123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "y_absl/random/internal/distribution_test_util.h"
- #include <cassert>
- #include <cmath>
- #include <util/generic/string.h>
- #include <vector>
- #include "y_absl/base/internal/raw_logging.h"
- #include "y_absl/base/macros.h"
- #include "y_absl/strings/str_cat.h"
- #include "y_absl/strings/str_format.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- namespace {
- #if defined(__EMSCRIPTEN__)
- // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
- inline double fma(double x, double y, double z) { return (x * y) + z; }
- #endif
- } // namespace
- DistributionMoments ComputeDistributionMoments(
- y_absl::Span<const double> data_points) {
- DistributionMoments result;
- // Compute m1
- for (double x : data_points) {
- result.n++;
- result.mean += x;
- }
- result.mean /= static_cast<double>(result.n);
- // Compute m2, m3, m4
- for (double x : data_points) {
- double v = x - result.mean;
- result.variance += v * v;
- result.skewness += v * v * v;
- result.kurtosis += v * v * v * v;
- }
- result.variance /= static_cast<double>(result.n - 1);
- result.skewness /= static_cast<double>(result.n);
- result.skewness /= std::pow(result.variance, 1.5);
- result.kurtosis /= static_cast<double>(result.n);
- result.kurtosis /= std::pow(result.variance, 2.0);
- return result;
- // When validating the min/max count, the following confidence intervals may
- // be of use:
- // 3.291 * stddev = 99.9% CI
- // 2.576 * stddev = 99% CI
- // 1.96 * stddev = 95% CI
- // 1.65 * stddev = 90% CI
- }
- std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
- return os << y_absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
- moments.mean, std::sqrt(moments.variance),
- moments.skewness, moments.kurtosis);
- }
- double InverseNormalSurvival(double x) {
- // inv_sf(u) = -sqrt(2) * erfinv(2u-1)
- static constexpr double kSqrt2 = 1.4142135623730950488;
- return -kSqrt2 * y_absl::random_internal::erfinv(2 * x - 1.0);
- }
- bool Near(y_absl::string_view msg, double actual, double expected, double bound) {
- assert(bound > 0.0);
- double delta = fabs(expected - actual);
- if (delta < bound) {
- return true;
- }
- TString formatted = y_absl::StrCat(
- msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
- Y_ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
- return false;
- }
- // TODO(y_absl-team): Replace with an "Y_ABSL_HAVE_SPECIAL_MATH" and try
- // to use std::beta(). As of this writing P0226R1 is not implemented
- // in libc++: http://libcxx.llvm.org/cxx1z_status.html
- double beta(double p, double q) {
- // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y)
- double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
- return std::exp(lbeta);
- }
- // Approximation to inverse of the Error Function in double precision.
- // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
- double erfinv(double x) {
- #if !defined(__EMSCRIPTEN__)
- using std::fma;
- #endif
- double w = 0.0;
- double p = 0.0;
- w = -std::log((1.0 - x) * (1.0 + x));
- if (w < 6.250000) {
- w = w - 3.125000;
- p = -3.6444120640178196996e-21;
- p = fma(p, w, -1.685059138182016589e-19);
- p = fma(p, w, 1.2858480715256400167e-18);
- p = fma(p, w, 1.115787767802518096e-17);
- p = fma(p, w, -1.333171662854620906e-16);
- p = fma(p, w, 2.0972767875968561637e-17);
- p = fma(p, w, 6.6376381343583238325e-15);
- p = fma(p, w, -4.0545662729752068639e-14);
- p = fma(p, w, -8.1519341976054721522e-14);
- p = fma(p, w, 2.6335093153082322977e-12);
- p = fma(p, w, -1.2975133253453532498e-11);
- p = fma(p, w, -5.4154120542946279317e-11);
- p = fma(p, w, 1.051212273321532285e-09);
- p = fma(p, w, -4.1126339803469836976e-09);
- p = fma(p, w, -2.9070369957882005086e-08);
- p = fma(p, w, 4.2347877827932403518e-07);
- p = fma(p, w, -1.3654692000834678645e-06);
- p = fma(p, w, -1.3882523362786468719e-05);
- p = fma(p, w, 0.0001867342080340571352);
- p = fma(p, w, -0.00074070253416626697512);
- p = fma(p, w, -0.0060336708714301490533);
- p = fma(p, w, 0.24015818242558961693);
- p = fma(p, w, 1.6536545626831027356);
- } else if (w < 16.000000) {
- w = std::sqrt(w) - 3.250000;
- p = 2.2137376921775787049e-09;
- p = fma(p, w, 9.0756561938885390979e-08);
- p = fma(p, w, -2.7517406297064545428e-07);
- p = fma(p, w, 1.8239629214389227755e-08);
- p = fma(p, w, 1.5027403968909827627e-06);
- p = fma(p, w, -4.013867526981545969e-06);
- p = fma(p, w, 2.9234449089955446044e-06);
- p = fma(p, w, 1.2475304481671778723e-05);
- p = fma(p, w, -4.7318229009055733981e-05);
- p = fma(p, w, 6.8284851459573175448e-05);
- p = fma(p, w, 2.4031110387097893999e-05);
- p = fma(p, w, -0.0003550375203628474796);
- p = fma(p, w, 0.00095328937973738049703);
- p = fma(p, w, -0.0016882755560235047313);
- p = fma(p, w, 0.0024914420961078508066);
- p = fma(p, w, -0.0037512085075692412107);
- p = fma(p, w, 0.005370914553590063617);
- p = fma(p, w, 1.0052589676941592334);
- p = fma(p, w, 3.0838856104922207635);
- } else {
- w = std::sqrt(w) - 5.000000;
- p = -2.7109920616438573243e-11;
- p = fma(p, w, -2.5556418169965252055e-10);
- p = fma(p, w, 1.5076572693500548083e-09);
- p = fma(p, w, -3.7894654401267369937e-09);
- p = fma(p, w, 7.6157012080783393804e-09);
- p = fma(p, w, -1.4960026627149240478e-08);
- p = fma(p, w, 2.9147953450901080826e-08);
- p = fma(p, w, -6.7711997758452339498e-08);
- p = fma(p, w, 2.2900482228026654717e-07);
- p = fma(p, w, -9.9298272942317002539e-07);
- p = fma(p, w, 4.5260625972231537039e-06);
- p = fma(p, w, -1.9681778105531670567e-05);
- p = fma(p, w, 7.5995277030017761139e-05);
- p = fma(p, w, -0.00021503011930044477347);
- p = fma(p, w, -0.00013871931833623122026);
- p = fma(p, w, 1.0103004648645343977);
- p = fma(p, w, 4.8499064014085844221);
- }
- return p * x;
- }
- namespace {
- // Direct implementation of AS63, BETAIN()
- // https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents.
- //
- // BETAIN(x, p, q, beta)
- // x: the value of the upper limit x.
- // p: the value of the parameter p.
- // q: the value of the parameter q.
- // beta: the value of ln B(p, q)
- //
- double BetaIncompleteImpl(const double x, const double p, const double q,
- const double beta) {
- if (p < (p + q) * x) {
- // Incomplete beta function is symmetrical, so return the complement.
- return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
- }
- double psq = p + q;
- const double kErr = 1e-14;
- const double xc = 1. - x;
- const double pre =
- std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
- double term = 1.;
- double ai = 1.;
- double result = 1.;
- int ns = static_cast<int>(q + xc * psq);
- // Use the soper reduction formula.
- double rx = (ns == 0) ? x : x / xc;
- double temp = q - ai;
- for (;;) {
- term = term * temp * rx / (p + ai);
- result = result + term;
- temp = std::fabs(term);
- if (temp < kErr && temp < kErr * result) {
- return result * pre;
- }
- ai = ai + 1.;
- --ns;
- if (ns >= 0) {
- temp = q - ai;
- if (ns == 0) {
- rx = x;
- }
- } else {
- temp = psq;
- psq = psq + 1.;
- }
- }
- // NOTE: See also TOMS Algorithm 708.
- // http://www.netlib.org/toms/index.html
- //
- // NOTE: The NWSC library also includes BRATIO / ISUBX (p87)
- // https://archive.org/details/DTIC_ADA261511/page/n75
- }
- // Direct implementation of AS109, XINBTA(p, q, beta, alpha)
- // https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents
- // https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents
- //
- // XINBTA(p, q, beta, alpha)
- // p: the value of the parameter p.
- // q: the value of the parameter q.
- // beta: the value of ln B(p, q)
- // alpha: the value of the lower tail area.
- //
- double BetaIncompleteInvImpl(const double p, const double q, const double beta,
- const double alpha) {
- if (alpha < 0.5) {
- // Inverse Incomplete beta function is symmetrical, return the complement.
- return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
- }
- const double kErr = 1e-14;
- double value = kErr;
- // Compute the initial estimate.
- {
- double r = std::sqrt(-std::log(alpha * alpha));
- double y =
- r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
- if (p > 1. && q > 1.) {
- r = (y * y - 3.) / 6.;
- double s = 1. / (p + p - 1.);
- double t = 1. / (q + q - 1.);
- double h = 2. / s + t;
- double w =
- y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
- value = p / (p + q * std::exp(w + w));
- } else {
- r = q + q;
- double t = 1.0 / (9. * q);
- double u = 1.0 - t + y * std::sqrt(t);
- t = r * (u * u * u);
- if (t <= 0) {
- value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
- } else {
- t = (4.0 * p + r - 2.0) / t;
- if (t <= 1) {
- value = std::exp((std::log(alpha * p) + beta) / p);
- } else {
- value = 1.0 - 2.0 / (t + 1.0);
- }
- }
- }
- }
- // Solve for x using a modified newton-raphson method using the function
- // BetaIncomplete.
- {
- value = std::max(value, kErr);
- value = std::min(value, 1.0 - kErr);
- const double r = 1.0 - p;
- const double t = 1.0 - q;
- double y;
- double yprev = 0;
- double sq = 1;
- double prev = 1;
- for (;;) {
- if (value < 0 || value > 1.0) {
- // Error case; value went infinite.
- return std::numeric_limits<double>::infinity();
- } else if (value == 0 || value == 1) {
- y = value;
- } else {
- y = BetaIncompleteImpl(value, p, q, beta);
- if (!std::isfinite(y)) {
- return y;
- }
- }
- y = (y - alpha) *
- std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
- if (y * yprev <= 0) {
- prev = std::max(sq, std::numeric_limits<double>::min());
- }
- double g = 1.0;
- for (;;) {
- const double adj = g * y;
- const double adj_sq = adj * adj;
- if (adj_sq >= prev) {
- g = g / 3.0;
- continue;
- }
- const double tx = value - adj;
- if (tx < 0 || tx > 1) {
- g = g / 3.0;
- continue;
- }
- if (prev < kErr) {
- return value;
- }
- if (y * y < kErr) {
- return value;
- }
- if (tx == value) {
- return value;
- }
- if (tx == 0 || tx == 1) {
- g = g / 3.0;
- continue;
- }
- value = tx;
- yprev = y;
- break;
- }
- }
- }
- // NOTES: See also: Asymptotic inversion of the incomplete beta function.
- // https://core.ac.uk/download/pdf/82140723.pdf
- //
- // NOTE: See the Boost library documentation as well:
- // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html
- }
- } // namespace
- double BetaIncomplete(const double x, const double p, const double q) {
- // Error cases.
- if (p < 0 || q < 0 || x < 0 || x > 1.0) {
- return std::numeric_limits<double>::infinity();
- }
- if (x == 0 || x == 1) {
- return x;
- }
- // ln(Beta(p, q))
- double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
- return BetaIncompleteImpl(x, p, q, beta);
- }
- double BetaIncompleteInv(const double p, const double q, const double alpha) {
- // Error cases.
- if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
- return std::numeric_limits<double>::infinity();
- }
- if (alpha == 0 || alpha == 1) {
- return alpha;
- }
- // ln(Beta(p, q))
- double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
- return BetaIncompleteInvImpl(p, q, beta, alpha);
- }
- // Given `num_trials` trials each with probability `p` of success, the
- // probability of no failures is `p^k`. To ensure the probability of a failure
- // is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function
- // computes `p` from that equation.
- double RequiredSuccessProbability(const double p_fail, const int num_trials) {
- double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
- Y_ABSL_ASSERT(p > 0);
- return p;
- }
- double ZScore(double expected_mean, const DistributionMoments& moments) {
- return (moments.mean - expected_mean) /
- (std::sqrt(moments.variance) /
- std::sqrt(static_cast<double>(moments.n)));
- }
- double MaxErrorTolerance(double acceptance_probability) {
- double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
- const double max_err = InverseNormalSurvival(one_sided_pvalue);
- Y_ABSL_ASSERT(max_err > 0);
- return max_err;
- }
- } // namespace random_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
|