1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef Y_ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
- #define Y_ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
- // The chi-square statistic.
- //
- // Useful for evaluating if `D` independent random variables are behaving as
- // expected, or if two distributions are similar. (`D` is the degrees of
- // freedom).
- //
- // Each bucket should have an expected count of 10 or more for the chi square to
- // be meaningful.
- #include <cassert>
- #include "y_absl/base/config.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- constexpr const char kChiSquared[] = "chi-squared";
- // Returns the measured chi square value, using a single expected value. This
- // assumes that the values in [begin, end) are uniformly distributed.
- template <typename Iterator>
- double ChiSquareWithExpected(Iterator begin, Iterator end, double expected) {
- // Compute the sum and the number of buckets.
- assert(expected >= 10); // require at least 10 samples per bucket.
- double chi_square = 0;
- for (auto it = begin; it != end; it++) {
- double d = static_cast<double>(*it) - expected;
- chi_square += d * d;
- }
- chi_square = chi_square / expected;
- return chi_square;
- }
- // Returns the measured chi square value, taking the actual value of each bucket
- // from the first set of iterators, and the expected value of each bucket from
- // the second set of iterators.
- template <typename Iterator, typename Expected>
- double ChiSquare(Iterator it, Iterator end, Expected eit, Expected eend) {
- double chi_square = 0;
- for (; it != end && eit != eend; ++it, ++eit) {
- if (*it > 0) {
- assert(*eit > 0);
- }
- double e = static_cast<double>(*eit);
- double d = static_cast<double>(*it - *eit);
- if (d != 0) {
- assert(e > 0);
- chi_square += (d * d) / e;
- }
- }
- assert(it == end && eit == eend);
- return chi_square;
- }
- // ======================================================================
- // The following methods can be used for an arbitrary significance level.
- //
- // Calculates critical chi-square values to produce the given p-value using a
- // bisection search for a value within epsilon, relying on the monotonicity of
- // ChiSquarePValue().
- double ChiSquareValue(int dof, double p);
- // Calculates the p-value (probability) of a given chi-square value.
- double ChiSquarePValue(double chi_square, int dof);
- } // namespace random_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
|