12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: hash.h
- // -----------------------------------------------------------------------------
- //
- #ifndef Y_ABSL_HASH_INTERNAL_HASH_H_
- #define Y_ABSL_HASH_INTERNAL_HASH_H_
- #include <algorithm>
- #include <array>
- #include <bitset>
- #include <cmath>
- #include <cstddef>
- #include <cstring>
- #include <deque>
- #include <forward_list>
- #include <functional>
- #include <iterator>
- #include <limits>
- #include <list>
- #include <map>
- #include <memory>
- #include <set>
- #include <util/generic/string.h>
- #include <tuple>
- #include <type_traits>
- #include <unordered_map>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "y_absl/base/config.h"
- #include "y_absl/base/internal/unaligned_access.h"
- #include "y_absl/base/port.h"
- #include "y_absl/container/fixed_array.h"
- #include "y_absl/hash/internal/city.h"
- #include "y_absl/hash/internal/low_level_hash.h"
- #include "y_absl/meta/type_traits.h"
- #include "y_absl/numeric/bits.h"
- #include "y_absl/numeric/int128.h"
- #include "y_absl/strings/string_view.h"
- #include "y_absl/types/optional.h"
- #include "y_absl/types/variant.h"
- #include "y_absl/utility/utility.h"
- #ifdef Y_ABSL_HAVE_STD_STRING_VIEW
- #include <string_view>
- #endif
- namespace y_absl {
- Y_ABSL_NAMESPACE_BEGIN
- class HashState;
- namespace hash_internal {
- // Internal detail: Large buffers are hashed in smaller chunks. This function
- // returns the size of these chunks.
- constexpr size_t PiecewiseChunkSize() { return 1024; }
- // PiecewiseCombiner
- //
- // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
- // buffer of `char` or `unsigned char` as though it were contiguous. This class
- // provides two methods:
- //
- // H add_buffer(state, data, size)
- // H finalize(state)
- //
- // `add_buffer` can be called zero or more times, followed by a single call to
- // `finalize`. This will produce the same hash expansion as concatenating each
- // buffer piece into a single contiguous buffer, and passing this to
- // `H::combine_contiguous`.
- //
- // Example usage:
- // PiecewiseCombiner combiner;
- // for (const auto& piece : pieces) {
- // state = combiner.add_buffer(std::move(state), piece.data, piece.size);
- // }
- // return combiner.finalize(std::move(state));
- class PiecewiseCombiner {
- public:
- PiecewiseCombiner() : position_(0) {}
- PiecewiseCombiner(const PiecewiseCombiner&) = delete;
- PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
- // PiecewiseCombiner::add_buffer()
- //
- // Appends the given range of bytes to the sequence to be hashed, which may
- // modify the provided hash state.
- template <typename H>
- H add_buffer(H state, const unsigned char* data, size_t size);
- template <typename H>
- H add_buffer(H state, const char* data, size_t size) {
- return add_buffer(std::move(state),
- reinterpret_cast<const unsigned char*>(data), size);
- }
- // PiecewiseCombiner::finalize()
- //
- // Finishes combining the hash sequence, which may may modify the provided
- // hash state.
- //
- // Once finalize() is called, add_buffer() may no longer be called. The
- // resulting hash state will be the same as if the pieces passed to
- // add_buffer() were concatenated into a single flat buffer, and then provided
- // to H::combine_contiguous().
- template <typename H>
- H finalize(H state);
- private:
- unsigned char buf_[PiecewiseChunkSize()];
- size_t position_;
- };
- // is_hashable()
- //
- // Trait class which returns true if T is hashable by the y_absl::Hash framework.
- // Used for the AbslHashValue implementations for composite types below.
- template <typename T>
- struct is_hashable;
- // HashStateBase
- //
- // An internal implementation detail that contains common implementation details
- // for all of the "hash state objects" objects generated by Abseil. This is not
- // a public API; users should not create classes that inherit from this.
- //
- // A hash state object is the template argument `H` passed to `AbslHashValue`.
- // It represents an intermediate state in the computation of an unspecified hash
- // algorithm. `HashStateBase` provides a CRTP style base class for hash state
- // implementations. Developers adding type support for `y_absl::Hash` should not
- // rely on any parts of the state object other than the following member
- // functions:
- //
- // * HashStateBase::combine()
- // * HashStateBase::combine_contiguous()
- // * HashStateBase::combine_unordered()
- //
- // A derived hash state class of type `H` must provide a public member function
- // with a signature similar to the following:
- //
- // `static H combine_contiguous(H state, const unsigned char*, size_t)`.
- //
- // It must also provide a private template method named RunCombineUnordered.
- //
- // A "consumer" is a 1-arg functor returning void. Its argument is a reference
- // to an inner hash state object, and it may be called multiple times. When
- // called, the functor consumes the entropy from the provided state object,
- // and resets that object to its empty state.
- //
- // A "combiner" is a stateless 2-arg functor returning void. Its arguments are
- // an inner hash state object and an ElementStateConsumer functor. A combiner
- // uses the provided inner hash state object to hash each element of the
- // container, passing the inner hash state object to the consumer after hashing
- // each element.
- //
- // Given these definitions, a derived hash state class of type H
- // must provide a private template method with a signature similar to the
- // following:
- //
- // `template <typename CombinerT>`
- // `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
- //
- // This function is responsible for constructing the inner state object and
- // providing a consumer to the combiner. It uses side effects of the consumer
- // and combiner to mix the state of each element in an order-independent manner,
- // and uses this to return an updated value of `outer_state`.
- //
- // This inside-out approach generates efficient object code in the normal case,
- // but allows us to use stack storage to implement the y_absl::HashState type
- // erasure mechanism (avoiding heap allocations while hashing).
- //
- // `HashStateBase` will provide a complete implementation for a hash state
- // object in terms of these two methods.
- //
- // Example:
- //
- // // Use CRTP to define your derived class.
- // struct MyHashState : HashStateBase<MyHashState> {
- // static H combine_contiguous(H state, const unsigned char*, size_t);
- // using MyHashState::HashStateBase::combine;
- // using MyHashState::HashStateBase::combine_contiguous;
- // using MyHashState::HashStateBase::combine_unordered;
- // private:
- // template <typename CombinerT>
- // static H RunCombineUnordered(H state, CombinerT combiner);
- // };
- template <typename H>
- class HashStateBase {
- public:
- // HashStateBase::combine()
- //
- // Combines an arbitrary number of values into a hash state, returning the
- // updated state.
- //
- // Each of the value types `T` must be separately hashable by the Abseil
- // hashing framework.
- //
- // NOTE:
- //
- // state = H::combine(std::move(state), value1, value2, value3);
- //
- // is guaranteed to produce the same hash expansion as:
- //
- // state = H::combine(std::move(state), value1);
- // state = H::combine(std::move(state), value2);
- // state = H::combine(std::move(state), value3);
- template <typename T, typename... Ts>
- static H combine(H state, const T& value, const Ts&... values);
- static H combine(H state) { return state; }
- // HashStateBase::combine_contiguous()
- //
- // Combines a contiguous array of `size` elements into a hash state, returning
- // the updated state.
- //
- // NOTE:
- //
- // state = H::combine_contiguous(std::move(state), data, size);
- //
- // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
- // perform internal optimizations). If you need this guarantee, use the
- // for-loop instead.
- template <typename T>
- static H combine_contiguous(H state, const T* data, size_t size);
- template <typename I>
- static H combine_unordered(H state, I begin, I end);
- using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
- template <typename T>
- using is_hashable = y_absl::hash_internal::is_hashable<T>;
- private:
- // Common implementation of the iteration step of a "combiner", as described
- // above.
- template <typename I>
- struct CombineUnorderedCallback {
- I begin;
- I end;
- template <typename InnerH, typename ElementStateConsumer>
- void operator()(InnerH inner_state, ElementStateConsumer cb) {
- for (; begin != end; ++begin) {
- inner_state = H::combine(std::move(inner_state), *begin);
- cb(inner_state);
- }
- }
- };
- };
- // is_uniquely_represented
- //
- // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
- // is uniquely represented.
- //
- // A type is "uniquely represented" if two equal values of that type are
- // guaranteed to have the same bytes in their underlying storage. In other
- // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
- // zero. This property cannot be detected automatically, so this trait is false
- // by default, but can be specialized by types that wish to assert that they are
- // uniquely represented. This makes them eligible for certain optimizations.
- //
- // If you have any doubt whatsoever, do not specialize this template.
- // The default is completely safe, and merely disables some optimizations
- // that will not matter for most types. Specializing this template,
- // on the other hand, can be very hazardous.
- //
- // To be uniquely represented, a type must not have multiple ways of
- // representing the same value; for example, float and double are not
- // uniquely represented, because they have distinct representations for
- // +0 and -0. Furthermore, the type's byte representation must consist
- // solely of user-controlled data, with no padding bits and no compiler-
- // controlled data such as vptrs or sanitizer metadata. This is usually
- // very difficult to guarantee, because in most cases the compiler can
- // insert data and padding bits at its own discretion.
- //
- // If you specialize this template for a type `T`, you must do so in the file
- // that defines that type (or in this file). If you define that specialization
- // anywhere else, `is_uniquely_represented<T>` could have different meanings
- // in different places.
- //
- // The Enable parameter is meaningless; it is provided as a convenience,
- // to support certain SFINAE techniques when defining specializations.
- template <typename T, typename Enable = void>
- struct is_uniquely_represented : std::false_type {};
- // is_uniquely_represented<unsigned char>
- //
- // unsigned char is a synonym for "byte", so it is guaranteed to be
- // uniquely represented.
- template <>
- struct is_uniquely_represented<unsigned char> : std::true_type {};
- // is_uniquely_represented for non-standard integral types
- //
- // Integral types other than bool should be uniquely represented on any
- // platform that this will plausibly be ported to.
- template <typename Integral>
- struct is_uniquely_represented<
- Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
- : std::true_type {};
- // is_uniquely_represented<bool>
- //
- //
- template <>
- struct is_uniquely_represented<bool> : std::false_type {};
- // hash_bytes()
- //
- // Convenience function that combines `hash_state` with the byte representation
- // of `value`.
- template <typename H, typename T>
- H hash_bytes(H hash_state, const T& value) {
- const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
- return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for Basic Types
- // -----------------------------------------------------------------------------
- // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
- // allows us to block lexical scope lookup when doing an unqualified call to
- // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
- // only be found via ADL.
- // AbslHashValue() for hashing bool values
- //
- // We use SFINAE to ensure that this overload only accepts bool, not types that
- // are convertible to bool.
- template <typename H, typename B>
- typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
- H hash_state, B value) {
- return H::combine(std::move(hash_state),
- static_cast<unsigned char>(value ? 1 : 0));
- }
- // AbslHashValue() for hashing enum values
- template <typename H, typename Enum>
- typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
- H hash_state, Enum e) {
- // In practice, we could almost certainly just invoke hash_bytes directly,
- // but it's possible that a sanitizer might one day want to
- // store data in the unused bits of an enum. To avoid that risk, we
- // convert to the underlying type before hashing. Hopefully this will get
- // optimized away; if not, we can reopen discussion with c-toolchain-team.
- return H::combine(std::move(hash_state),
- static_cast<typename std::underlying_type<Enum>::type>(e));
- }
- // AbslHashValue() for hashing floating-point values
- template <typename H, typename Float>
- typename std::enable_if<std::is_same<Float, float>::value ||
- std::is_same<Float, double>::value,
- H>::type
- AbslHashValue(H hash_state, Float value) {
- return hash_internal::hash_bytes(std::move(hash_state),
- value == 0 ? 0 : value);
- }
- // Long double has the property that it might have extra unused bytes in it.
- // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
- // of it. This means we can't use hash_bytes on a long double and have to
- // convert it to something else first.
- template <typename H, typename LongDouble>
- typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
- AbslHashValue(H hash_state, LongDouble value) {
- const int category = std::fpclassify(value);
- switch (category) {
- case FP_INFINITE:
- // Add the sign bit to differentiate between +Inf and -Inf
- hash_state = H::combine(std::move(hash_state), std::signbit(value));
- break;
- case FP_NAN:
- case FP_ZERO:
- default:
- // Category is enough for these.
- break;
- case FP_NORMAL:
- case FP_SUBNORMAL:
- // We can't convert `value` directly to double because this would have
- // undefined behavior if the value is out of range.
- // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
- // guaranteed to be in range for `double`. The truncation is
- // implementation defined, but that works as long as it is deterministic.
- int exp;
- auto mantissa = static_cast<double>(std::frexp(value, &exp));
- hash_state = H::combine(std::move(hash_state), mantissa, exp);
- }
- return H::combine(std::move(hash_state), category);
- }
- // AbslHashValue() for hashing pointers
- template <typename H, typename T>
- H AbslHashValue(H hash_state, T* ptr) {
- auto v = reinterpret_cast<uintptr_t>(ptr);
- // Due to alignment, pointers tend to have low bits as zero, and the next few
- // bits follow a pattern since they are also multiples of some base value.
- // Mixing the pointer twice helps prevent stuck low bits for certain alignment
- // values.
- return H::combine(std::move(hash_state), v, v);
- }
- // AbslHashValue() for hashing nullptr_t
- template <typename H>
- H AbslHashValue(H hash_state, std::nullptr_t) {
- return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
- }
- // AbslHashValue() for hashing pointers-to-member
- template <typename H, typename T, typename C>
- H AbslHashValue(H hash_state, T C::*ptr) {
- auto salient_ptm_size = [](std::size_t n) -> std::size_t {
- #if defined(_MSC_VER)
- // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
- // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
- // padding (namely when they have 1 or 3 ints). The value below is a lower
- // bound on the number of salient, non-padding bytes that we use for
- // hashing.
- if (alignof(T C::*) == alignof(int)) {
- // No padding when all subobjects have the same size as the total
- // alignment. This happens in 32-bit mode.
- return n;
- } else {
- // Padding for 1 int (size 16) or 3 ints (size 24).
- // With 2 ints, the size is 16 with no padding, which we pessimize.
- return n == 24 ? 20 : n == 16 ? 12 : n;
- }
- #else
- // On other platforms, we assume that pointers-to-members do not have
- // padding.
- #ifdef __cpp_lib_has_unique_object_representations
- static_assert(std::has_unique_object_representations<T C::*>::value);
- #endif // __cpp_lib_has_unique_object_representations
- return n;
- #endif
- };
- return H::combine_contiguous(std::move(hash_state),
- reinterpret_cast<unsigned char*>(&ptr),
- salient_ptm_size(sizeof ptr));
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for Composite Types
- // -----------------------------------------------------------------------------
- // AbslHashValue() for hashing pairs
- template <typename H, typename T1, typename T2>
- typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
- H>::type
- AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
- return H::combine(std::move(hash_state), p.first, p.second);
- }
- // hash_tuple()
- //
- // Helper function for hashing a tuple. The third argument should
- // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
- template <typename H, typename Tuple, size_t... Is>
- H hash_tuple(H hash_state, const Tuple& t, y_absl::index_sequence<Is...>) {
- return H::combine(std::move(hash_state), std::get<Is>(t)...);
- }
- // AbslHashValue for hashing tuples
- template <typename H, typename... Ts>
- #if defined(_MSC_VER)
- // This SFINAE gets MSVC confused under some conditions. Let's just disable it
- // for now.
- H
- #else // _MSC_VER
- typename std::enable_if<y_absl::conjunction<is_hashable<Ts>...>::value, H>::type
- #endif // _MSC_VER
- AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
- return hash_internal::hash_tuple(std::move(hash_state), t,
- y_absl::make_index_sequence<sizeof...(Ts)>());
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for Pointers
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing unique_ptr
- template <typename H, typename T, typename D>
- H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
- return H::combine(std::move(hash_state), ptr.get());
- }
- // AbslHashValue for hashing shared_ptr
- template <typename H, typename T>
- H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
- return H::combine(std::move(hash_state), ptr.get());
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for String-Like Types
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing strings
- //
- // All the string-like types supported here provide the same hash expansion for
- // the same character sequence. These types are:
- //
- // - `y_absl::Cord`
- // - `TString` (and std::basic_string<T, std::char_traits<T>, A> for
- // any allocator A and any T in {char, wchar_t, char16_t, char32_t})
- // - `y_absl::string_view`, `std::string_view`, `std::wstring_view`,
- // `std::u16string_view`, and `std::u32_string_view`.
- //
- // For simplicity, we currently support only strings built on `char`, `wchar_t`,
- // `char16_t`, or `char32_t`. This support may be broadened, if necessary, but
- // with some caution - this overload would misbehave in cases where the traits'
- // `eq()` member isn't equivalent to `==` on the underlying character type.
- template <typename H>
- H AbslHashValue(H hash_state, y_absl::string_view str) {
- return H::combine(
- H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
- str.size());
- }
- // Support std::wstring, std::u16string and std::u32string.
- template <typename Char, typename Alloc, typename H,
- typename = y_absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
- std::is_same<Char, char16_t>::value ||
- std::is_same<Char, char32_t>::value>>
- H AbslHashValue(
- H hash_state,
- const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
- return H::combine(
- H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
- str.size());
- }
- #ifdef Y_ABSL_HAVE_STD_STRING_VIEW
- // Support std::wstring_view, std::u16string_view and std::u32string_view.
- template <typename Char, typename H,
- typename = y_absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
- std::is_same<Char, char16_t>::value ||
- std::is_same<Char, char32_t>::value>>
- H AbslHashValue(H hash_state, std::basic_string_view<Char> str) {
- return H::combine(
- H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
- str.size());
- }
- #endif // Y_ABSL_HAVE_STD_STRING_VIEW
- // -----------------------------------------------------------------------------
- // AbslHashValue for Sequence Containers
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing std::array
- template <typename H, typename T, size_t N>
- typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::array<T, N>& array) {
- return H::combine_contiguous(std::move(hash_state), array.data(),
- array.size());
- }
- // AbslHashValue for hashing std::deque
- template <typename H, typename T, typename Allocator>
- typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::deque<T, Allocator>& deque) {
- // TODO(gromer): investigate a more efficient implementation taking
- // advantage of the chunk structure.
- for (const auto& t : deque) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), deque.size());
- }
- // AbslHashValue for hashing std::forward_list
- template <typename H, typename T, typename Allocator>
- typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::forward_list<T, Allocator>& list) {
- size_t size = 0;
- for (const T& t : list) {
- hash_state = H::combine(std::move(hash_state), t);
- ++size;
- }
- return H::combine(std::move(hash_state), size);
- }
- // AbslHashValue for hashing std::list
- template <typename H, typename T, typename Allocator>
- typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::list<T, Allocator>& list) {
- for (const auto& t : list) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), list.size());
- }
- // AbslHashValue for hashing std::vector
- //
- // Do not use this for vector<bool> on platforms that have a working
- // implementation of std::hash. It does not have a .data(), and a fallback for
- // std::hash<> is most likely faster.
- template <typename H, typename T, typename Allocator>
- typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
- H>::type
- AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
- return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
- vector.size()),
- vector.size());
- }
- // AbslHashValue special cases for hashing std::vector<bool>
- #if defined(Y_ABSL_IS_BIG_ENDIAN) && \
- (defined(__GLIBCXX__) || defined(__GLIBCPP__))
- // std::hash in libstdc++ does not work correctly with vector<bool> on Big
- // Endian platforms therefore we need to implement a custom AbslHashValue for
- // it. More details on the bug:
- // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
- template <typename H, typename T, typename Allocator>
- typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
- H>::type
- AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
- typename H::AbslInternalPiecewiseCombiner combiner;
- for (const auto& i : vector) {
- unsigned char c = static_cast<unsigned char>(i);
- hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
- }
- return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
- }
- #else
- // When not working around the libstdc++ bug above, we still have to contend
- // with the fact that std::hash<vector<bool>> is often poor quality, hashing
- // directly on the internal words and on no other state. On these platforms,
- // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
- //
- // Mixing in the size (as we do in our other vector<> implementations) on top
- // of the library-provided hash implementation avoids this QOI issue.
- template <typename H, typename T, typename Allocator>
- typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
- H>::type
- AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
- return H::combine(std::move(hash_state),
- std::hash<std::vector<T, Allocator>>{}(vector),
- vector.size());
- }
- #endif
- // -----------------------------------------------------------------------------
- // AbslHashValue for Ordered Associative Containers
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing std::map
- template <typename H, typename Key, typename T, typename Compare,
- typename Allocator>
- typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
- H>::type
- AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
- for (const auto& t : map) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), map.size());
- }
- // AbslHashValue for hashing std::multimap
- template <typename H, typename Key, typename T, typename Compare,
- typename Allocator>
- typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
- H>::type
- AbslHashValue(H hash_state,
- const std::multimap<Key, T, Compare, Allocator>& map) {
- for (const auto& t : map) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), map.size());
- }
- // AbslHashValue for hashing std::set
- template <typename H, typename Key, typename Compare, typename Allocator>
- typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
- H hash_state, const std::set<Key, Compare, Allocator>& set) {
- for (const auto& t : set) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), set.size());
- }
- // AbslHashValue for hashing std::multiset
- template <typename H, typename Key, typename Compare, typename Allocator>
- typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
- H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
- for (const auto& t : set) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), set.size());
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for Unordered Associative Containers
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing std::unordered_set
- template <typename H, typename Key, typename Hash, typename KeyEqual,
- typename Alloc>
- typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
- H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
- return H::combine(
- H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
- s.size());
- }
- // AbslHashValue for hashing std::unordered_multiset
- template <typename H, typename Key, typename Hash, typename KeyEqual,
- typename Alloc>
- typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
- H hash_state,
- const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
- return H::combine(
- H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
- s.size());
- }
- // AbslHashValue for hashing std::unordered_set
- template <typename H, typename Key, typename T, typename Hash,
- typename KeyEqual, typename Alloc>
- typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
- H>::type
- AbslHashValue(H hash_state,
- const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
- return H::combine(
- H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
- s.size());
- }
- // AbslHashValue for hashing std::unordered_multiset
- template <typename H, typename Key, typename T, typename Hash,
- typename KeyEqual, typename Alloc>
- typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
- H>::type
- AbslHashValue(H hash_state,
- const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
- return H::combine(
- H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
- s.size());
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for Wrapper Types
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing std::reference_wrapper
- template <typename H, typename T>
- typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, std::reference_wrapper<T> opt) {
- return H::combine(std::move(hash_state), opt.get());
- }
- // AbslHashValue for hashing y_absl::optional
- template <typename H, typename T>
- typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const y_absl::optional<T>& opt) {
- if (opt) hash_state = H::combine(std::move(hash_state), *opt);
- return H::combine(std::move(hash_state), opt.has_value());
- }
- // VariantVisitor
- template <typename H>
- struct VariantVisitor {
- H&& hash_state;
- template <typename T>
- H operator()(const T& t) const {
- return H::combine(std::move(hash_state), t);
- }
- };
- // AbslHashValue for hashing y_absl::variant
- template <typename H, typename... T>
- typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
- AbslHashValue(H hash_state, const y_absl::variant<T...>& v) {
- if (!v.valueless_by_exception()) {
- hash_state = y_absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
- }
- return H::combine(std::move(hash_state), v.index());
- }
- // -----------------------------------------------------------------------------
- // AbslHashValue for Other Types
- // -----------------------------------------------------------------------------
- // AbslHashValue for hashing std::bitset is not defined on Little Endian
- // platforms, for the same reason as for vector<bool> (see std::vector above):
- // It does not expose the raw bytes, and a fallback to std::hash<> is most
- // likely faster.
- #if defined(Y_ABSL_IS_BIG_ENDIAN) && \
- (defined(__GLIBCXX__) || defined(__GLIBCPP__))
- // AbslHashValue for hashing std::bitset
- //
- // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
- // platforms therefore we need to implement a custom AbslHashValue for it. More
- // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
- template <typename H, size_t N>
- H AbslHashValue(H hash_state, const std::bitset<N>& set) {
- typename H::AbslInternalPiecewiseCombiner combiner;
- for (int i = 0; i < N; i++) {
- unsigned char c = static_cast<unsigned char>(set[i]);
- hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
- }
- return H::combine(combiner.finalize(std::move(hash_state)), N);
- }
- #endif
- // -----------------------------------------------------------------------------
- // hash_range_or_bytes()
- //
- // Mixes all values in the range [data, data+size) into the hash state.
- // This overload accepts only uniquely-represented types, and hashes them by
- // hashing the entire range of bytes.
- template <typename H, typename T>
- typename std::enable_if<is_uniquely_represented<T>::value, H>::type
- hash_range_or_bytes(H hash_state, const T* data, size_t size) {
- const auto* bytes = reinterpret_cast<const unsigned char*>(data);
- return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
- }
- // hash_range_or_bytes()
- template <typename H, typename T>
- typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
- hash_range_or_bytes(H hash_state, const T* data, size_t size) {
- for (const auto end = data + size; data < end; ++data) {
- hash_state = H::combine(std::move(hash_state), *data);
- }
- return hash_state;
- }
- #if defined(Y_ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
- Y_ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
- #define Y_ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
- #else
- #define Y_ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
- #endif
- // HashSelect
- //
- // Type trait to select the appropriate hash implementation to use.
- // HashSelect::type<T> will give the proper hash implementation, to be invoked
- // as:
- // HashSelect::type<T>::Invoke(state, value)
- // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
- // valid `Invoke` function. Types that are not hashable will have a ::value of
- // `false`.
- struct HashSelect {
- private:
- struct State : HashStateBase<State> {
- static State combine_contiguous(State hash_state, const unsigned char*,
- size_t);
- using State::HashStateBase::combine_contiguous;
- };
- struct UniquelyRepresentedProbe {
- template <typename H, typename T>
- static auto Invoke(H state, const T& value)
- -> y_absl::enable_if_t<is_uniquely_represented<T>::value, H> {
- return hash_internal::hash_bytes(std::move(state), value);
- }
- };
- struct HashValueProbe {
- template <typename H, typename T>
- static auto Invoke(H state, const T& value) -> y_absl::enable_if_t<
- std::is_same<H,
- decltype(AbslHashValue(std::move(state), value))>::value,
- H> {
- return AbslHashValue(std::move(state), value);
- }
- };
- struct LegacyHashProbe {
- #if Y_ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
- template <typename H, typename T>
- static auto Invoke(H state, const T& value) -> y_absl::enable_if_t<
- std::is_convertible<
- decltype(Y_ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
- size_t>::value,
- H> {
- return hash_internal::hash_bytes(
- std::move(state),
- Y_ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
- }
- #endif // Y_ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
- };
- struct StdHashProbe {
- template <typename H, typename T>
- static auto Invoke(H state, const T& value)
- -> y_absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
- return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
- }
- };
- template <typename Hash, typename T>
- struct Probe : Hash {
- private:
- template <typename H, typename = decltype(H::Invoke(
- std::declval<State>(), std::declval<const T&>()))>
- static std::true_type Test(int);
- template <typename U>
- static std::false_type Test(char);
- public:
- static constexpr bool value = decltype(Test<Hash>(0))::value;
- };
- public:
- // Probe each implementation in order.
- // disjunction provides short circuiting wrt instantiation.
- template <typename T>
- using Apply = y_absl::disjunction< //
- Probe<UniquelyRepresentedProbe, T>, //
- Probe<HashValueProbe, T>, //
- Probe<LegacyHashProbe, T>, //
- Probe<StdHashProbe, T>, //
- std::false_type>;
- };
- template <typename T>
- struct is_hashable
- : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
- // MixingHashState
- class Y_ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
- // y_absl::uint128 is not an alias or a thin wrapper around the intrinsic.
- // We use the intrinsic when available to improve performance.
- #ifdef Y_ABSL_HAVE_INTRINSIC_INT128
- using uint128 = __uint128_t;
- #else // Y_ABSL_HAVE_INTRINSIC_INT128
- using uint128 = y_absl::uint128;
- #endif // Y_ABSL_HAVE_INTRINSIC_INT128
- static constexpr uint64_t kMul =
- sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
- : uint64_t{0x9ddfea08eb382d69};
- template <typename T>
- using IntegralFastPath =
- conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
- public:
- // Move only
- MixingHashState(MixingHashState&&) = default;
- MixingHashState& operator=(MixingHashState&&) = default;
- // MixingHashState::combine_contiguous()
- //
- // Fundamental base case for hash recursion: mixes the given range of bytes
- // into the hash state.
- static MixingHashState combine_contiguous(MixingHashState hash_state,
- const unsigned char* first,
- size_t size) {
- return MixingHashState(
- CombineContiguousImpl(hash_state.state_, first, size,
- std::integral_constant<int, sizeof(size_t)>{}));
- }
- using MixingHashState::HashStateBase::combine_contiguous;
- // MixingHashState::hash()
- //
- // For performance reasons in non-opt mode, we specialize this for
- // integral types.
- // Otherwise we would be instantiating and calling dozens of functions for
- // something that is just one multiplication and a couple xor's.
- // The result should be the same as running the whole algorithm, but faster.
- template <typename T, y_absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
- static size_t hash(T value) {
- return static_cast<size_t>(
- Mix(Seed(), static_cast<std::make_unsigned_t<T>>(value)));
- }
- // Overload of MixingHashState::hash()
- template <typename T, y_absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
- static size_t hash(const T& value) {
- return static_cast<size_t>(combine(MixingHashState{}, value).state_);
- }
- private:
- // Invoked only once for a given argument; that plus the fact that this is
- // move-only ensures that there is only one non-moved-from object.
- MixingHashState() : state_(Seed()) {}
- friend class MixingHashState::HashStateBase;
- template <typename CombinerT>
- static MixingHashState RunCombineUnordered(MixingHashState state,
- CombinerT combiner) {
- uint64_t unordered_state = 0;
- combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
- // Add the hash state of the element to the running total, but mix the
- // carry bit back into the low bit. This in intended to avoid losing
- // entropy to overflow, especially when unordered_multisets contain
- // multiple copies of the same value.
- auto element_state = inner_state.state_;
- unordered_state += element_state;
- if (unordered_state < element_state) {
- ++unordered_state;
- }
- inner_state = MixingHashState{};
- });
- return MixingHashState::combine(std::move(state), unordered_state);
- }
- // Allow the HashState type-erasure implementation to invoke
- // RunCombinedUnordered() directly.
- friend class y_absl::HashState;
- // Workaround for MSVC bug.
- // We make the type copyable to fix the calling convention, even though we
- // never actually copy it. Keep it private to not affect the public API of the
- // type.
- MixingHashState(const MixingHashState&) = default;
- explicit MixingHashState(uint64_t state) : state_(state) {}
- // Implementation of the base case for combine_contiguous where we actually
- // mix the bytes into the state.
- // Dispatch to different implementations of the combine_contiguous depending
- // on the value of `sizeof(size_t)`.
- static uint64_t CombineContiguousImpl(uint64_t state,
- const unsigned char* first, size_t len,
- std::integral_constant<int, 4>
- /* sizeof_size_t */);
- static uint64_t CombineContiguousImpl(uint64_t state,
- const unsigned char* first, size_t len,
- std::integral_constant<int, 8>
- /* sizeof_size_t */);
- // Slow dispatch path for calls to CombineContiguousImpl with a size argument
- // larger than PiecewiseChunkSize(). Has the same effect as calling
- // CombineContiguousImpl() repeatedly with the chunk stride size.
- static uint64_t CombineLargeContiguousImpl32(uint64_t state,
- const unsigned char* first,
- size_t len);
- static uint64_t CombineLargeContiguousImpl64(uint64_t state,
- const unsigned char* first,
- size_t len);
- // Reads 9 to 16 bytes from p.
- // The least significant 8 bytes are in .first, the rest (zero padded) bytes
- // are in .second.
- static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
- size_t len) {
- uint64_t low_mem = y_absl::base_internal::UnalignedLoad64(p);
- uint64_t high_mem = y_absl::base_internal::UnalignedLoad64(p + len - 8);
- #ifdef Y_ABSL_IS_LITTLE_ENDIAN
- uint64_t most_significant = high_mem;
- uint64_t least_significant = low_mem;
- #else
- uint64_t most_significant = low_mem;
- uint64_t least_significant = high_mem;
- #endif
- return {least_significant, most_significant};
- }
- // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
- static uint64_t Read4To8(const unsigned char* p, size_t len) {
- uint32_t low_mem = y_absl::base_internal::UnalignedLoad32(p);
- uint32_t high_mem = y_absl::base_internal::UnalignedLoad32(p + len - 4);
- #ifdef Y_ABSL_IS_LITTLE_ENDIAN
- uint32_t most_significant = high_mem;
- uint32_t least_significant = low_mem;
- #else
- uint32_t most_significant = low_mem;
- uint32_t least_significant = high_mem;
- #endif
- return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
- least_significant;
- }
- // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
- static uint32_t Read1To3(const unsigned char* p, size_t len) {
- // The trick used by this implementation is to avoid branches if possible.
- unsigned char mem0 = p[0];
- unsigned char mem1 = p[len / 2];
- unsigned char mem2 = p[len - 1];
- #ifdef Y_ABSL_IS_LITTLE_ENDIAN
- unsigned char significant2 = mem2;
- unsigned char significant1 = mem1;
- unsigned char significant0 = mem0;
- #else
- unsigned char significant2 = mem0;
- unsigned char significant1 = len == 2 ? mem0 : mem1;
- unsigned char significant0 = mem2;
- #endif
- return static_cast<uint32_t>(significant0 | //
- (significant1 << (len / 2 * 8)) | //
- (significant2 << ((len - 1) * 8)));
- }
- Y_ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
- // Though the 128-bit product on AArch64 needs two instructions, it is
- // still a good balance between speed and hash quality.
- using MultType =
- y_absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
- // We do the addition in 64-bit space to make sure the 128-bit
- // multiplication is fast. If we were to do it as MultType the compiler has
- // to assume that the high word is non-zero and needs to perform 2
- // multiplications instead of one.
- MultType m = state + v;
- m *= kMul;
- return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
- }
- // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
- // values for both the seed and salt parameters.
- static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
- Y_ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
- size_t len) {
- #ifdef Y_ABSL_HAVE_INTRINSIC_INT128
- return LowLevelHashImpl(data, len);
- #else
- return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
- #endif
- }
- // Seed()
- //
- // A non-deterministic seed.
- //
- // The current purpose of this seed is to generate non-deterministic results
- // and prevent having users depend on the particular hash values.
- // It is not meant as a security feature right now, but it leaves the door
- // open to upgrade it to a true per-process random seed. A true random seed
- // costs more and we don't need to pay for that right now.
- //
- // On platforms with ASLR, we take advantage of it to make a per-process
- // random value.
- // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
- //
- // On other platforms this is still going to be non-deterministic but most
- // probably per-build and not per-process.
- Y_ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
- #if (!defined(__clang__) || __clang_major__ > 11) && \
- (!defined(__apple_build_version__) || \
- __apple_build_version__ >= 19558921) // Xcode 12
- return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
- #else
- // Workaround the absence of
- // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
- return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
- #endif
- }
- static const void* const kSeed;
- uint64_t state_;
- };
- // MixingHashState::CombineContiguousImpl()
- inline uint64_t MixingHashState::CombineContiguousImpl(
- uint64_t state, const unsigned char* first, size_t len,
- std::integral_constant<int, 4> /* sizeof_size_t */) {
- // For large values we use CityHash, for small ones we just use a
- // multiplicative hash.
- uint64_t v;
- if (len > 8) {
- if (Y_ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
- return CombineLargeContiguousImpl32(state, first, len);
- }
- v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
- } else if (len >= 4) {
- v = Read4To8(first, len);
- } else if (len > 0) {
- v = Read1To3(first, len);
- } else {
- // Empty ranges have no effect.
- return state;
- }
- return Mix(state, v);
- }
- // Overload of MixingHashState::CombineContiguousImpl()
- inline uint64_t MixingHashState::CombineContiguousImpl(
- uint64_t state, const unsigned char* first, size_t len,
- std::integral_constant<int, 8> /* sizeof_size_t */) {
- // For large values we use LowLevelHash or CityHash depending on the platform,
- // for small ones we just use a multiplicative hash.
- uint64_t v;
- if (len > 16) {
- if (Y_ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
- return CombineLargeContiguousImpl64(state, first, len);
- }
- v = Hash64(first, len);
- } else if (len > 8) {
- // This hash function was constructed by the ML-driven algorithm discovery
- // using reinforcement learning. We fed the agent lots of inputs from
- // microbenchmarks, SMHasher, low hamming distance from generated inputs and
- // picked up the one that was good on micro and macrobenchmarks.
- auto p = Read9To16(first, len);
- uint64_t lo = p.first;
- uint64_t hi = p.second;
- // Rotation by 53 was found to be most often useful when discovering these
- // hashing algorithms with ML techniques.
- lo = y_absl::rotr(lo, 53);
- state += kMul;
- lo += state;
- state ^= hi;
- uint128 m = state;
- m *= lo;
- return static_cast<uint64_t>(m ^ (m >> 64));
- } else if (len >= 4) {
- v = Read4To8(first, len);
- } else if (len > 0) {
- v = Read1To3(first, len);
- } else {
- // Empty ranges have no effect.
- return state;
- }
- return Mix(state, v);
- }
- struct AggregateBarrier {};
- // HashImpl
- // Add a private base class to make sure this type is not an aggregate.
- // Aggregates can be aggregate initialized even if the default constructor is
- // deleted.
- struct PoisonedHash : private AggregateBarrier {
- PoisonedHash() = delete;
- PoisonedHash(const PoisonedHash&) = delete;
- PoisonedHash& operator=(const PoisonedHash&) = delete;
- };
- template <typename T>
- struct HashImpl {
- size_t operator()(const T& value) const {
- return MixingHashState::hash(value);
- }
- };
- template <typename T>
- struct Hash
- : y_absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
- template <typename H>
- template <typename T, typename... Ts>
- H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
- return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
- std::move(state), value),
- values...);
- }
- // HashStateBase::combine_contiguous()
- template <typename H>
- template <typename T>
- H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
- return hash_internal::hash_range_or_bytes(std::move(state), data, size);
- }
- // HashStateBase::combine_unordered()
- template <typename H>
- template <typename I>
- H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
- return H::RunCombineUnordered(std::move(state),
- CombineUnorderedCallback<I>{begin, end});
- }
- // HashStateBase::PiecewiseCombiner::add_buffer()
- template <typename H>
- H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
- size_t size) {
- if (position_ + size < PiecewiseChunkSize()) {
- // This partial chunk does not fill our existing buffer
- memcpy(buf_ + position_, data, size);
- position_ += size;
- return state;
- }
- // If the buffer is partially filled we need to complete the buffer
- // and hash it.
- if (position_ != 0) {
- const size_t bytes_needed = PiecewiseChunkSize() - position_;
- memcpy(buf_ + position_, data, bytes_needed);
- state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
- data += bytes_needed;
- size -= bytes_needed;
- }
- // Hash whatever chunks we can without copying
- while (size >= PiecewiseChunkSize()) {
- state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
- data += PiecewiseChunkSize();
- size -= PiecewiseChunkSize();
- }
- // Fill the buffer with the remainder
- memcpy(buf_, data, size);
- position_ = size;
- return state;
- }
- // HashStateBase::PiecewiseCombiner::finalize()
- template <typename H>
- H PiecewiseCombiner::finalize(H state) {
- // Hash the remainder left in the buffer, which may be empty
- return H::combine_contiguous(std::move(state), buf_, position_);
- }
- } // namespace hash_internal
- Y_ABSL_NAMESPACE_END
- } // namespace y_absl
- #endif // Y_ABSL_HASH_INTERNAL_HASH_H_
|