123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: uniform_int_distribution.h
- // -----------------------------------------------------------------------------
- //
- // This header defines a class for representing a uniform integer distribution
- // over the closed (inclusive) interval [a,b]. You use this distribution in
- // combination with an Abseil random bit generator to produce random values
- // according to the rules of the distribution.
- //
- // `y_absl::uniform_int_distribution` is a drop-in replacement for the C++11
- // `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably
- // faster than the libstdc++ implementation.
- #ifndef Y_ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
- #define Y_ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
- #include <cassert>
- #include <istream>
- #include <limits>
- #include <type_traits>
- #include "y_absl/base/optimization.h"
- #include "y_absl/random/internal/fast_uniform_bits.h"
- #include "y_absl/random/internal/iostream_state_saver.h"
- #include "y_absl/random/internal/traits.h"
- #include "y_absl/random/internal/wide_multiply.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- // y_absl::uniform_int_distribution<T>
- //
- // This distribution produces random integer values uniformly distributed in the
- // closed (inclusive) interval [a, b].
- //
- // Example:
- //
- // y_absl::BitGen gen;
- //
- // // Use the distribution to produce a value between 1 and 6, inclusive.
- // int die_roll = y_absl::uniform_int_distribution<int>(1, 6)(gen);
- //
- template <typename IntType = int>
- class uniform_int_distribution {
- private:
- using unsigned_type =
- typename random_internal::make_unsigned_bits<IntType>::type;
- public:
- using result_type = IntType;
- class param_type {
- public:
- using distribution_type = uniform_int_distribution;
- explicit param_type(
- result_type lo = 0,
- result_type hi = (std::numeric_limits<result_type>::max)())
- : lo_(lo),
- range_(static_cast<unsigned_type>(hi) -
- static_cast<unsigned_type>(lo)) {
- // [rand.dist.uni.int] precondition 2
- assert(lo <= hi);
- }
- result_type a() const { return lo_; }
- result_type b() const {
- return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_);
- }
- friend bool operator==(const param_type& a, const param_type& b) {
- return a.lo_ == b.lo_ && a.range_ == b.range_;
- }
- friend bool operator!=(const param_type& a, const param_type& b) {
- return !(a == b);
- }
- private:
- friend class uniform_int_distribution;
- unsigned_type range() const { return range_; }
- result_type lo_;
- unsigned_type range_;
- static_assert(random_internal::IsIntegral<result_type>::value,
- "Class-template y_absl::uniform_int_distribution<> must be "
- "parameterized using an integral type.");
- }; // param_type
- uniform_int_distribution() : uniform_int_distribution(0) {}
- explicit uniform_int_distribution(
- result_type lo,
- result_type hi = (std::numeric_limits<result_type>::max)())
- : param_(lo, hi) {}
- explicit uniform_int_distribution(const param_type& param) : param_(param) {}
- // uniform_int_distribution<T>::reset()
- //
- // Resets the uniform int distribution. Note that this function has no effect
- // because the distribution already produces independent values.
- void reset() {}
- template <typename URBG>
- result_type operator()(URBG& gen) { // NOLINT(runtime/references)
- return (*this)(gen, param());
- }
- template <typename URBG>
- result_type operator()(
- URBG& gen, const param_type& param) { // NOLINT(runtime/references)
- return static_cast<result_type>(param.a() + Generate(gen, param.range()));
- }
- result_type a() const { return param_.a(); }
- result_type b() const { return param_.b(); }
- param_type param() const { return param_; }
- void param(const param_type& params) { param_ = params; }
- result_type(min)() const { return a(); }
- result_type(max)() const { return b(); }
- friend bool operator==(const uniform_int_distribution& a,
- const uniform_int_distribution& b) {
- return a.param_ == b.param_;
- }
- friend bool operator!=(const uniform_int_distribution& a,
- const uniform_int_distribution& b) {
- return !(a == b);
- }
- private:
- // Generates a value in the *closed* interval [0, R]
- template <typename URBG>
- unsigned_type Generate(URBG& g, // NOLINT(runtime/references)
- unsigned_type R);
- param_type param_;
- };
- // -----------------------------------------------------------------------------
- // Implementation details follow
- // -----------------------------------------------------------------------------
- template <typename CharT, typename Traits, typename IntType>
- std::basic_ostream<CharT, Traits>& operator<<(
- std::basic_ostream<CharT, Traits>& os,
- const uniform_int_distribution<IntType>& x) {
- using stream_type =
- typename random_internal::stream_format_type<IntType>::type;
- auto saver = random_internal::make_ostream_state_saver(os);
- os << static_cast<stream_type>(x.a()) << os.fill()
- << static_cast<stream_type>(x.b());
- return os;
- }
- template <typename CharT, typename Traits, typename IntType>
- std::basic_istream<CharT, Traits>& operator>>(
- std::basic_istream<CharT, Traits>& is,
- uniform_int_distribution<IntType>& x) {
- using param_type = typename uniform_int_distribution<IntType>::param_type;
- using result_type = typename uniform_int_distribution<IntType>::result_type;
- using stream_type =
- typename random_internal::stream_format_type<IntType>::type;
- stream_type a;
- stream_type b;
- auto saver = random_internal::make_istream_state_saver(is);
- is >> a >> b;
- if (!is.fail()) {
- x.param(
- param_type(static_cast<result_type>(a), static_cast<result_type>(b)));
- }
- return is;
- }
- template <typename IntType>
- template <typename URBG>
- typename random_internal::make_unsigned_bits<IntType>::type
- uniform_int_distribution<IntType>::Generate(
- URBG& g, // NOLINT(runtime/references)
- typename random_internal::make_unsigned_bits<IntType>::type R) {
- random_internal::FastUniformBits<unsigned_type> fast_bits;
- unsigned_type bits = fast_bits(g);
- const unsigned_type Lim = R + 1;
- if ((R & Lim) == 0) {
- // If the interval's length is a power of two range, just take the low bits.
- return bits & R;
- }
- // Generates a uniform variate on [0, Lim) using fixed-point multiplication.
- // The above fast-path guarantees that Lim is representable in unsigned_type.
- //
- // Algorithm adapted from
- // http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added
- // explanation.
- //
- // The algorithm creates a uniform variate `bits` in the interval [0, 2^N),
- // and treats it as the fractional part of a fixed-point real value in [0, 1),
- // multiplied by 2^N. For example, 0.25 would be represented as 2^(N - 2),
- // because 2^N * 0.25 == 2^(N - 2).
- //
- // Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the
- // value into the range [0, Lim). The integral part (the high word of the
- // multiplication result) is then very nearly the desired result. However,
- // this is not quite accurate; viewing the multiplication result as one
- // double-width integer, the resulting values for the sample are mapped as
- // follows:
- //
- // If the result lies in this interval: Return this value:
- // [0, 2^N) 0
- // [2^N, 2 * 2^N) 1
- // ... ...
- // [K * 2^N, (K + 1) * 2^N) K
- // ... ...
- // [(Lim - 1) * 2^N, Lim * 2^N) Lim - 1
- //
- // While all of these intervals have the same size, the result of `bits * Lim`
- // must be a multiple of `Lim`, and not all of these intervals contain the
- // same number of multiples of `Lim`. In particular, some contain
- // `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`. This
- // difference produces a small nonuniformity, which is corrected by applying
- // rejection sampling to one of the values in the "larger intervals" (i.e.,
- // the intervals containing `F + 1` multiples of `Lim`.
- //
- // An interval contains `F + 1` multiples of `Lim` if and only if its smallest
- // value modulo 2^N is less than `2^N % Lim`. The unique value satisfying
- // this property is used as the one for rejection. That is, a value of
- // `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`.
- using helper = random_internal::wide_multiply<unsigned_type>;
- auto product = helper::multiply(bits, Lim);
- // Two optimizations here:
- // * Rejection occurs with some probability less than 1/2, and for reasonable
- // ranges considerably less (in particular, less than 1/(F+1)), so
- // Y_ABSL_PREDICT_FALSE is apt.
- // * `Lim` is an overestimate of `threshold`, and doesn't require a divide.
- if (Y_ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) {
- // This quantity is exactly equal to `2^N % Lim`, but does not require high
- // precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`.
- // Ideally this could be expressed simply as `-X` rather than `2^N - X`, but
- // for types smaller than int, this calculation is incorrect due to integer
- // promotion rules.
- const unsigned_type threshold =
- ((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim;
- while (helper::lo(product) < threshold) {
- bits = fast_bits(g);
- product = helper::multiply(bits, Lim);
- }
- }
- return helper::hi(product);
- }
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
|