123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "y_absl/strings/internal/charconv_parse.h"
- #include "y_absl/strings/charconv.h"
- #include <cassert>
- #include <cstdint>
- #include <limits>
- #include "y_absl/strings/internal/memutil.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace {
- // ParseFloat<10> will read the first 19 significant digits of the mantissa.
- // This number was chosen for multiple reasons.
- //
- // (a) First, for whatever integer type we choose to represent the mantissa, we
- // want to choose the largest possible number of decimal digits for that integer
- // type. We are using uint64_t, which can express any 19-digit unsigned
- // integer.
- //
- // (b) Second, we need to parse enough digits that the binary value of any
- // mantissa we capture has more bits of resolution than the mantissa
- // representation in the target float. Our algorithm requires at least 3 bits
- // of headway, but 19 decimal digits give a little more than that.
- //
- // The following static assertions verify the above comments:
- constexpr int kDecimalMantissaDigitsMax = 19;
- static_assert(std::numeric_limits<uint64_t>::digits10 ==
- kDecimalMantissaDigitsMax,
- "(a) above");
- // IEEE doubles, which we assume in Abseil, have 53 binary bits of mantissa.
- static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed");
- static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact");
- static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact");
- // The lowest valued 19-digit decimal mantissa we can read still contains
- // sufficient information to reconstruct a binary mantissa.
- static_assert(1000000000000000000u > (uint64_t{1} << (53 + 3)), "(b) above");
- // ParseFloat<16> will read the first 15 significant digits of the mantissa.
- //
- // Because a base-16-to-base-2 conversion can be done exactly, we do not need
- // to maximize the number of scanned hex digits to improve our conversion. What
- // is required is to scan two more bits than the mantissa can represent, so that
- // we always round correctly.
- //
- // (One extra bit does not suffice to perform correct rounding, since a number
- // exactly halfway between two representable floats has unique rounding rules,
- // so we need to differentiate between a "halfway between" number and a "closer
- // to the larger value" number.)
- constexpr int kHexadecimalMantissaDigitsMax = 15;
- // The minimum number of significant bits that will be read from
- // kHexadecimalMantissaDigitsMax hex digits. We must subtract by three, since
- // the most significant digit can be a "1", which only contributes a single
- // significant bit.
- constexpr int kGuaranteedHexadecimalMantissaBitPrecision =
- 4 * kHexadecimalMantissaDigitsMax - 3;
- static_assert(kGuaranteedHexadecimalMantissaBitPrecision >
- std::numeric_limits<double>::digits + 2,
- "kHexadecimalMantissaDigitsMax too small");
- // We also impose a limit on the number of significant digits we will read from
- // an exponent, to avoid having to deal with integer overflow. We use 9 for
- // this purpose.
- //
- // If we read a 9 digit exponent, the end result of the conversion will
- // necessarily be infinity or zero, depending on the sign of the exponent.
- // Therefore we can just drop extra digits on the floor without any extra
- // logic.
- constexpr int kDecimalExponentDigitsMax = 9;
- static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax,
- "int type too small");
- // To avoid incredibly large inputs causing integer overflow for our exponent,
- // we impose an arbitrary but very large limit on the number of significant
- // digits we will accept. The implementation refuses to match a string with
- // more consecutive significant mantissa digits than this.
- constexpr int kDecimalDigitLimit = 50000000;
- // Corresponding limit for hexadecimal digit inputs. This is one fourth the
- // amount of kDecimalDigitLimit, since each dropped hexadecimal digit requires
- // a binary exponent adjustment of 4.
- constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4;
- // The largest exponent we can read is 999999999 (per
- // kDecimalExponentDigitsMax), and the largest exponent adjustment we can get
- // from dropped mantissa digits is 2 * kDecimalDigitLimit, and the sum of these
- // comfortably fits in an integer.
- //
- // We count kDecimalDigitLimit twice because there are independent limits for
- // numbers before and after the decimal point. (In the case where there are no
- // significant digits before the decimal point, there are independent limits for
- // post-decimal-point leading zeroes and for significant digits.)
- static_assert(999999999 + 2 * kDecimalDigitLimit <
- std::numeric_limits<int>::max(),
- "int type too small");
- static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) <
- std::numeric_limits<int>::max(),
- "int type too small");
- // Returns true if the provided bitfield allows parsing an exponent value
- // (e.g., "1.5e100").
- bool AllowExponent(chars_format flags) {
- bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
- bool scientific =
- (flags & chars_format::scientific) == chars_format::scientific;
- return scientific || !fixed;
- }
- // Returns true if the provided bitfield requires an exponent value be present.
- bool RequireExponent(chars_format flags) {
- bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
- bool scientific =
- (flags & chars_format::scientific) == chars_format::scientific;
- return scientific && !fixed;
- }
- const int8_t kAsciiToInt[256] = {
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8,
- 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1, -1};
- // Returns true if `ch` is a digit in the given base
- template <int base>
- bool IsDigit(char ch);
- // Converts a valid `ch` to its digit value in the given base.
- template <int base>
- unsigned ToDigit(char ch);
- // Returns true if `ch` is the exponent delimiter for the given base.
- template <int base>
- bool IsExponentCharacter(char ch);
- // Returns the maximum number of significant digits we will read for a float
- // in the given base.
- template <int base>
- constexpr int MantissaDigitsMax();
- // Returns the largest consecutive run of digits we will accept when parsing a
- // number in the given base.
- template <int base>
- constexpr int DigitLimit();
- // Returns the amount the exponent must be adjusted by for each dropped digit.
- // (For decimal this is 1, since the digits are in base 10 and the exponent base
- // is also 10, but for hexadecimal this is 4, since the digits are base 16 but
- // the exponent base is 2.)
- template <int base>
- constexpr int DigitMagnitude();
- template <>
- bool IsDigit<10>(char ch) {
- return ch >= '0' && ch <= '9';
- }
- template <>
- bool IsDigit<16>(char ch) {
- return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0;
- }
- template <>
- unsigned ToDigit<10>(char ch) {
- return static_cast<unsigned>(ch - '0');
- }
- template <>
- unsigned ToDigit<16>(char ch) {
- return static_cast<unsigned>(kAsciiToInt[static_cast<unsigned char>(ch)]);
- }
- template <>
- bool IsExponentCharacter<10>(char ch) {
- return ch == 'e' || ch == 'E';
- }
- template <>
- bool IsExponentCharacter<16>(char ch) {
- return ch == 'p' || ch == 'P';
- }
- template <>
- constexpr int MantissaDigitsMax<10>() {
- return kDecimalMantissaDigitsMax;
- }
- template <>
- constexpr int MantissaDigitsMax<16>() {
- return kHexadecimalMantissaDigitsMax;
- }
- template <>
- constexpr int DigitLimit<10>() {
- return kDecimalDigitLimit;
- }
- template <>
- constexpr int DigitLimit<16>() {
- return kHexadecimalDigitLimit;
- }
- template <>
- constexpr int DigitMagnitude<10>() {
- return 1;
- }
- template <>
- constexpr int DigitMagnitude<16>() {
- return 4;
- }
- // Reads decimal digits from [begin, end) into *out. Returns the number of
- // digits consumed.
- //
- // After max_digits has been read, keeps consuming characters, but no longer
- // adjusts *out. If a nonzero digit is dropped this way, *dropped_nonzero_digit
- // is set; otherwise, it is left unmodified.
- //
- // If no digits are matched, returns 0 and leaves *out unchanged.
- //
- // ConsumeDigits does not protect against overflow on *out; max_digits must
- // be chosen with respect to type T to avoid the possibility of overflow.
- template <int base, typename T>
- int ConsumeDigits(const char* begin, const char* end, int max_digits, T* out,
- bool* dropped_nonzero_digit) {
- if (base == 10) {
- assert(max_digits <= std::numeric_limits<T>::digits10);
- } else if (base == 16) {
- assert(max_digits * 4 <= std::numeric_limits<T>::digits);
- }
- const char* const original_begin = begin;
- // Skip leading zeros, but only if *out is zero.
- // They don't cause an overflow so we don't have to count them for
- // `max_digits`.
- while (!*out && end != begin && *begin == '0') ++begin;
- T accumulator = *out;
- const char* significant_digits_end =
- (end - begin > max_digits) ? begin + max_digits : end;
- while (begin < significant_digits_end && IsDigit<base>(*begin)) {
- // Do not guard against *out overflow; max_digits was chosen to avoid this.
- // Do assert against it, to detect problems in debug builds.
- auto digit = static_cast<T>(ToDigit<base>(*begin));
- assert(accumulator * base >= accumulator);
- accumulator *= base;
- assert(accumulator + digit >= accumulator);
- accumulator += digit;
- ++begin;
- }
- bool dropped_nonzero = false;
- while (begin < end && IsDigit<base>(*begin)) {
- dropped_nonzero = dropped_nonzero || (*begin != '0');
- ++begin;
- }
- if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
- *dropped_nonzero_digit = true;
- }
- *out = accumulator;
- return static_cast<int>(begin - original_begin);
- }
- // Returns true if `v` is one of the chars allowed inside parentheses following
- // a NaN.
- bool IsNanChar(char v) {
- return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') ||
- (v >= 'A' && v <= 'Z');
- }
- // Checks the range [begin, end) for a strtod()-formatted infinity or NaN. If
- // one is found, sets `out` appropriately and returns true.
- bool ParseInfinityOrNan(const char* begin, const char* end,
- strings_internal::ParsedFloat* out) {
- if (end - begin < 3) {
- return false;
- }
- switch (*begin) {
- case 'i':
- case 'I': {
- // An infinity string consists of the characters "inf" or "infinity",
- // case insensitive.
- if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) {
- return false;
- }
- out->type = strings_internal::FloatType::kInfinity;
- if (end - begin >= 8 &&
- strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) {
- out->end = begin + 8;
- } else {
- out->end = begin + 3;
- }
- return true;
- }
- case 'n':
- case 'N': {
- // A NaN consists of the characters "nan", case insensitive, optionally
- // followed by a parenthesized sequence of zero or more alphanumeric
- // characters and/or underscores.
- if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) {
- return false;
- }
- out->type = strings_internal::FloatType::kNan;
- out->end = begin + 3;
- // NaN is allowed to be followed by a parenthesized string, consisting of
- // only the characters [a-zA-Z0-9_]. Match that if it's present.
- begin += 3;
- if (begin < end && *begin == '(') {
- const char* nan_begin = begin + 1;
- while (nan_begin < end && IsNanChar(*nan_begin)) {
- ++nan_begin;
- }
- if (nan_begin < end && *nan_begin == ')') {
- // We found an extra NaN specifier range
- out->subrange_begin = begin + 1;
- out->subrange_end = nan_begin;
- out->end = nan_begin + 1;
- }
- }
- return true;
- }
- default:
- return false;
- }
- }
- } // namespace
- namespace strings_internal {
- template <int base>
- strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
- chars_format format_flags) {
- strings_internal::ParsedFloat result;
- // Exit early if we're given an empty range.
- if (begin == end) return result;
- // Handle the infinity and NaN cases.
- if (ParseInfinityOrNan(begin, end, &result)) {
- return result;
- }
- const char* const mantissa_begin = begin;
- while (begin < end && *begin == '0') {
- ++begin; // skip leading zeros
- }
- uint64_t mantissa = 0;
- int exponent_adjustment = 0;
- bool mantissa_is_inexact = false;
- int pre_decimal_digits = ConsumeDigits<base>(
- begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
- begin += pre_decimal_digits;
- int digits_left;
- if (pre_decimal_digits >= DigitLimit<base>()) {
- // refuse to parse pathological inputs
- return result;
- } else if (pre_decimal_digits > MantissaDigitsMax<base>()) {
- // We dropped some non-fraction digits on the floor. Adjust our exponent
- // to compensate.
- exponent_adjustment =
- static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>());
- digits_left = 0;
- } else {
- digits_left =
- static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits);
- }
- if (begin < end && *begin == '.') {
- ++begin;
- if (mantissa == 0) {
- // If we haven't seen any nonzero digits yet, keep skipping zeros. We
- // have to adjust the exponent to reflect the changed place value.
- const char* begin_zeros = begin;
- while (begin < end && *begin == '0') {
- ++begin;
- }
- int zeros_skipped = static_cast<int>(begin - begin_zeros);
- if (zeros_skipped >= DigitLimit<base>()) {
- // refuse to parse pathological inputs
- return result;
- }
- exponent_adjustment -= static_cast<int>(zeros_skipped);
- }
- int post_decimal_digits = ConsumeDigits<base>(
- begin, end, digits_left, &mantissa, &mantissa_is_inexact);
- begin += post_decimal_digits;
- // Since `mantissa` is an integer, each significant digit we read after
- // the decimal point requires an adjustment to the exponent. "1.23e0" will
- // be stored as `mantissa` == 123 and `exponent` == -2 (that is,
- // "123e-2").
- if (post_decimal_digits >= DigitLimit<base>()) {
- // refuse to parse pathological inputs
- return result;
- } else if (post_decimal_digits > digits_left) {
- exponent_adjustment -= digits_left;
- } else {
- exponent_adjustment -= post_decimal_digits;
- }
- }
- // If we've found no mantissa whatsoever, this isn't a number.
- if (mantissa_begin == begin) {
- return result;
- }
- // A bare "." doesn't count as a mantissa either.
- if (begin - mantissa_begin == 1 && *mantissa_begin == '.') {
- return result;
- }
- if (mantissa_is_inexact) {
- // We dropped significant digits on the floor. Handle this appropriately.
- if (base == 10) {
- // If we truncated significant decimal digits, store the full range of the
- // mantissa for future big integer math for exact rounding.
- result.subrange_begin = mantissa_begin;
- result.subrange_end = begin;
- } else if (base == 16) {
- // If we truncated hex digits, reflect this fact by setting the low
- // ("sticky") bit. This allows for correct rounding in all cases.
- mantissa |= 1;
- }
- }
- result.mantissa = mantissa;
- const char* const exponent_begin = begin;
- result.literal_exponent = 0;
- bool found_exponent = false;
- if (AllowExponent(format_flags) && begin < end &&
- IsExponentCharacter<base>(*begin)) {
- bool negative_exponent = false;
- ++begin;
- if (begin < end && *begin == '-') {
- negative_exponent = true;
- ++begin;
- } else if (begin < end && *begin == '+') {
- ++begin;
- }
- const char* const exponent_digits_begin = begin;
- // Exponent is always expressed in decimal, even for hexadecimal floats.
- begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax,
- &result.literal_exponent, nullptr);
- if (begin == exponent_digits_begin) {
- // there were no digits where we expected an exponent. We failed to read
- // an exponent and should not consume the 'e' after all. Rewind 'begin'.
- found_exponent = false;
- begin = exponent_begin;
- } else {
- found_exponent = true;
- if (negative_exponent) {
- result.literal_exponent = -result.literal_exponent;
- }
- }
- }
- if (!found_exponent && RequireExponent(format_flags)) {
- // Provided flags required an exponent, but none was found. This results
- // in a failure to scan.
- return result;
- }
- // Success!
- result.type = strings_internal::FloatType::kNumber;
- if (result.mantissa > 0) {
- result.exponent = result.literal_exponent +
- (DigitMagnitude<base>() * exponent_adjustment);
- } else {
- result.exponent = 0;
- }
- result.end = begin;
- return result;
- }
- template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
- chars_format format_flags);
- template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
- chars_format format_flags);
- } // namespace strings_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
|