123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "y_absl/random/internal/chi_square.h"
- #include <cmath>
- #include "y_absl/random/internal/distribution_test_util.h"
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- namespace {
- #if defined(__EMSCRIPTEN__)
- // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
- inline double fma(double x, double y, double z) {
- return (x * y) + z;
- }
- #endif
- // Use Horner's method to evaluate a polynomial.
- template <typename T, unsigned N>
- inline T EvaluatePolynomial(T x, const T (&poly)[N]) {
- #if !defined(__EMSCRIPTEN__)
- using std::fma;
- #endif
- T p = poly[N - 1];
- for (unsigned i = 2; i <= N; i++) {
- p = fma(p, x, poly[N - i]);
- }
- return p;
- }
- static constexpr int kLargeDOF = 150;
- // Returns the probability of a normal z-value.
- //
- // Adapted from the POZ function in:
- // Ibbetson D, Algorithm 209
- // Collected Algorithms of the CACM 1963 p. 616
- //
- double POZ(double z) {
- static constexpr double kP1[] = {
- 0.797884560593, -0.531923007300, 0.319152932694,
- -0.151968751364, 0.059054035642, -0.019198292004,
- 0.005198775019, -0.001075204047, 0.000124818987,
- };
- static constexpr double kP2[] = {
- 0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108,
- -0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214,
- -0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986,
- -0.000019538132, 0.000152529290, -0.000045255659,
- };
- const double kZMax = 6.0; // Maximum meaningful z-value.
- if (z == 0.0) {
- return 0.5;
- }
- double x;
- double y = 0.5 * std::fabs(z);
- if (y >= (kZMax * 0.5)) {
- x = 1.0;
- } else if (y < 1.0) {
- double w = y * y;
- x = EvaluatePolynomial(w, kP1) * y * 2.0;
- } else {
- y -= 2.0;
- x = EvaluatePolynomial(y, kP2);
- }
- return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
- }
- // Approximates the survival function of the normal distribution.
- //
- // Algorithm 26.2.18, from:
- // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932]
- // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
- //
- double normal_survival(double z) {
- // Maybe replace with the alternate formulation.
- // 0.5 * erfc((x - mean)/(sqrt(2) * sigma))
- static constexpr double kR[] = {
- 1.0, 0.196854, 0.115194, 0.000344, 0.019527,
- };
- double r = EvaluatePolynomial(z, kR);
- r *= r;
- return 0.5 / (r * r);
- }
- } // namespace
- // Calculates the critical chi-square value given degrees-of-freedom and a
- // p-value, usually using bisection. Also known by the name CRITCHI.
- double ChiSquareValue(int dof, double p) {
- static constexpr double kChiEpsilon =
- 0.000001; // Accuracy of the approximation.
- static constexpr double kChiMax =
- 99999.0; // Maximum chi-squared value.
- const double p_value = 1.0 - p;
- if (dof < 1 || p_value > 1.0) {
- return 0.0;
- }
- if (dof > kLargeDOF) {
- // For large degrees of freedom, use the normal approximation by
- // Wilson, E. B. and Hilferty, M. M. (1931)
- // chi^2 - mean
- // Z = --------------
- // stddev
- const double z = InverseNormalSurvival(p_value);
- const double mean = 1 - 2.0 / (9 * dof);
- const double variance = 2.0 / (9 * dof);
- // Cannot use this method if the variance is 0.
- if (variance != 0) {
- double term = z * std::sqrt(variance) + mean;
- return dof * (term * term * term);
- }
- }
- if (p_value <= 0.0) return kChiMax;
- // Otherwise search for the p value by bisection
- double min_chisq = 0.0;
- double max_chisq = kChiMax;
- double current = dof / std::sqrt(p_value);
- while ((max_chisq - min_chisq) > kChiEpsilon) {
- if (ChiSquarePValue(current, dof) < p_value) {
- max_chisq = current;
- } else {
- min_chisq = current;
- }
- current = (max_chisq + min_chisq) * 0.5;
- }
- return current;
- }
- // Calculates the p-value (probability) of a given chi-square value
- // and degrees of freedom.
- //
- // Adapted from the POCHISQ function from:
- // Hill, I. D. and Pike, M. C. Algorithm 299
- // Collected Algorithms of the CACM 1963 p. 243
- //
- double ChiSquarePValue(double chi_square, int dof) {
- static constexpr double kLogSqrtPi =
- 0.5723649429247000870717135; // Log[Sqrt[Pi]]
- static constexpr double kInverseSqrtPi =
- 0.5641895835477562869480795; // 1/(Sqrt[Pi])
- // For large degrees of freedom, use the normal approximation by
- // Wilson, E. B. and Hilferty, M. M. (1931)
- // Via Wikipedia:
- // By the Central Limit Theorem, because the chi-square distribution is the
- // sum of k independent random variables with finite mean and variance, it
- // converges to a normal distribution for large k.
- if (dof > kLargeDOF) {
- // Re-scale everything.
- const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3);
- const double mean = 1 - 2.0 / (9 * dof);
- const double variance = 2.0 / (9 * dof);
- // If variance is 0, this method cannot be used.
- if (variance != 0) {
- const double z = (chi_square_scaled - mean) / std::sqrt(variance);
- if (z > 0) {
- return normal_survival(z);
- } else if (z < 0) {
- return 1.0 - normal_survival(-z);
- } else {
- return 0.5;
- }
- }
- }
- // The chi square function is >= 0 for any degrees of freedom.
- // In other words, probability that the chi square function >= 0 is 1.
- if (chi_square <= 0.0) return 1.0;
- // If the degrees of freedom is zero, the chi square function is always 0 by
- // definition. In other words, the probability that the chi square function
- // is > 0 is zero (chi square values <= 0 have been filtered above).
- if (dof < 1) return 0;
- auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); };
- static constexpr double kBigX = 20;
- double a = 0.5 * chi_square;
- const bool even = !(dof & 1); // True if dof is an even number.
- const double y = capped_exp(-a);
- double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square)));
- if (dof <= 2) {
- return s;
- }
- chi_square = 0.5 * (dof - 1.0);
- double z = (even ? 1.0 : 0.5);
- if (a > kBigX) {
- double e = (even ? 0.0 : kLogSqrtPi);
- double c = std::log(a);
- while (z <= chi_square) {
- e = std::log(z) + e;
- s += capped_exp(c * z - a - e);
- z += 1.0;
- }
- return s;
- }
- double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a)));
- double c = 0.0;
- while (z <= chi_square) {
- e = e * (a / z);
- c = c + e;
- z += 1.0;
- }
- return c * y + s;
- }
- } // namespace random_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
|