
- #include "y_absl/base/internal/low_level_alloc.h"
- #include "y_absl/base/internal/thread_identity.h"
- #include "y_absl/base/internal/tsan_mutex_interface.h"
- #include "y_absl/base/port.h"
- #include "y_absl/base/thread_annotations.h"
- #include "y_absl/synchronization/internal/kernel_timeout.h"
- #include "y_absl/synchronization/internal/per_thread_sem.h"
- #include "y_absl/time/time.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- class Condition;
- struct SynchWaitParams;
- // -----------------------------------------------------------------------------
- // Mutex
- // -----------------------------------------------------------------------------
- //
- // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
- // on some resource, typically a variable or data structure with associated
- // invariants. Proper usage of mutexes prevents concurrent access by different
- // threads to the same resource.
- //
- // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
- // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
- // *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a
- // Mutex. During the span of time between the Lock() and Unlock() operations,
- // a mutex is said to be *held*. By design, all mutexes support exclusive/write
- // locks, as this is the most common way to use a mutex.
- //
- // Mutex operations are only allowed under certain conditions; otherwise an
- // operation is "invalid", and disallowed by the API. The conditions concern
- // both the current state of the mutex and the identity of the threads that
- // are performing the operations.
- //
- // The `Mutex` state machine for basic lock/unlock operations is quite simple:
- //
- // | | Lock() | Unlock() |
- // |----------------+------------------------+----------|
- // | Free | Exclusive | invalid |
- // | Exclusive | blocks, then exclusive | Free |
- //
- // The full conditions are as follows.
- //
- // * Calls to `Unlock()` require that the mutex be held, and must be made in the
- // same thread that performed the corresponding `Lock()` operation which
- // acquired the mutex; otherwise the call is invalid.
- //
- // * The mutex being non-reentrant (or non-recursive) means that a call to
- // `Lock()` or `TryLock()` must not be made in a thread that already holds the
- // mutex; such a call is invalid.
- //
- // * In other words, the state of being "held" has both a temporal component
- // (from `Lock()` until `Unlock()`) as well as a thread identity component:
- // the mutex is held *by a particular thread*.
- //
- // An "invalid" operation has undefined behavior. The `Mutex` implementation
- // is allowed to do anything on an invalid call, including, but not limited to,
- // crashing with a useful error message, silently succeeding, or corrupting
- // data structures. In debug mode, the implementation may crash with a useful
- // error message.
- //
- // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
- // is, however, approximately fair over long periods, and starvation-free for
- // threads at the same priority.
- //
- // The lock/unlock primitives are now annotated with lock annotations
- // defined in (base/thread_annotations.h). When writing multi-threaded code,
- // you should use lock annotations whenever possible to document your lock
- // synchronization policy. Besides acting as documentation, these annotations
- // also help compilers or static analysis tools to identify and warn about
- // issues that could potentially result in race conditions and deadlocks.
- //
- // For more information about the lock annotations, please see
- // [Thread Safety
- // Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
- // documentation.
- //
- // See also `MutexLock`, below, for scoped `Mutex` acquisition.
- class Y_ABSL_LOCKABLE Mutex {
- public:
- // Creates a `Mutex` that is not held by anyone. This constructor is
- // typically used for Mutexes allocated on the heap or the stack.
- //
- // To create `Mutex` instances with static storage duration
- // (e.g. a namespace-scoped or global variable), see
- // `Mutex::Mutex(y_absl::kConstInit)` below instead.
- Mutex();
- // Creates a mutex with static storage duration. A global variable
- // constructed this way avoids the lifetime issues that can occur on program
- // startup and shutdown. (See y_absl/base/const_init.h.)
- //
- // For Mutexes allocated on the heap and stack, instead use the default
- // constructor, which can interact more fully with the thread sanitizer.
- //
- // Example usage:
- // namespace foo {
- // Y_ABSL_CONST_INIT y_absl::Mutex mu(y_absl::kConstInit);
- // }
- explicit constexpr Mutex(y_absl::ConstInitType);
- ~Mutex();
- // Mutex::Lock()
- //
- // Blocks the calling thread, if necessary, until this `Mutex` is free, and
- // then acquires it exclusively. (This lock is also known as a "write lock.")
- void Lock() Y_ABSL_EXCLUSIVE_LOCK_FUNCTION();
- // Mutex::Unlock()
- //
- // Releases this `Mutex` and returns it from the exclusive/write state to the
- // free state. Calling thread must hold the `Mutex` exclusively.
- void Unlock() Y_ABSL_UNLOCK_FUNCTION();
- // Mutex::TryLock()
- //
- // If the mutex can be acquired without blocking, does so exclusively and
- // returns `true`. Otherwise, returns `false`. Returns `true` with high
- // probability if the `Mutex` was free.
- bool TryLock() Y_ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
- // Mutex::AssertHeld()
- //
- // Require that the mutex be held exclusively (write mode) by this thread.
- //
- // If the mutex is not currently held by this thread, this function may report
- // an error (typically by crashing with a diagnostic) or it may do nothing.
- // This function is intended only as a tool to assist debugging; it doesn't
- // guarantee correctness.
- void AssertHeld() const Y_ABSL_ASSERT_EXCLUSIVE_LOCK();
- // ---------------------------------------------------------------------------
- // Reader-Writer Locking
- // ---------------------------------------------------------------------------
- // A Mutex can also be used as a starvation-free reader-writer lock.
- // Neither read-locks nor write-locks are reentrant/recursive to avoid
- // potential client programming errors.
- //
- // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
- // `Unlock()` and `TryLock()` methods for use within applications mixing
- // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
- // manner can make locking behavior clearer when mixing read and write modes.
- //
- // Introducing reader locks necessarily complicates the `Mutex` state
- // machine somewhat. The table below illustrates the allowed state transitions
- // of a mutex in such cases. Note that ReaderLock() may block even if the lock
- // is held in shared mode; this occurs when another thread is blocked on a
- // call to WriterLock().
- //
- // ---------------------------------------------------------------------------
- // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock()
- // ---------------------------------------------------------------------------
- // State
- // ---------------------------------------------------------------------------
- // Free Exclusive invalid Shared(1) invalid
- // Shared(1) blocks invalid Shared(2) or blocks Free
- // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1)
- // Exclusive blocks Free blocks invalid
- // ---------------------------------------------------------------------------
- //
- // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
- // Mutex::ReaderLock()
- //
- // Blocks the calling thread, if necessary, until this `Mutex` is either free,
- // or in shared mode, and then acquires a share of it. Note that
- // `ReaderLock()` will block if some other thread has an exclusive/writer lock
- // on the mutex.
- void ReaderLock() Y_ABSL_SHARED_LOCK_FUNCTION();
- // Mutex::ReaderUnlock()
- //
- // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
- // the free state if this thread holds the last reader lock on the mutex. Note
- // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
- void ReaderUnlock() Y_ABSL_UNLOCK_FUNCTION();
- // Mutex::ReaderTryLock()
- //
- // If the mutex can be acquired without blocking, acquires this mutex for
- // shared access and returns `true`. Otherwise, returns `false`. Returns
- // `true` with high probability if the `Mutex` was free or shared.
- bool ReaderTryLock() Y_ABSL_SHARED_TRYLOCK_FUNCTION(true);
- // Mutex::AssertReaderHeld()
- //
- // Require that the mutex be held at least in shared mode (read mode) by this
- // thread.
- //
- // If the mutex is not currently held by this thread, this function may report
- // an error (typically by crashing with a diagnostic) or it may do nothing.
- // This function is intended only as a tool to assist debugging; it doesn't
- // guarantee correctness.
- void AssertReaderHeld() const Y_ABSL_ASSERT_SHARED_LOCK();
- // Mutex::WriterLock()
- // Mutex::WriterUnlock()
- // Mutex::WriterTryLock()
- //
- // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
- //
- // These methods may be used (along with the complementary `Reader*()`
- // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
- // etc.) from reader/writer lock usage.
- void WriterLock() Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
- void WriterUnlock() Y_ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
- bool WriterTryLock() Y_ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
- return this->TryLock();
- }
- // ---------------------------------------------------------------------------
- // Conditional Critical Regions
- // ---------------------------------------------------------------------------
- // Conditional usage of a `Mutex` can occur using two distinct paradigms:
- //
- // * Use of `Mutex` member functions with `Condition` objects.
- // * Use of the separate `CondVar` abstraction.
- //
- // In general, prefer use of `Condition` and the `Mutex` member functions
- // listed below over `CondVar`. When there are multiple threads waiting on
- // distinctly different conditions, however, a battery of `CondVar`s may be
- // more efficient. This section discusses use of `Condition` objects.
- //
- // `Mutex` contains member functions for performing lock operations only under
- // certain conditions, of class `Condition`. For correctness, the `Condition`
- // must return a boolean that is a pure function, only of state protected by
- // the `Mutex`. The condition must be invariant w.r.t. environmental state
- // such as thread, cpu id, or time, and must be `noexcept`. The condition will
- // always be invoked with the mutex held in at least read mode, so you should
- // not block it for long periods or sleep it on a timer.
- //
- // Since a condition must not depend directly on the current time, use
- // `*WithTimeout()` member function variants to make your condition
- // effectively true after a given duration, or `*WithDeadline()` variants to
- // make your condition effectively true after a given time.
- //
- // The condition function should have no side-effects aside from debug
- // logging; as a special exception, the function may acquire other mutexes
- // provided it releases all those that it acquires. (This exception was
- // required to allow logging.)
- // Mutex::Await()
- //
- // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
- // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
- // same mode in which it was previously held. If the condition is initially
- // `true`, `Await()` *may* skip the release/re-acquire step.
- //
- // `Await()` requires that this thread holds this `Mutex` in some mode.
- void Await(const Condition& cond);
- // Mutex::LockWhen()
- // Mutex::ReaderLockWhen()
- // Mutex::WriterLockWhen()
- //
- // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
- // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
- // logically equivalent to `*Lock(); Await();` though they may have different
- // performance characteristics.
- void LockWhen(const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION();
- void ReaderLockWhen(const Condition& cond) Y_ABSL_SHARED_LOCK_FUNCTION();
- void WriterLockWhen(const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
- this->LockWhen(cond);
- }
- // ---------------------------------------------------------------------------
- // Mutex Variants with Timeouts/Deadlines
- // ---------------------------------------------------------------------------
- // Mutex::AwaitWithTimeout()
- // Mutex::AwaitWithDeadline()
- //
- // Unlocks this `Mutex` and blocks until simultaneously:
- // - either `cond` is true or the {timeout has expired, deadline has passed}
- // and
- // - this `Mutex` can be reacquired,
- // then reacquire this `Mutex` in the same mode in which it was previously
- // held, returning `true` iff `cond` is `true` on return.
- //
- // If the condition is initially `true`, the implementation *may* skip the
- // release/re-acquire step and return immediately.
- //
- // Deadlines in the past are equivalent to an immediate deadline.
- // Negative timeouts are equivalent to a zero timeout.
- //
- // This method requires that this thread holds this `Mutex` in some mode.
- bool AwaitWithTimeout(const Condition& cond, y_absl::Duration timeout);
- bool AwaitWithDeadline(const Condition& cond, y_absl::Time deadline);
- // Mutex::LockWhenWithTimeout()
- // Mutex::ReaderLockWhenWithTimeout()
- // Mutex::WriterLockWhenWithTimeout()
- //
- // Blocks until simultaneously both:
- // - either `cond` is `true` or the timeout has expired, and
- // - this `Mutex` can be acquired,
- // then atomically acquires this `Mutex`, returning `true` iff `cond` is
- // `true` on return.
- //
- // Negative timeouts are equivalent to a zero timeout.
- bool LockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION();
- bool ReaderLockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout)
- Y_ABSL_SHARED_LOCK_FUNCTION();
- bool WriterLockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
- return this->LockWhenWithTimeout(cond, timeout);
- }
- // Mutex::LockWhenWithDeadline()
- // Mutex::ReaderLockWhenWithDeadline()
- // Mutex::WriterLockWhenWithDeadline()
- //
- // Blocks until simultaneously both:
- // - either `cond` is `true` or the deadline has been passed, and
- // - this `Mutex` can be acquired,
- // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
- // on return.
- //
- // Deadlines in the past are equivalent to an immediate deadline.
- bool LockWhenWithDeadline(const Condition& cond, y_absl::Time deadline)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION();
- bool ReaderLockWhenWithDeadline(const Condition& cond, y_absl::Time deadline)
- Y_ABSL_SHARED_LOCK_FUNCTION();
- bool WriterLockWhenWithDeadline(const Condition& cond, y_absl::Time deadline)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
- return this->LockWhenWithDeadline(cond, deadline);
- }
- // ---------------------------------------------------------------------------
- // Debug Support: Invariant Checking, Deadlock Detection, Logging.
- // ---------------------------------------------------------------------------
- // Mutex::EnableInvariantDebugging()
- //
- // If `invariant`!=null and if invariant debugging has been enabled globally,
- // cause `(*invariant)(arg)` to be called at moments when the invariant for
- // this `Mutex` should hold (for example: just after acquire, just before
- // release).
- //
- // The routine `invariant` should have no side-effects since it is not
- // guaranteed how many times it will be called; it should check the invariant
- // and crash if it does not hold. Enabling global invariant debugging may
- // substantially reduce `Mutex` performance; it should be set only for
- // non-production runs. Optimization options may also disable invariant
- // checks.
- void EnableInvariantDebugging(void (*invariant)(void*), void* arg);
- // Mutex::EnableDebugLog()
- //
- // Cause all subsequent uses of this `Mutex` to be logged via
- // `Y_ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
- // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
- //
- // Note: This method substantially reduces `Mutex` performance.
- void EnableDebugLog(const char* name);
- // Deadlock detection
- // Mutex::ForgetDeadlockInfo()
- //
- // Forget any deadlock-detection information previously gathered
- // about this `Mutex`. Call this method in debug mode when the lock ordering
- // of a `Mutex` changes.
- void ForgetDeadlockInfo();
- // Mutex::AssertNotHeld()
- //
- // Return immediately if this thread does not hold this `Mutex` in any
- // mode; otherwise, may report an error (typically by crashing with a
- // diagnostic), or may return immediately.
- //
- // Currently this check is performed only if all of:
- // - in debug mode
- // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
- // - number of locks concurrently held by this thread is not large.
- // are true.
- void AssertNotHeld() const;
- // Special cases.
- // A `MuHow` is a constant that indicates how a lock should be acquired.
- // Internal implementation detail. Clients should ignore.
- typedef const struct MuHowS* MuHow;
- // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
- //
- // Causes the `Mutex` implementation to prepare itself for re-entry caused by
- // future use of `Mutex` within a fatal signal handler. This method is
- // intended for use only for last-ditch attempts to log crash information.
- // It does not guarantee that attempts to use Mutexes within the handler will
- // not deadlock; it merely makes other faults less likely.
- //
- // WARNING: This routine must be invoked from a signal handler, and the
- // signal handler must either loop forever or terminate the process.
- // Attempts to return from (or `longjmp` out of) the signal handler once this
- // call has been made may cause arbitrary program behaviour including
- // crashes and deadlocks.
- static void InternalAttemptToUseMutexInFatalSignalHandler();
- private:
- std::atomic<intptr_t> mu_; // The Mutex state.
- // Post()/Wait() versus associated PerThreadSem; in class for required
- // friendship with PerThreadSem.
- static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w);
- static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w,
- synchronization_internal::KernelTimeout t);
- // slow path acquire
- void LockSlowLoop(SynchWaitParams* waitp, int flags);
- // wrappers around LockSlowLoop()
- bool LockSlowWithDeadline(MuHow how, const Condition* cond,
- synchronization_internal::KernelTimeout t,
- int flags);
- void LockSlow(MuHow how, const Condition* cond,
- int flags) Y_ABSL_ATTRIBUTE_COLD;
- // slow path release
- void UnlockSlow(SynchWaitParams* waitp) Y_ABSL_ATTRIBUTE_COLD;
- // Common code between Await() and AwaitWithTimeout/Deadline()
- bool AwaitCommon(const Condition& cond,
- synchronization_internal::KernelTimeout t);
- // Attempt to remove thread s from queue.
- void TryRemove(base_internal::PerThreadSynch* s);
- // Block a thread on mutex.
- void Block(base_internal::PerThreadSynch* s);
- // Wake a thread; return successor.
- base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w);
- friend class CondVar; // for access to Trans()/Fer().
- void Trans(MuHow how); // used for CondVar->Mutex transfer
- void Fer(
- base_internal::PerThreadSynch* w); // used for CondVar->Mutex transfer
- // Catch the error of writing Mutex when intending MutexLock.
- explicit Mutex(const volatile Mutex* /*ignored*/) {}
- Mutex(const Mutex&) = delete;
- Mutex& operator=(const Mutex&) = delete;
- };
- // -----------------------------------------------------------------------------
- // Mutex RAII Wrappers
- // -----------------------------------------------------------------------------
- // MutexLock
- //
- // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
- // RAII.
- //
- // Example:
- //
- // Class Foo {
- // public:
- // Foo::Bar* Baz() {
- // MutexLock lock(&mu_);
- // ...
- // return bar;
- // }
- //
- // private:
- // Mutex mu_;
- // };
- class Y_ABSL_SCOPED_LOCKABLE MutexLock {
- public:
- // Constructors
- // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
- // guaranteed to be locked when this object is constructed. Requires that
- // `mu` be dereferenceable.
- explicit MutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
- this->mu_->Lock();
- }
- // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
- // the above, the condition given by `cond` is also guaranteed to hold when
- // this object is constructed.
- explicit MutexLock(Mutex* mu, const Condition& cond)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- this->mu_->LockWhen(cond);
- }
- MutexLock(const MutexLock&) = delete; // NOLINT(runtime/mutex)
- MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex)
- MutexLock& operator=(const MutexLock&) = delete;
- MutexLock& operator=(MutexLock&&) = delete;
- ~MutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
- private:
- Mutex* const mu_;
- };
- // ReaderMutexLock
- //
- // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
- // releases a shared lock on a `Mutex` via RAII.
- class Y_ABSL_SCOPED_LOCKABLE ReaderMutexLock {
- public:
- explicit ReaderMutexLock(Mutex* mu) Y_ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
- mu->ReaderLock();
- }
- explicit ReaderMutexLock(Mutex* mu, const Condition& cond)
- Y_ABSL_SHARED_LOCK_FUNCTION(mu)
- : mu_(mu) {
- mu->ReaderLockWhen(cond);
- }
- ReaderMutexLock(const ReaderMutexLock&) = delete;
- ReaderMutexLock(ReaderMutexLock&&) = delete;
- ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
- ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
- ~ReaderMutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
- private:
- Mutex* const mu_;
- };
- // WriterMutexLock
- //
- // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
- // releases a write (exclusive) lock on a `Mutex` via RAII.
- class Y_ABSL_SCOPED_LOCKABLE WriterMutexLock {
- public:
- explicit WriterMutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- mu->WriterLock();
- }
- explicit WriterMutexLock(Mutex* mu, const Condition& cond)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- mu->WriterLockWhen(cond);
- }
- WriterMutexLock(const WriterMutexLock&) = delete;
- WriterMutexLock(WriterMutexLock&&) = delete;
- WriterMutexLock& operator=(const WriterMutexLock&) = delete;
- WriterMutexLock& operator=(WriterMutexLock&&) = delete;
- ~WriterMutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
- private:
- Mutex* const mu_;
- };
- // -----------------------------------------------------------------------------
- // Condition
- // -----------------------------------------------------------------------------
- //
- // `Mutex` contains a number of member functions which take a `Condition` as an
- // argument; clients can wait for conditions to become `true` before attempting
- // to acquire the mutex. These sections are known as "condition critical"
- // sections. To use a `Condition`, you simply need to construct it, and use
- // within an appropriate `Mutex` member function; everything else in the
- // `Condition` class is an implementation detail.
- //
- // A `Condition` is specified as a function pointer which returns a boolean.
- // `Condition` functions should be pure functions -- their results should depend
- // only on passed arguments, should not consult any external state (such as
- // clocks), and should have no side-effects, aside from debug logging. Any
- // objects that the function may access should be limited to those which are
- // constant while the mutex is blocked on the condition (e.g. a stack variable),
- // or objects of state protected explicitly by the mutex.
- //
- // No matter which construction is used for `Condition`, the underlying
- // function pointer / functor / callable must not throw any
- // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
- // the face of a throwing `Condition`. (When Abseil is allowed to depend
- // on C++17, these function pointers will be explicitly marked
- // `noexcept`; until then this requirement cannot be enforced in the
- // type system.)
- //
- // Note: to use a `Condition`, you need only construct it and pass it to a
- // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
- // constructor of one of the scope guard classes.
- //
- // Example using LockWhen/Unlock:
- //
- // // assume count_ is not internal reference count
- // int count_ Y_ABSL_GUARDED_BY(mu_);
- // Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
- //
- // mu_.LockWhen(count_is_zero);
- // // ...
- // mu_.Unlock();
- //
- // Example using a scope guard:
- //
- // {
- // MutexLock lock(&mu_, count_is_zero);
- // // ...
- // }
- //
- // When multiple threads are waiting on exactly the same condition, make sure
- // that they are constructed with the same parameters (same pointer to function
- // + arg, or same pointer to object + method), so that the mutex implementation
- // can avoid redundantly evaluating the same condition for each thread.
- class Condition {
- public:
- // A Condition that returns the result of "(*func)(arg)"
- Condition(bool (*func)(void*), void* arg);
- // Templated version for people who are averse to casts.
- //
- // To use a lambda, prepend it with unary plus, which converts the lambda
- // into a function pointer:
- // Condition(+[](T* t) { return ...; }, arg).
- //
- // Note: lambdas in this case must contain no bound variables.
- //
- // See class comment for performance advice.
- template <typename T>
- Condition(bool (*func)(T*), T* arg);
- // Same as above, but allows for cases where `arg` comes from a pointer that
- // is convertible to the function parameter type `T*` but not an exact match.
- //
- // For example, the argument might be `X*` but the function takes `const X*`,
- // or the argument might be `Derived*` while the function takes `Base*`, and
- // so on for cases where the argument pointer can be implicitly converted.
- //
- // Implementation notes: This constructor overload is required in addition to
- // the one above to allow deduction of `T` from `arg` for cases such as where
- // a function template is passed as `func`. Also, the dummy `typename = void`
- // template parameter exists just to work around a MSVC mangling bug.
- template <typename T, typename = void>
- Condition(bool (*func)(T*), typename y_absl::internal::identity<T>::type* arg);
- // Templated version for invoking a method that returns a `bool`.
- //
- // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
- // `object->Method()`.
- //
- // Implementation Note: `y_absl::internal::identity` is used to allow methods to
- // come from base classes. A simpler signature like
- // `Condition(T*, bool (T::*)())` does not suffice.
- template <typename T>
- Condition(T* object, bool (y_absl::internal::identity<T>::type::*method)());
- // Same as above, for const members
- template <typename T>
- Condition(const T* object,
- bool (y_absl::internal::identity<T>::type::*method)() const);
- // A Condition that returns the value of `*cond`
- explicit Condition(const bool* cond);
- // Templated version for invoking a functor that returns a `bool`.
- // This approach accepts pointers to non-mutable lambdas, `std::function`,
- // the result of` std::bind` and user-defined functors that define
- // `bool F::operator()() const`.
- //
- // Example:
- //
- // auto reached = [this, current]() {
- // mu_.AssertReaderHeld(); // For annotalysis.
- // return processed_ >= current;
- // };
- // mu_.Await(Condition(&reached));
- //
- // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
- // the lambda as it may be called when the mutex is being unlocked from a
- // scope holding only a reader lock, which will make the assertion not
- // fulfilled and crash the binary.
- // See class comment for performance advice. In particular, if there
- // might be more than one waiter for the same condition, make sure
- // that all waiters construct the condition with the same pointers.
- // Implementation note: The second template parameter ensures that this
- // constructor doesn't participate in overload resolution if T doesn't have
- // `bool operator() const`.
- template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
- &T::operator()))>
- explicit Condition(const T* obj)
- : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
- // A Condition that always returns `true`.
- // kTrue is only useful in a narrow set of circumstances, mostly when
- // it's passed conditionally. For example:
- //
- // mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
- //
- // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
- // don't return immediately when the timeout happens, they still block until
- // the Mutex becomes available. The return value of these methods does
- // not indicate if the timeout was reached; rather it indicates whether or
- // not the condition is true.
- Y_ABSL_CONST_INIT static const Condition kTrue;
- // Evaluates the condition.
- bool Eval() const;
- // Returns `true` if the two conditions are guaranteed to return the same
- // value if evaluated at the same time, `false` if the evaluation *may* return
- // different results.
- //
- // Two `Condition` values are guaranteed equal if both their `func` and `arg`
- // components are the same. A null pointer is equivalent to a `true`
- // condition.
- static bool GuaranteedEqual(const Condition* a, const Condition* b);
- private:
- // Sizing an allocation for a method pointer can be subtle. In the Itanium
- // specifications, a method pointer has a predictable, uniform size. On the
- // other hand, MSVC ABI, method pointer sizes vary based on the
- // inheritance of the class. Specifically, method pointers from classes with
- // multiple inheritance are bigger than those of classes with single
- // inheritance. Other variations also exist.
- #ifndef _MSC_VER
- // Allocation for a function pointer or method pointer.
- // The {0} initializer ensures that all unused bytes of this buffer are
- // always zeroed out. This is necessary, because GuaranteedEqual() compares
- // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
- using MethodPtr = bool (Condition::*)();
- char callback_[sizeof(MethodPtr)] = {0};
- #else
- // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
- // may be the largest known pointer-to-member of any platform. For this
- // reason we will allocate 24 bytes for MSVC platform toolchains.
- char callback_[24] = {0};
- #endif
- // Function with which to evaluate callbacks and/or arguments.
- bool (*eval_)(const Condition*) = nullptr;
- // Either an argument for a function call or an object for a method call.
- void* arg_ = nullptr;
- // Various functions eval_ can point to:
- static bool CallVoidPtrFunction(const Condition*);
- template <typename T>
- static bool CastAndCallFunction(const Condition* c);
- template <typename T>
- static bool CastAndCallMethod(const Condition* c);
- // Helper methods for storing, validating, and reading callback arguments.
- template <typename T>
- inline void StoreCallback(T callback) {
- static_assert(
- sizeof(callback) <= sizeof(callback_),
- "An overlarge pointer was passed as a callback to Condition.");
- std::memcpy(callback_, &callback, sizeof(callback));
- }
- template <typename T>
- inline void ReadCallback(T* callback) const {
- std::memcpy(callback, callback_, sizeof(*callback));
- }
- // Used only to create kTrue.
- constexpr Condition() = default;
- };
- // -----------------------------------------------------------------------------
- // CondVar
- // -----------------------------------------------------------------------------
- //
- // A condition variable, reflecting state evaluated separately outside of the
- // `Mutex` object, which can be signaled to wake callers.
- // This class is not normally needed; use `Mutex` member functions such as
- // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
- // with many threads and many conditions, `CondVar` may be faster.
- //
- // The implementation may deliver signals to any condition variable at
- // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
- // result, upon being awoken, you must check the logical condition you have
- // been waiting upon.
- //
- // Examples:
- //
- // Usage for a thread waiting for some condition C protected by mutex mu:
- // mu.Lock();
- // while (!C) { cv->Wait(&mu); } // releases and reacquires mu
- // // C holds; process data
- // mu.Unlock();
- //
- // Usage to wake T is:
- // mu.Lock();
- // // process data, possibly establishing C
- // if (C) { cv->Signal(); }
- // mu.Unlock();
- //
- // If C may be useful to more than one waiter, use `SignalAll()` instead of
- // `Signal()`.
- //
- // With this implementation it is efficient to use `Signal()/SignalAll()` inside
- // the locked region; this usage can make reasoning about your program easier.
- //
- class CondVar {
- public:
- // A `CondVar` allocated on the heap or on the stack can use the this
- // constructor.
- CondVar();
- ~CondVar();
- // CondVar::Wait()
- //
- // Atomically releases a `Mutex` and blocks on this condition variable.
- // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
- // spurious wakeup), then reacquires the `Mutex` and returns.
- //
- // Requires and ensures that the current thread holds the `Mutex`.
- void Wait(Mutex* mu);
- // CondVar::WaitWithTimeout()
- //
- // Atomically releases a `Mutex` and blocks on this condition variable.
- // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
- // spurious wakeup), or until the timeout has expired, then reacquires
- // the `Mutex` and returns.
- //
- // Returns true if the timeout has expired without this `CondVar`
- // being signalled in any manner. If both the timeout has expired
- // and this `CondVar` has been signalled, the implementation is free
- // to return `true` or `false`.
- //
- // Requires and ensures that the current thread holds the `Mutex`.
- bool WaitWithTimeout(Mutex* mu, y_absl::Duration timeout);
- // CondVar::WaitWithDeadline()
- //
- // Atomically releases a `Mutex` and blocks on this condition variable.
- // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
- // spurious wakeup), or until the deadline has passed, then reacquires
- // the `Mutex` and returns.
- //
- // Deadlines in the past are equivalent to an immediate deadline.
- //
- // Returns true if the deadline has passed without this `CondVar`
- // being signalled in any manner. If both the deadline has passed
- // and this `CondVar` has been signalled, the implementation is free
- // to return `true` or `false`.
- //
- // Requires and ensures that the current thread holds the `Mutex`.
- bool WaitWithDeadline(Mutex* mu, y_absl::Time deadline);
- // CondVar::Signal()
- //
- // Signal this `CondVar`; wake at least one waiter if one exists.
- void Signal();
- // CondVar::SignalAll()
- //
- // Signal this `CondVar`; wake all waiters.
- void SignalAll();
- // CondVar::EnableDebugLog()
- //
- // Causes all subsequent uses of this `CondVar` to be logged via
- // `Y_ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
- // Note: this method substantially reduces `CondVar` performance.
- void EnableDebugLog(const char* name);
- private:
- bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t);
- void Remove(base_internal::PerThreadSynch* s);
- void Wakeup(base_internal::PerThreadSynch* w);
- std::atomic<intptr_t> cv_; // Condition variable state.
- CondVar(const CondVar&) = delete;
- CondVar& operator=(const CondVar&) = delete;
- };
- // Variants of MutexLock.
- //
- // If you find yourself using one of these, consider instead using
- // Mutex::Unlock() and/or if-statements for clarity.
- // MutexLockMaybe
- //
- // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
- class Y_ABSL_SCOPED_LOCKABLE MutexLockMaybe {
- public:
- explicit MutexLockMaybe(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- if (this->mu_ != nullptr) {
- this->mu_->Lock();
- }
- }
- explicit MutexLockMaybe(Mutex* mu, const Condition& cond)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- if (this->mu_ != nullptr) {
- this->mu_->LockWhen(cond);
- }
- }
- ~MutexLockMaybe() Y_ABSL_UNLOCK_FUNCTION() {
- if (this->mu_ != nullptr) {
- this->mu_->Unlock();
- }
- }
- private:
- Mutex* const mu_;
- MutexLockMaybe(const MutexLockMaybe&) = delete;
- MutexLockMaybe(MutexLockMaybe&&) = delete;
- MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
- MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
- };
- // ReleasableMutexLock
- //
- // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
- // mutex before destruction. `Release()` may be called at most once.
- class Y_ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
- public:
- explicit ReleasableMutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- this->mu_->Lock();
- }
- explicit ReleasableMutexLock(Mutex* mu, const Condition& cond)
- Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
- : mu_(mu) {
- this->mu_->LockWhen(cond);
- }
- ~ReleasableMutexLock() Y_ABSL_UNLOCK_FUNCTION() {
- if (this->mu_ != nullptr) {
- this->mu_->Unlock();
- }
- }
- void Release() Y_ABSL_UNLOCK_FUNCTION();
- private:
- Mutex* mu_;
- ReleasableMutexLock(const ReleasableMutexLock&) = delete;
- ReleasableMutexLock(ReleasableMutexLock&&) = delete;
- ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
- ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
- };
- inline Mutex::Mutex() : mu_(0) {
- Y_ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
- }
- inline constexpr Mutex::Mutex(y_absl::ConstInitType) : mu_(0) {}
- inline CondVar::CondVar() : cv_(0) {}
- // static
- template <typename T>
- bool Condition::CastAndCallMethod(const Condition* c) {
- T* object = static_cast<T*>(c->arg_);
- bool (T::*method_pointer)();
- c->ReadCallback(&method_pointer);
- return (object->*method_pointer)();
- }
- // static
- template <typename T>
- bool Condition::CastAndCallFunction(const Condition* c) {
- bool (*function)(T*);
- c->ReadCallback(&function);
- T* argument = static_cast<T*>(c->arg_);
- return (*function)(argument);
- }
- template <typename T>
- inline Condition::Condition(bool (*func)(T*), T* arg)
- : eval_(&CastAndCallFunction<T>),
- arg_(const_cast<void*>(static_cast<const void*>(arg))) {
- static_assert(sizeof(&func) <= sizeof(callback_),
- "An overlarge function pointer was passed to Condition.");
- StoreCallback(func);
- }
- template <typename T, typename>
- inline Condition::Condition(bool (*func)(T*),
- typename y_absl::internal::identity<T>::type* arg)
- // Just delegate to the overload above.
- : Condition(func, arg) {}
- template <typename T>
- inline Condition::Condition(T* object,
- bool (y_absl::internal::identity<T>::type::*method)())
- : eval_(&CastAndCallMethod<T>), arg_(object) {
- static_assert(sizeof(&method) <= sizeof(callback_),
- "An overlarge method pointer was passed to Condition.");
- StoreCallback(method);
- }
- template <typename T>
- inline Condition::Condition(const T* object,
- bool (y_absl::internal::identity<T>::type::*method)()
- const)
- : eval_(&CastAndCallMethod<T>),
- arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
- StoreCallback(method);
- }
- // Register hooks for profiling support.
- //
- // The function pointer registered here will be called whenever a mutex is
- // contended. The callback is given the cycles for which waiting happened (as
- // measured by //y_absl/base/internal/cycleclock.h, and which may not
- // be real "cycle" counts.)
- //
- // There is no ordering guarantee between when the hook is registered and when
- // callbacks will begin. Only a single profiler can be installed in a running
- // binary; if this function is called a second time with a different function
- // pointer, the value is ignored (and will cause an assertion failure in debug
- // mode.)
- void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
- // Register a hook for Mutex tracing.
- //
- // The function pointer registered here will be called whenever a mutex is
- // contended. The callback is given an opaque handle to the contended mutex,
- // an event name, and the number of wait cycles (as measured by
- // //y_absl/base/internal/cycleclock.h, and which may not be real
- // "cycle" counts.)
- //
- // The only event name currently sent is "slow release".
- //
- // This has the same ordering and single-use limitations as
- // RegisterMutexProfiler() above.
- void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
- int64_t wait_cycles));
- // Register a hook for CondVar tracing.
- //
- // The function pointer registered here will be called here on various CondVar
- // events. The callback is given an opaque handle to the CondVar object and
- // a string identifying the event. This is thread-safe, but only a single
- // tracer can be registered.
- //
- // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
- // "SignalAll wakeup".
- //
- // This has the same ordering and single-use limitations as
- // RegisterMutexProfiler() above.
- void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv));
- void ResetDeadlockGraphMu();
- // EnableMutexInvariantDebugging()
- //
- // Enable or disable global support for Mutex invariant debugging. If enabled,
- // then invariant predicates can be registered per-Mutex for debug checking.
- // See Mutex::EnableInvariantDebugging().
- void EnableMutexInvariantDebugging(bool enabled);
- // When in debug mode, and when the feature has been enabled globally, the
- // implementation will keep track of lock ordering and complain (or optionally
- // crash) if a cycle is detected in the acquired-before graph.
- // Possible modes of operation for the deadlock detector in debug mode.
- enum class OnDeadlockCycle {
- kIgnore, // Neither report on nor attempt to track cycles in lock ordering
- kReport, // Report lock cycles to stderr when detected
- kAbort, // Report lock cycles to stderr when detected, then abort
- };
- // SetMutexDeadlockDetectionMode()
- //
- // Enable or disable global support for detection of potential deadlocks
- // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of
- // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph
- // will be maintained internally, and detected cycles will be reported in
- // the manner chosen here.
- void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- // In some build configurations we pass --detect-odr-violations to the
- // gold linker. This causes it to flag weak symbol overrides as ODR
- // violations. Because ODR only applies to C++ and not C,
- // --detect-odr-violations ignores symbols not mangled with C++ names.
- // By changing our extension points to be extern "C", we dodge this
- // check.
- extern "C" {
- void Y_ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
- } // extern "C"
- #endif // Y_ABSL_SYNCHRONIZATION_MUTEX_H_
|