123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef Y_ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
- #define Y_ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
- #include <algorithm>
- #include <cstdint>
- #include <iostream>
- #include <util/generic/string.h>
- #include "y_absl/base/config.h"
- #include "y_absl/strings/ascii.h"
- #include "y_absl/strings/internal/charconv_parse.h"
- #include "y_absl/strings/string_view.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace strings_internal {
- // The largest power that 5 that can be raised to, and still fit in a uint32_t.
- constexpr int kMaxSmallPowerOfFive = 13;
- // The largest power that 10 that can be raised to, and still fit in a uint32_t.
- constexpr int kMaxSmallPowerOfTen = 9;
- Y_ABSL_DLL extern const uint32_t
- kFiveToNth[kMaxSmallPowerOfFive + 1];
- Y_ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];
- // Large, fixed-width unsigned integer.
- //
- // Exact rounding for decimal-to-binary floating point conversion requires very
- // large integer math, but a design goal of y_absl::from_chars is to avoid
- // allocating memory. The integer precision needed for decimal-to-binary
- // conversions is large but bounded, so a huge fixed-width integer class
- // suffices.
- //
- // This is an intentionally limited big integer class. Only needed operations
- // are implemented. All storage lives in an array data member, and all
- // arithmetic is done in-place, to avoid requiring separate storage for operand
- // and result.
- //
- // This is an internal class. Some methods live in the .cc file, and are
- // instantiated only for the values of max_words we need.
- template <int max_words>
- class BigUnsigned {
- public:
- static_assert(max_words == 4 || max_words == 84,
- "unsupported max_words value");
- BigUnsigned() : size_(0), words_{} {}
- explicit constexpr BigUnsigned(uint64_t v)
- : size_((v >> 32) ? 2 : v ? 1 : 0),
- words_{static_cast<uint32_t>(v & 0xffffffffu),
- static_cast<uint32_t>(v >> 32)} {}
- // Constructs a BigUnsigned from the given string_view containing a decimal
- // value. If the input string is not a decimal integer, constructs a 0
- // instead.
- explicit BigUnsigned(y_absl::string_view sv) : size_(0), words_{} {
- // Check for valid input, returning a 0 otherwise. This is reasonable
- // behavior only because this constructor is for unit tests.
- if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
- sv.empty()) {
- return;
- }
- int exponent_adjust =
- ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
- if (exponent_adjust > 0) {
- MultiplyByTenToTheNth(exponent_adjust);
- }
- }
- // Loads the mantissa value of a previously-parsed float.
- //
- // Returns the associated decimal exponent. The value of the parsed float is
- // exactly *this * 10**exponent.
- int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);
- // Returns the number of decimal digits of precision this type provides. All
- // numbers with this many decimal digits or fewer are representable by this
- // type.
- //
- // Analogous to std::numeric_limits<BigUnsigned>::digits10.
- static constexpr int Digits10() {
- // 9975007/1035508 is very slightly less than log10(2**32).
- return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
- }
- // Shifts left by the given number of bits.
- void ShiftLeft(int count) {
- if (count > 0) {
- const int word_shift = count / 32;
- if (word_shift >= max_words) {
- SetToZero();
- return;
- }
- size_ = (std::min)(size_ + word_shift, max_words);
- count %= 32;
- if (count == 0) {
- std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
- } else {
- for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) {
- words_[i] = (words_[i - word_shift] << count) |
- (words_[i - word_shift - 1] >> (32 - count));
- }
- words_[word_shift] = words_[0] << count;
- // Grow size_ if necessary.
- if (size_ < max_words && words_[size_]) {
- ++size_;
- }
- }
- std::fill_n(words_, word_shift, 0u);
- }
- }
- // Multiplies by v in-place.
- void MultiplyBy(uint32_t v) {
- if (size_ == 0 || v == 1) {
- return;
- }
- if (v == 0) {
- SetToZero();
- return;
- }
- const uint64_t factor = v;
- uint64_t window = 0;
- for (int i = 0; i < size_; ++i) {
- window += factor * words_[i];
- words_[i] = window & 0xffffffff;
- window >>= 32;
- }
- // If carry bits remain and there's space for them, grow size_.
- if (window && size_ < max_words) {
- words_[size_] = window & 0xffffffff;
- ++size_;
- }
- }
- void MultiplyBy(uint64_t v) {
- uint32_t words[2];
- words[0] = static_cast<uint32_t>(v);
- words[1] = static_cast<uint32_t>(v >> 32);
- if (words[1] == 0) {
- MultiplyBy(words[0]);
- } else {
- MultiplyBy(2, words);
- }
- }
- // Multiplies in place by 5 to the power of n. n must be non-negative.
- void MultiplyByFiveToTheNth(int n) {
- while (n >= kMaxSmallPowerOfFive) {
- MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
- n -= kMaxSmallPowerOfFive;
- }
- if (n > 0) {
- MultiplyBy(kFiveToNth[n]);
- }
- }
- // Multiplies in place by 10 to the power of n. n must be non-negative.
- void MultiplyByTenToTheNth(int n) {
- if (n > kMaxSmallPowerOfTen) {
- // For large n, raise to a power of 5, then shift left by the same amount.
- // (10**n == 5**n * 2**n.) This requires fewer multiplications overall.
- MultiplyByFiveToTheNth(n);
- ShiftLeft(n);
- } else if (n > 0) {
- // We can do this more quickly for very small N by using a single
- // multiplication.
- MultiplyBy(kTenToNth[n]);
- }
- }
- // Returns the value of 5**n, for non-negative n. This implementation uses
- // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling
- // MultiplyByFiveToTheNth().
- static BigUnsigned FiveToTheNth(int n);
- // Multiplies by another BigUnsigned, in-place.
- template <int M>
- void MultiplyBy(const BigUnsigned<M>& other) {
- MultiplyBy(other.size(), other.words());
- }
- void SetToZero() {
- std::fill_n(words_, size_, 0u);
- size_ = 0;
- }
- // Returns the value of the nth word of this BigUnsigned. This is
- // range-checked, and returns 0 on out-of-bounds accesses.
- uint32_t GetWord(int index) const {
- if (index < 0 || index >= size_) {
- return 0;
- }
- return words_[index];
- }
- // Returns this integer as a decimal string. This is not used in the decimal-
- // to-binary conversion; it is intended to aid in testing.
- TString ToString() const;
- int size() const { return size_; }
- const uint32_t* words() const { return words_; }
- private:
- // Reads the number between [begin, end), possibly containing a decimal point,
- // into this BigUnsigned.
- //
- // Callers are required to ensure [begin, end) contains a valid number, with
- // one or more decimal digits and at most one decimal point. This routine
- // will behave unpredictably if these preconditions are not met.
- //
- // Only the first `significant_digits` digits are read. Digits beyond this
- // limit are "sticky": If the final significant digit is 0 or 5, and if any
- // dropped digit is nonzero, then that final significant digit is adjusted up
- // to 1 or 6. This adjustment allows for precise rounding.
- //
- // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to
- // account for the decimal point and for dropped significant digits. After
- // this function returns,
- // actual_value_of_parsed_string ~= *this * 10**exponent_adjustment.
- int ReadDigits(const char* begin, const char* end, int significant_digits);
- // Performs a step of big integer multiplication. This computes the full
- // (64-bit-wide) values that should be added at the given index (step), and
- // adds to that location in-place.
- //
- // Because our math all occurs in place, we must multiply starting from the
- // highest word working downward. (This is a bit more expensive due to the
- // extra carries involved.)
- //
- // This must be called in steps, for each word to be calculated, starting from
- // the high end and working down to 0. The first value of `step` should be
- // `std::min(original_size + other.size_ - 2, max_words - 1)`.
- // The reason for this expression is that multiplying the i'th word from one
- // multiplicand and the j'th word of another multiplicand creates a
- // two-word-wide value to be stored at the (i+j)'th element. The highest
- // word indices we will access are `original_size - 1` from this object, and
- // `other.size_ - 1` from our operand. Therefore,
- // `original_size + other.size_ - 2` is the first step we should calculate,
- // but limited on an upper bound by max_words.
- // Working from high-to-low ensures that we do not overwrite the portions of
- // the initial value of *this which are still needed for later steps.
- //
- // Once called with step == 0, *this contains the result of the
- // multiplication.
- //
- // `original_size` is the size_ of *this before the first call to
- // MultiplyStep(). `other_words` and `other_size` are the contents of our
- // operand. `step` is the step to perform, as described above.
- void MultiplyStep(int original_size, const uint32_t* other_words,
- int other_size, int step);
- void MultiplyBy(int other_size, const uint32_t* other_words) {
- const int original_size = size_;
- const int first_step =
- (std::min)(original_size + other_size - 2, max_words - 1);
- for (int step = first_step; step >= 0; --step) {
- MultiplyStep(original_size, other_words, other_size, step);
- }
- }
- // Adds a 32-bit value to the index'th word, with carry.
- void AddWithCarry(int index, uint32_t value) {
- if (value) {
- while (index < max_words && value > 0) {
- words_[index] += value;
- // carry if we overflowed in this word:
- if (value > words_[index]) {
- value = 1;
- ++index;
- } else {
- value = 0;
- }
- }
- size_ = (std::min)(max_words, (std::max)(index + 1, size_));
- }
- }
- void AddWithCarry(int index, uint64_t value) {
- if (value && index < max_words) {
- uint32_t high = value >> 32;
- uint32_t low = value & 0xffffffff;
- words_[index] += low;
- if (words_[index] < low) {
- ++high;
- if (high == 0) {
- // Carry from the low word caused our high word to overflow.
- // Short circuit here to do the right thing.
- AddWithCarry(index + 2, static_cast<uint32_t>(1));
- return;
- }
- }
- if (high > 0) {
- AddWithCarry(index + 1, high);
- } else {
- // Normally 32-bit AddWithCarry() sets size_, but since we don't call
- // it when `high` is 0, do it ourselves here.
- size_ = (std::min)(max_words, (std::max)(index + 1, size_));
- }
- }
- }
- // Divide this in place by a constant divisor. Returns the remainder of the
- // division.
- template <uint32_t divisor>
- uint32_t DivMod() {
- uint64_t accumulator = 0;
- for (int i = size_ - 1; i >= 0; --i) {
- accumulator <<= 32;
- accumulator += words_[i];
- // accumulator / divisor will never overflow an int32_t in this loop
- words_[i] = static_cast<uint32_t>(accumulator / divisor);
- accumulator = accumulator % divisor;
- }
- while (size_ > 0 && words_[size_ - 1] == 0) {
- --size_;
- }
- return static_cast<uint32_t>(accumulator);
- }
- // The number of elements in words_ that may carry significant values.
- // All elements beyond this point are 0.
- //
- // When size_ is 0, this BigUnsigned stores the value 0.
- // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is
- // nonzero. This can occur due to overflow truncation.
- // In particular, x.size_ != y.size_ does *not* imply x != y.
- int size_;
- uint32_t words_[max_words];
- };
- // Compares two big integer instances.
- //
- // Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs.
- template <int N, int M>
- int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- int limit = (std::max)(lhs.size(), rhs.size());
- for (int i = limit - 1; i >= 0; --i) {
- const uint32_t lhs_word = lhs.GetWord(i);
- const uint32_t rhs_word = rhs.GetWord(i);
- if (lhs_word < rhs_word) {
- return -1;
- } else if (lhs_word > rhs_word) {
- return 1;
- }
- }
- return 0;
- }
- template <int N, int M>
- bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- int limit = (std::max)(lhs.size(), rhs.size());
- for (int i = 0; i < limit; ++i) {
- if (lhs.GetWord(i) != rhs.GetWord(i)) {
- return false;
- }
- }
- return true;
- }
- template <int N, int M>
- bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- return !(lhs == rhs);
- }
- template <int N, int M>
- bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- return Compare(lhs, rhs) == -1;
- }
- template <int N, int M>
- bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- return rhs < lhs;
- }
- template <int N, int M>
- bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- return !(rhs < lhs);
- }
- template <int N, int M>
- bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
- return !(lhs < rhs);
- }
- // Output operator for BigUnsigned, for testing purposes only.
- template <int N>
- std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
- return os << num.ToString();
- }
- // Explicit instantiation declarations for the sizes of BigUnsigned that we
- // are using.
- //
- // For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is
- // still bigger than an int128, and 84 is a large value we will want to use
- // in the from_chars implementation.
- //
- // Comments justifying the use of 84 belong in the from_chars implementation,
- // and will be added in a follow-up CL.
- extern template class BigUnsigned<4>;
- extern template class BigUnsigned<84>;
- } // namespace strings_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
|