12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835 |
- //===- MatmulOptimizer.cpp -----------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "polly/MatmulOptimizer.h"
- #include "polly/DependenceInfo.h"
- #include "polly/Options.h"
- #include "polly/ScheduleTreeTransform.h"
- #include "polly/ScopInfo.h"
- #include "polly/ScopPass.h"
- #include "polly/Simplify.h"
- #include "polly/Support/GICHelper.h"
- #include "polly/Support/ISLTools.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/TypeSize.h"
- #include "llvm/Support/raw_ostream.h"
- #include "isl/ctx.h"
- #include "isl/schedule_node.h"
- #include "isl/schedule_type.h"
- #include "isl/union_map.h"
- #include "isl/union_set.h"
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstdint>
- #include <string>
- #include <vector>
- #define DEBUG_TYPE "polly-opt-isl"
- using namespace llvm;
- using namespace polly;
- namespace llvm {
- class Value;
- }
- static cl::opt<int> LatencyVectorFma(
- "polly-target-latency-vector-fma",
- cl::desc("The minimal number of cycles between issuing two "
- "dependent consecutive vector fused multiply-add "
- "instructions."),
- cl::Hidden, cl::init(8), cl::cat(PollyCategory));
- static cl::opt<int> ThroughputVectorFma(
- "polly-target-throughput-vector-fma",
- cl::desc("A throughput of the processor floating-point arithmetic units "
- "expressed in the number of vector fused multiply-add "
- "instructions per clock cycle."),
- cl::Hidden, cl::init(1), cl::cat(PollyCategory));
- static cl::opt<int> FirstCacheLevelSize(
- "polly-target-1st-cache-level-size",
- cl::desc("The size of the first cache level specified in bytes."),
- cl::Hidden, cl::init(-1), cl::cat(PollyCategory));
- static cl::opt<int> FirstCacheLevelDefaultSize(
- "polly-target-1st-cache-level-default-size",
- cl::desc("The default size of the first cache level specified in bytes"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(32768), cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelSize(
- "polly-target-2nd-cache-level-size",
- cl::desc("The size of the second level specified in bytes."), cl::Hidden,
- cl::init(-1), cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelDefaultSize(
- "polly-target-2nd-cache-level-default-size",
- cl::desc("The default size of the second cache level specified in bytes"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(262144), cl::cat(PollyCategory));
- // This option, along with --polly-target-2nd-cache-level-associativity,
- // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
- // represent the parameters of the target cache, which do not have typical
- // values that can be used by default. However, to apply the pattern matching
- // optimizations, we use the values of the parameters of Intel Core i7-3820
- // SandyBridge in case the parameters are not specified or not provided by the
- // TargetTransformInfo.
- static cl::opt<int> FirstCacheLevelAssociativity(
- "polly-target-1st-cache-level-associativity",
- cl::desc("The associativity of the first cache level."), cl::Hidden,
- cl::init(-1), cl::cat(PollyCategory));
- static cl::opt<int> FirstCacheLevelDefaultAssociativity(
- "polly-target-1st-cache-level-default-associativity",
- cl::desc("The default associativity of the first cache level"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(8), cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelAssociativity(
- "polly-target-2nd-cache-level-associativity",
- cl::desc("The associativity of the second cache level."), cl::Hidden,
- cl::init(-1), cl::cat(PollyCategory));
- static cl::opt<int> SecondCacheLevelDefaultAssociativity(
- "polly-target-2nd-cache-level-default-associativity",
- cl::desc("The default associativity of the second cache level"
- " (if not enough were provided by the TargetTransformInfo)."),
- cl::Hidden, cl::init(8), cl::cat(PollyCategory));
- static cl::opt<int> VectorRegisterBitwidth(
- "polly-target-vector-register-bitwidth",
- cl::desc("The size in bits of a vector register (if not set, this "
- "information is taken from LLVM's target information."),
- cl::Hidden, cl::init(-1), cl::cat(PollyCategory));
- static cl::opt<int> PollyPatternMatchingNcQuotient(
- "polly-pattern-matching-nc-quotient",
- cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
- "macro-kernel, by Nr, the parameter of the micro-kernel"),
- cl::Hidden, cl::init(256), cl::cat(PollyCategory));
- static cl::opt<bool>
- PMBasedTCOpts("polly-tc-opt",
- cl::desc("Perform optimizations of tensor contractions based "
- "on pattern matching"),
- cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<bool>
- PMBasedMMMOpts("polly-matmul-opt",
- cl::desc("Perform optimizations of matrix multiplications "
- "based on pattern matching"),
- cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
- static cl::opt<int> OptComputeOut(
- "polly-tc-dependences-computeout",
- cl::desc("Bound the dependence analysis by a maximal amount of "
- "computational steps (0 means no bound)"),
- cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));
- namespace {
- /// Parameters of the micro kernel.
- ///
- /// Parameters, which determine sizes of rank-1 (i.e., outer product) update
- /// used in the optimized matrix multiplication.
- struct MicroKernelParamsTy {
- int Mr;
- int Nr;
- };
- /// Parameters of the macro kernel.
- ///
- /// Parameters, which determine sizes of blocks of partitioned matrices
- /// used in the optimized matrix multiplication.
- struct MacroKernelParamsTy {
- int Mc;
- int Nc;
- int Kc;
- };
- /// Parameters of the matrix multiplication operands.
- ///
- /// Parameters, which describe access relations that represent operands of the
- /// matrix multiplication.
- struct MatMulInfoTy {
- MemoryAccess *A = nullptr;
- MemoryAccess *B = nullptr;
- MemoryAccess *ReadFromC = nullptr;
- MemoryAccess *WriteToC = nullptr;
- int i = -1;
- int j = -1;
- int k = -1;
- };
- /// Parameters of the tensor contraction operands.
- ///
- /// A general d-dimensional tensor T ∈ R ^ Nu0 x ... x Nud−1 can be defined
- /// as the set of scalar elements indexed by the set of indices u0 ... ud,
- ///
- /// T ≡ {Anu0...nud−1 ∈ R | (u0,...,ud−1) ∈ Nu0 x ... x Nud−1}.
- ///
- /// Let A, B, and C be dA, dB, and dC-dimensional tensors, respectively.
- /// Let the free and the contracted indices of the tensor A be grouped into
- /// two bundles I = i0...ir−1 and P = p0...pt−1, respectively. Similarly,
- /// the free and the contracted indices of B are grouped into bundles
- /// J = j0..js−1 and P and the free indices of C are grouped into
- /// bundles I and J.
- ///
- /// Tensor contraction (TC) of tensors A, B into tensor C can be represented as
- /// C(shuffle(I,J))=∑α·A(shuffle(I,P))·B(shuffle(P,J))+β·C(shuffle(I,J)),
- /// where ∑ is a summation over all contracted indices of P,
- /// α, β ∈ R, Npi is the length of the tensor dimension that corresponds
- /// to the index pi, A(shuffle(I, P)), B(shuffle(P, J)), C(shuffle(I, J)) are
- /// accesses to tensors A, B, C, respectively,
- /// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of
- /// the enclosed indices.
- ///
- /// Multiplication of C(shuffle(I,J)) by β can be moved into a different SCoP
- /// statement by loop distribution, which is done by the isl scheduler.
- // If β is not equal to one, the optimization of TC of Polly requires
- /// such a transformation.
- ///
- /// TCInfoTy contains parameters, which describe access relations that represent
- /// operands of the tensor contraction.
- struct TCInfoTy {
- /// @{
- /// Memory accesses that represent reading from tensors, which are operands of
- /// the tensor contraction.
- MemoryAccess *A = nullptr;
- MemoryAccess *B = nullptr;
- /// @}
- /// @{
- /// Memory accesses that represent reading from and writing into the tensor,
- /// which contains the result of the tensor contraction.
- MemoryAccess *ReadFromC = nullptr;
- MemoryAccess *WriteToC = nullptr;
- /// @}
- /// @{
- /// Input dimensions of the schedule space, which represent free
- /// indices of tensors.
- SmallDenseSet<int> I;
- SmallDenseSet<int> J;
- /// @}
- /// Input dimension of the schedule space, which represents contracted
- /// indices of tensors.
- SmallDenseSet<int> P;
- /// @{
- /// Sizes of tensor dimensions for corresponding input dimensions of
- /// the schedule space. The size of the tensor dimension can be larger than
- /// the size of the corresponding input dimension of the schedule space.
- /// This does not correspond to a tensor contraction. However, such a pattern
- /// will be optimized by the transformation.
- SmallVector<int> DimensionSizes;
- SmallVector<int> ADimensions;
- SmallVector<int> BDimensions;
- SmallVector<int> CDimensions;
- /// @}
- /// @{
- /// Permutations of indices of I, J, and P, which describe operands of
- /// the tensor contraction and its result.
- SmallVector<int> OrderedI;
- SmallVector<int> OrderedJ;
- SmallVector<int> OrderedP;
- /// @}
- };
- /// Create an isl::union_set, which describes the option of the form
- /// [isolate[] -> unroll[x]].
- ///
- /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
- static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
- isl::space Space = isl::space(Ctx, 0, 0, 1);
- isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
- isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
- isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
- UnrollIsolatedSetOption =
- UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
- UnrollIsolatedSetOption =
- UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
- return UnrollIsolatedSetOption.wrap();
- }
- /// Permute the two dimensions of the isl map.
- ///
- /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
- /// have type @p DimType.
- ///
- /// @param Map The isl map to be modified.
- /// @param DimType The type of the dimensions.
- /// @param DstPos The first dimension.
- /// @param SrcPos The second dimension.
- /// @return The modified map.
- static isl::map permuteDimensions(isl::map Map, isl::dim DimType,
- unsigned DstPos, unsigned SrcPos) {
- assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) &&
- SrcPos < unsignedFromIslSize(Map.dim(DimType)));
- if (DstPos == SrcPos)
- return Map;
- isl::id DimId;
- if (Map.has_tuple_id(DimType))
- DimId = Map.get_tuple_id(DimType);
- auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
- isl::id FreeDimId;
- if (Map.has_tuple_id(FreeDim))
- FreeDimId = Map.get_tuple_id(FreeDim);
- auto MaxDim = std::max(DstPos, SrcPos);
- auto MinDim = std::min(DstPos, SrcPos);
- Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
- Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
- Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
- Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
- if (!DimId.is_null())
- Map = Map.set_tuple_id(DimType, DimId);
- if (!FreeDimId.is_null())
- Map = Map.set_tuple_id(FreeDim, FreeDimId);
- return Map;
- }
- /// Check the form of the access relation.
- ///
- /// Check that the access relation @p AccMap has the form M[i][j], where i
- /// is a @p FirstPos and j is a @p SecondPos.
- ///
- /// @param AccMap The access relation to be checked.
- /// @param FirstPos The index of the input dimension that is mapped to
- /// the first output dimension.
- /// @param SecondPos The index of the input dimension that is mapped to the
- /// second output dimension.
- /// @return True in case @p AccMap has the expected form and false,
- /// otherwise.
- static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
- int &SecondPos) {
- isl::space Space = AccMap.get_space();
- isl::map Universe = isl::map::universe(Space);
- if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2)
- return false;
- // MatMul has the form:
- // for (i = 0; i < N; i++)
- // for (j = 0; j < M; j++)
- // for (k = 0; k < P; k++)
- // C[i, j] += A[i, k] * B[k, j]
- //
- // Permutation of three outer loops: 3! = 6 possibilities.
- int FirstDims[] = {0, 0, 1, 1, 2, 2};
- int SecondDims[] = {1, 2, 2, 0, 0, 1};
- for (int i = 0; i < 6; i += 1) {
- auto PossibleMatMul =
- Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
- .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
- AccMap = AccMap.intersect_domain(Domain);
- PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
- // If AccMap spans entire domain (Non-partial write),
- // compute FirstPos and SecondPos.
- // If AccMap != PossibleMatMul here (the two maps have been gisted at
- // this point), it means that the writes are not complete, or in other
- // words, it is a Partial write and Partial writes must be rejected.
- if (AccMap.is_equal(PossibleMatMul)) {
- if (FirstPos != -1 && FirstPos != FirstDims[i])
- continue;
- FirstPos = FirstDims[i];
- if (SecondPos != -1 && SecondPos != SecondDims[i])
- continue;
- SecondPos = SecondDims[i];
- return true;
- }
- }
- return false;
- }
- /// Does the memory access represent a non-scalar operand of the matrix
- /// multiplication.
- ///
- /// Check that the memory access @p MemAccess is the read access to a non-scalar
- /// operand of the matrix multiplication or its result.
- ///
- /// @param MemAccess The memory access to be checked.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return True in case the memory access represents the read access
- /// to a non-scalar operand of the matrix multiplication and
- /// false, otherwise.
- static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
- MatMulInfoTy &MMI) {
- if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
- return false;
- auto AccMap = MemAccess->getLatestAccessRelation();
- isl::set StmtDomain = MemAccess->getStatement()->getDomain();
- if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
- MMI.ReadFromC = MemAccess;
- return true;
- }
- if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
- MMI.A = MemAccess;
- return true;
- }
- if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
- MMI.B = MemAccess;
- return true;
- }
- return false;
- }
- /// Check accesses to operands of the matrix multiplication.
- ///
- /// Check that accesses of the SCoP statement, which corresponds to
- /// the partial schedule @p PartialSchedule, are scalar in terms of loops
- /// containing the matrix multiplication, in case they do not represent
- /// accesses to the non-scalar operands of the matrix multiplication or
- /// its result.
- ///
- /// @param PartialSchedule The partial schedule of the SCoP statement.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return True in case the corresponding SCoP statement
- /// represents matrix multiplication and false,
- /// otherwise.
- static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
- MatMulInfoTy &MMI) {
- auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
- auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
- unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim());
- assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
- "and, consequently, the corresponding scheduling "
- "functions have at least three dimensions.");
- auto MapI =
- permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
- auto MapJ =
- permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
- auto MapK =
- permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
- auto Accesses = getAccessesInOrder(*Stmt);
- for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
- auto *MemAccessPtr = *MemA;
- if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
- !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
- !(MemAccessPtr->isStrideZero(MapI) &&
- MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)))
- return false;
- }
- return true;
- }
- /// Check for dependencies corresponding to the matrix multiplication.
- ///
- /// Check that there is only true dependence of the form
- /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
- /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
- /// to the dependency produced by the matrix multiplication.
- ///
- /// @param Schedule The schedule of the SCoP statement.
- /// @param D The SCoP dependencies.
- /// @param Pos The parameter to describe an acceptable true dependence.
- /// In case it has a negative value, try to determine its
- /// acceptable value.
- /// @return True in case dependencies correspond to the matrix multiplication
- /// and false, otherwise.
- static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
- int &Pos) {
- isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
- isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
- if (!Red.is_null())
- Dep = Dep.unite(Red);
- auto DomainSpace = Schedule.get_space().domain();
- auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
- auto Deltas = Dep.extract_map(Space).deltas();
- int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set));
- for (int i = 0; i < DeltasDimNum; i++) {
- auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
- Pos = Pos < 0 && Val.is_one() ? i : Pos;
- if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
- return false;
- }
- if (DeltasDimNum == 0 || Pos < 0)
- return false;
- return true;
- }
- /// Check if the SCoP statement could probably be optimized with analytical
- /// modeling.
- ///
- /// containsMatrMult tries to determine whether the following conditions
- /// are true:
- /// 1. The last memory access modeling an array, MA1, represents writing to
- /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
- /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
- /// under consideration.
- /// 2. There is only one loop-carried true dependency, and it has the
- /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
- /// loop-carried or anti dependencies.
- /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
- /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
- /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
- /// and all memory accesses of the SCoP that are different from MA1, MA2,
- /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
- /// of loops i1, i2 and i3.
- ///
- /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
- /// to check.
- /// @D The SCoP dependencies.
- /// @MMI Parameters of the matrix multiplication operands.
- static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
- MatMulInfoTy &MMI) {
- auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
- auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- if (Stmt->size() <= 1)
- return false;
- auto Accesses = getAccessesInOrder(*Stmt);
- for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
- auto *MemAccessPtr = *MemA;
- if (!MemAccessPtr->isLatestArrayKind())
- continue;
- if (!MemAccessPtr->isWrite())
- return false;
- auto AccMap = MemAccessPtr->getLatestAccessRelation();
- if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
- return false;
- MMI.WriteToC = MemAccessPtr;
- break;
- }
- if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
- return false;
- if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
- return false;
- if (!MMI.A || !MMI.B || !MMI.ReadFromC)
- return false;
- return true;
- }
- /// Permute two dimensions of the band node.
- ///
- /// Permute FirstDim and SecondDim dimensions of the Node.
- ///
- /// @param Node The band node to be modified.
- /// @param FirstDim The first dimension to be permuted.
- /// @param SecondDim The second dimension to be permuted.
- static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
- unsigned FirstDim,
- unsigned SecondDim) {
- assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
- (unsigned)isl_schedule_node_band_n_member(Node.get()) >
- std::max(FirstDim, SecondDim));
- auto PartialSchedule =
- isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
- auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim);
- auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim);
- PartialSchedule =
- PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
- PartialSchedule =
- PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
- Node = isl::manage(isl_schedule_node_delete(Node.release()));
- return Node.insert_partial_schedule(PartialSchedule);
- }
- static isl::schedule_node
- createMicroKernel(isl::schedule_node Node,
- MicroKernelParamsTy MicroKernelParams) {
- Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
- 1);
- Node = Node.parent().parent();
- return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
- }
- /// Create the BLIS macro-kernel.
- ///
- /// We create the BLIS macro-kernel by applying a combination of tiling
- /// of dimensions of the band node and interchanging of two innermost
- /// modified dimensions. The values of of MacroKernelParams's fields are used
- /// as tile sizes.
- ///
- /// @param Node The schedule node to be modified.
- /// @param MacroKernelParams Parameters of the macro kernel
- /// to be used as tile sizes.
- static isl::schedule_node
- createMacroKernel(isl::schedule_node Node,
- MacroKernelParamsTy MacroKernelParams) {
- assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
- if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
- MacroKernelParams.Kc == 1)
- return Node;
- int DimOutNum = isl_schedule_node_band_n_member(Node.get());
- std::vector<int> TileSizes(DimOutNum, 1);
- TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
- TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
- TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
- Node = tileNode(Node, "1st level tiling", TileSizes, 1);
- Node = Node.parent().parent();
- Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
- Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
- return Node.child(0).child(0);
- }
- /// Get the size of the widest type of the matrix multiplication operands
- /// in bytes, including alignment padding.
- ///
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The size of the widest type of the matrix multiplication operands
- /// in bytes, including alignment padding.
- static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
- auto *S = MMI.A->getStatement()->getParent();
- auto &DL = S->getFunction().getParent()->getDataLayout();
- auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
- auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
- auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
- return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
- }
- /// Get the size of the widest type of the matrix multiplication operands
- /// in bits.
- ///
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The size of the widest type of the matrix multiplication operands
- /// in bits.
- static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
- auto *S = MMI.A->getStatement()->getParent();
- auto &DL = S->getFunction().getParent()->getDataLayout();
- auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
- auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
- auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
- return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
- }
- /// Get parameters of the BLIS micro kernel.
- ///
- /// We choose the Mr and Nr parameters of the micro kernel to be large enough
- /// such that no stalls caused by the combination of latencies and dependencies
- /// are introduced during the updates of the resulting matrix of the matrix
- /// multiplication. However, they should also be as small as possible to
- /// release more registers for entries of multiplied matrices.
- ///
- /// @param TTI Target Transform Info.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The structure of type MicroKernelParamsTy.
- /// @see MicroKernelParamsTy
- static MicroKernelParamsTy getMicroKernelParams(const TargetTransformInfo *TTI,
- MatMulInfoTy MMI) {
- assert(TTI && "The target transform info should be provided.");
- // Nvec - Number of double-precision floating-point numbers that can be hold
- // by a vector register. Use 2 by default.
- long RegisterBitwidth = VectorRegisterBitwidth;
- if (RegisterBitwidth == -1)
- RegisterBitwidth =
- TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
- auto ElementSize = getMatMulTypeSize(MMI);
- assert(ElementSize > 0 && "The element size of the matrix multiplication "
- "operands should be greater than zero.");
- auto Nvec = RegisterBitwidth / ElementSize;
- if (Nvec == 0)
- Nvec = 2;
- int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
- Nvec) *
- Nvec;
- int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
- return {Mr, Nr};
- }
- /// Determine parameters of the target cache.
- ///
- /// @param TTI Target Transform Info.
- static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
- auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
- auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
- if (FirstCacheLevelSize == -1) {
- if (TTI->getCacheSize(L1DCache))
- FirstCacheLevelSize = TTI->getCacheSize(L1DCache).value();
- else
- FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
- }
- if (SecondCacheLevelSize == -1) {
- if (TTI->getCacheSize(L2DCache))
- SecondCacheLevelSize = TTI->getCacheSize(L2DCache).value();
- else
- SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
- }
- if (FirstCacheLevelAssociativity == -1) {
- if (TTI->getCacheAssociativity(L1DCache))
- FirstCacheLevelAssociativity =
- TTI->getCacheAssociativity(L1DCache).value();
- else
- FirstCacheLevelAssociativity =
- static_cast<int>(FirstCacheLevelDefaultAssociativity);
- }
- if (SecondCacheLevelAssociativity == -1) {
- if (TTI->getCacheAssociativity(L2DCache))
- SecondCacheLevelAssociativity =
- TTI->getCacheAssociativity(L2DCache).value();
- else
- SecondCacheLevelAssociativity =
- static_cast<int>(SecondCacheLevelDefaultAssociativity);
- }
- }
- /// Get parameters of the BLIS macro kernel.
- ///
- /// During the computation of matrix multiplication, blocks of partitioned
- /// matrices are mapped to different layers of the memory hierarchy.
- /// To optimize data reuse, blocks should be ideally kept in cache between
- /// iterations. Since parameters of the macro kernel determine sizes of these
- /// blocks, there are upper and lower bounds on these parameters.
- ///
- /// @param TTI Target Transform Info.
- /// @param MicroKernelParams Parameters of the micro-kernel
- /// to be taken into account.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The structure of type MacroKernelParamsTy.
- /// @see MacroKernelParamsTy
- /// @see MicroKernelParamsTy
- static MacroKernelParamsTy
- getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
- const MicroKernelParamsTy &MicroKernelParams,
- MatMulInfoTy MMI) {
- getTargetCacheParameters(TTI);
- // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
- // it requires information about the first two levels of a cache to determine
- // all the parameters of a macro-kernel. It also checks that an associativity
- // degree of a cache level is greater than two. Otherwise, another algorithm
- // for determination of the parameters should be used.
- if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
- FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
- FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
- return {1, 1, 1};
- // The quotient should be greater than zero.
- if (PollyPatternMatchingNcQuotient <= 0)
- return {1, 1, 1};
- int Car = floor(
- (FirstCacheLevelAssociativity - 1) /
- (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
- // Car can be computed to be zero since it is floor to int.
- // On Mac OS, division by 0 does not raise a signal. This causes negative
- // tile sizes to be computed. Prevent division by Cac==0 by early returning
- // if this happens.
- if (Car == 0)
- return {1, 1, 1};
- auto ElementSize = getMatMulAlignTypeSize(MMI);
- assert(ElementSize > 0 && "The element size of the matrix multiplication "
- "operands should be greater than zero.");
- int Kc = (Car * FirstCacheLevelSize) /
- (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
- double Cac =
- static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
- SecondCacheLevelSize;
- int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
- int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
- assert(Mc > 0 && Nc > 0 && Kc > 0 &&
- "Matrix block sizes should be greater than zero");
- return {Mc, Nc, Kc};
- }
- /// Create an access relation that is specific to
- /// the matrix multiplication pattern.
- ///
- /// Create an access relation of the following form:
- /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
- /// where I is @p FirstDim, J is @p SecondDim.
- ///
- /// It can be used, for example, to create relations that helps to consequently
- /// access elements of operands of a matrix multiplication after creation of
- /// the BLIS micro and macro kernels.
- ///
- /// @see ScheduleTreeOptimizer::createMicroKernel
- /// @see ScheduleTreeOptimizer::createMacroKernel
- ///
- /// Subsequently, the described access relation is applied to the range of
- /// @p MapOldIndVar, that is used to map original induction variables to
- /// the ones, which are produced by schedule transformations. It helps to
- /// define relations using a new space and, at the same time, keep them
- /// in the original one.
- ///
- /// @param MapOldIndVar The relation, which maps original induction variables
- /// to the ones, which are produced by schedule
- /// transformations.
- /// @param FirstDim, SecondDim The input dimensions that are used to define
- /// the specified access relation.
- /// @return The specified access relation.
- static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
- unsigned SecondDim) {
- auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3);
- auto AccessRel = isl::map::universe(AccessRelSpace);
- AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
- AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
- AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
- return MapOldIndVar.apply_range(AccessRel);
- }
- static isl::schedule_node createExtensionNode(isl::schedule_node Node,
- isl::map ExtensionMap) {
- auto Extension = isl::union_map(ExtensionMap);
- auto NewNode = isl::schedule_node::from_extension(Extension);
- return Node.graft_before(NewNode);
- }
- static isl::schedule_node optimizePackedB(isl::schedule_node Node,
- ScopStmt *Stmt, isl::map MapOldIndVar,
- MicroKernelParamsTy MicroParams,
- MacroKernelParamsTy MacroParams,
- MatMulInfoTy &MMI) {
- Scop *S = Stmt->getParent();
- isl::set Domain = Stmt->getDomain();
- // Create packed array.
- unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
- unsigned SecondDimSize = MacroParams.Kc;
- unsigned ThirdDimSize = MicroParams.Nr;
- ScopArrayInfo *PackedB =
- S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B",
- {FirstDimSize, SecondDimSize, ThirdDimSize});
- // Compute the access relation for copying from B to PackedB.
- isl::map AccRelB = MMI.B->getLatestAccessRelation();
- isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7);
- AccRelPackedB =
- AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId());
- // Create the copy statement and redirect access.
- ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain);
- MMI.B->setNewAccessRelation(AccRelPackedB);
- unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
- assert(Dim >= 2);
- // Insert into the schedule tree.
- isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2);
- ExtMap = ExtMap.reverse();
- ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
- ExtMap = ExtMap.intersect_range(Domain);
- ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId());
- return createExtensionNode(Node, ExtMap);
- }
- static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *,
- isl::map MapOldIndVar,
- MicroKernelParamsTy MicroParams,
- MacroKernelParamsTy MacroParams,
- MatMulInfoTy &MMI) {
- isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
- ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- isl::set Domain = Stmt->getDomain();
- isl::id DomainId = Domain.get_tuple_id();
- // Create the packed array.
- unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr;
- unsigned SecondDimSize = MacroParams.Kc;
- unsigned ThirdDimSize = MicroParams.Mr;
- ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo(
- MMI.A->getElementType(), "Packed_A",
- {FirstDimSize, SecondDimSize, ThirdDimSize});
- // Compute the access relation for copying from A to PackedA.
- isl::map AccRelA = MMI.A->getLatestAccessRelation();
- isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6);
- AccRelPackedA =
- AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId());
- // { MemrefA[] -> PackedA[] }
- isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA);
- // Compute the domain for the copy statement.
- // Construct the copy statement domain out of the 3 outermost scatter
- // dimensions (to match the 3 band nodes surrounding the extension node) and
- // the array elements to copy (one statement instance per array element).
- // { Scatter[] }
- isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range();
- // { Scatter[] -> OutermostScatter[] }
- isl::map OuterDomainMap =
- makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6);
- // { Scatter[] -> MemrefA[] }
- isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA);
- // { Scatter[] -> CopyStmt[] }
- isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom);
- // { CopyStmt[] }
- isl::set CopyDomain = DomainTranslator.range();
- // Translate the access relations to the new domain.
- // { CopyStmt[] -> MemrefA[] }
- CopyFrom = CopyFrom.apply_domain(DomainTranslator);
- // { CopyStmt[] -> PackedA[] }
- isl::map CopyTo = CopyFrom.apply_range(PackedATranslator);
- // Create the copy statement and redirect access.
- ScopStmt *CopyStmt =
- Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain);
- MMI.A->setNewAccessRelation(AccRelPackedA);
- // Insert into the schedule tree.
- // { Scatter[] -> CopyStmt[] }
- isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true);
- ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2);
- return createExtensionNode(Node, ExtScatterCopy);
- }
- /// Apply the packing transformation.
- ///
- /// The packing transformation can be described as a data-layout
- /// transformation that requires to introduce a new array, copy data
- /// to the array, and change memory access locations to reference the array.
- /// It can be used to ensure that elements of the new array are read in-stride
- /// access, aligned to cache lines boundaries, and preloaded into certain cache
- /// levels.
- ///
- /// As an example let us consider the packing of the array A that would help
- /// to read its elements with in-stride access. An access to the array A
- /// is represented by an access relation that has the form
- /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
- /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
- /// k mod Kc, j mod Nr, i mod Mr].
- ///
- /// To ensure that elements of the array A are read in-stride access, we add
- /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
- /// Scop::createScopArrayInfo, change the access relation
- /// S[i, j, k] -> A[i, k] to
- /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
- /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
- /// the copy statement created by Scop::addScopStmt.
- ///
- /// @param Node The schedule node to be optimized.
- /// @param MapOldIndVar The relation, which maps original induction variables
- /// to the ones, which are produced by schedule
- /// transformations.
- /// @param MicroParams, MacroParams Parameters of the BLIS kernel
- /// to be taken into account.
- /// @param MMI Parameters of the matrix multiplication operands.
- /// @return The optimized schedule node.
- static isl::schedule_node
- optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
- MicroKernelParamsTy MicroParams,
- MacroKernelParamsTy MacroParams,
- MatMulInfoTy &MMI) {
- isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
- ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- Node = Node.parent().parent().parent().parent().parent().parent();
- Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2));
- Node = Node.child(0);
- Node =
- optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
- Node = Node.child(0);
- Node =
- optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
- return Node.child(0).child(0).child(0).child(0).child(0);
- }
- /// Get a relation mapping induction variables produced by schedule
- /// transformations to the original ones.
- ///
- /// @param Node The schedule node produced as the result of creation
- /// of the BLIS kernels.
- /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
- /// to be taken into account.
- /// @return The relation mapping original induction variables to the ones
- /// produced by schedule transformation.
- /// @see ScheduleTreeOptimizer::createMicroKernel
- /// @see ScheduleTreeOptimizer::createMacroKernel
- /// @see getMacroKernelParams
- static isl::map
- getInductionVariablesSubstitution(isl::schedule_node Node,
- MicroKernelParamsTy MicroKernelParams,
- MacroKernelParamsTy MacroKernelParams) {
- auto Child = Node.child(0);
- auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
- auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
- unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
- if (Dim > 9u)
- return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9);
- return MapOldIndVar;
- }
- /// Isolate a set of partial tile prefixes and unroll the isolated part.
- ///
- /// The set should ensure that it contains only partial tile prefixes that have
- /// exactly Mr x Nr iterations of the two innermost loops produced by
- /// the optimization of the matrix multiplication. Mr and Nr are parameters of
- /// the micro-kernel.
- ///
- /// In case of parametric bounds, this helps to auto-vectorize the unrolled
- /// innermost loops, using the SLP vectorizer.
- ///
- /// @param Node The schedule node to be modified.
- /// @param MicroKernelParams Parameters of the micro-kernel
- /// to be taken into account.
- /// @return The modified isl_schedule_node.
- static isl::schedule_node
- isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
- MicroKernelParamsTy MicroKernelParams) {
- isl::schedule_node Child = Node.child(0);
- isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
- isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
- unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim());
- assert(Dims >= 1);
- Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
- Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
- Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
- isl::union_set IsolateOption =
- getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
- isl::ctx Ctx = Node.ctx();
- auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
- Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
- Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
- Node = Node.parent().parent().parent();
- IsolateOption = getIsolateOptions(Prefix, 3);
- Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
- Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
- Node = Node.child(0).child(0).child(0);
- return Node;
- }
- /// Insert "Loop Vectorizer Disabled" mark node.
- ///
- /// @param Node The child of the mark node to be inserted.
- /// @return The modified isl_schedule_node.
- static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
- auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr);
- return Node.insert_mark(Id).child(0);
- }
- /// Restore the initial ordering of dimensions of the band node
- ///
- /// In case the band node represents all the dimensions of the iteration
- /// domain, recreate the band node to restore the initial ordering of the
- /// dimensions.
- ///
- /// @param Node The band node to be modified.
- /// @return The modified schedule node.
- static isl::schedule_node
- getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
- assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
- if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
- return Node;
- auto Domain = Node.get_universe_domain();
- assert(isl_union_set_n_set(Domain.get()) == 1);
- if (Node.get_schedule_depth().release() != 0 ||
- (unsignedFromIslSize(isl::set(Domain).tuple_dim()) !=
- unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member())))
- return Node;
- Node = isl::manage(isl_schedule_node_delete(Node.copy()));
- auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
- auto PartialScheduleMultiPwAff =
- isl::multi_union_pw_aff(PartialSchedulePwAff);
- PartialScheduleMultiPwAff =
- PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
- return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
- }
- static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node,
- const TargetTransformInfo *TTI,
- MatMulInfoTy &MMI) {
- assert(TTI && "The target transform info should be provided.");
- int DimOutNum = isl_schedule_node_band_n_member(Node.get());
- assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
- "and, consequently, the corresponding scheduling "
- "functions have at least three dimensions.");
- Node = getBandNodeWithOriginDimOrder(Node);
- Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
- int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
- int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
- Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
- NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
- Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
- auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
- auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
- Node = createMacroKernel(Node, MacroKernelParams);
- Node = createMicroKernel(Node, MicroKernelParams);
- if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
- MacroKernelParams.Kc == 1)
- return Node;
- auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
- MacroKernelParams);
- if (MapOldIndVar.is_null())
- return Node;
- Node = markLoopVectorizerDisabled(Node.parent()).child(0);
- Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
- return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
- MacroKernelParams, MMI);
- }
- /// Check if this node contains a partial schedule that could
- /// probably be optimized with analytical modeling.
- ///
- /// isMatrMultPattern tries to determine whether the following conditions
- /// are true:
- /// 1. the partial schedule contains only one statement.
- /// 2. there are exactly three input dimensions.
- /// 3. all memory accesses of the statement will have stride 0 or 1, if we
- /// interchange loops (switch the variable used in the inner loop to
- /// the outer loop).
- /// 4. all memory accesses of the statement except from the last one, are
- /// read memory access and the last one is write memory access.
- /// 5. all subscripts of the last memory access of the statement don't
- /// contain the variable used in the inner loop.
- /// If this is the case, we could try to use an approach that is similar to
- /// the one used to get close-to-peak performance of matrix multiplications.
- ///
- /// @param Node The node to check.
- /// @param D The SCoP dependencies.
- /// @param MMI Parameters of the matrix multiplication operands.
- static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D,
- MatMulInfoTy &MMI) {
- auto PartialSchedule = isl::manage(
- isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
- if (isl_schedule_node_band_n_member(Node.get()) < 3 ||
- Node.get_schedule_depth().release() != 0 ||
- isl_union_map_n_map(PartialSchedule.get()) != 1)
- return false;
- auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
- if (containsMatrMult(NewPartialSchedule, D, MMI))
- return true;
- return false;
- }
- /// Get the dimension size.
- ///
- /// Return the size of the dimension @p Pos, which is obtained from @p SAI.
- /// Return -1 in the case of the first dimension of a multi-dimensional array,
- /// since the ScopArrayInfo class does not carry size information.
- ///
- /// @param SAI The information about the array.
- /// @param Pos The position of the dimension.
- /// @return The size of the dimension.
- static int getDimSize(const ScopArrayInfo *SAI, unsigned Pos) {
- if (Pos == 0)
- return -1;
- const llvm::SCEV *SCEVDimSize = SAI->getDimensionSize(Pos);
- assert(SCEVDimSize);
- auto *ConstantDimSize = dyn_cast<const SCEVConstant>(SCEVDimSize);
- assert(ConstantDimSize);
- auto *IntDimSize = dyn_cast<ConstantInt>(ConstantDimSize->getValue());
- assert(IntDimSize);
- return IntDimSize->getSExtValue();
- }
- /// Check whether the access relation has the specified form.
- ///
- /// Check that the access relation @p AccMap has the form T[I0, …, In], where
- /// indexes I0, …, In are specified by @p Dimensions.
- ///
- /// @param Domain The domain of the access relation.
- /// @param AccMap The access relation to be checked.
- /// @param Dimensions The permutation of the subset of the input dimensions.
- /// @return True if @p AccMap has the expected form and false,
- /// otherwise.
- static bool isCorrectAccessMap(isl::set Domain, isl::map AccMap,
- ArrayRef<int> Dimensions) {
- isl::space Space = AccMap.get_space();
- if (unsignedFromIslSize(Space.dim(isl::dim::out)) != Dimensions.size())
- return false;
- // Create an access relation of the following form:
- // [I0, …, Im] -> [Il, …, In], where indexes
- // Il, …, In are specified by @p Dimensions.
- isl::map PossibleTensor = isl::map::universe(Space);
- unsigned DimInSize = unsignedFromIslSize(Space.dim(isl::dim::in));
- for (unsigned i = 0; i < Dimensions.size(); i++) {
- const int InPos = Dimensions[i];
- if ((InPos >= static_cast<int>(DimInSize)) || (InPos < 0))
- return false;
- PossibleTensor =
- PossibleTensor.equate(isl::dim::in, InPos, isl::dim::out, i);
- }
- AccMap = AccMap.intersect_domain(Domain);
- PossibleTensor = PossibleTensor.intersect_domain(Domain);
- // If AccMap != PossibleTensor here (the two maps have been gisted at
- // this point), it means that the writes are not complete, or in other
- // words, it is a Partial write and Partial writes must be rejected.
- return AccMap.is_equal(PossibleTensor);
- }
- /// Check whether the access represents the tensor contraction operand.
- ///
- /// Check that the access relation @p AccMap has the form T[i1, …, in].
- /// Obtained indexes i1, …, in, their sizes and their permutation are stored
- /// into @p IndexSet, @p DimensionSizes, and @p Dimensions, respectively.
- ///
- /// @param Domain The domain of the access relation.
- /// @param AccMap The access relation to be checked.
- /// @param IndexSet The subset of the input dimensions.
- /// @param DimensionSizes Sizes of the input dimensions of @p Dimensions.
- /// @param Dimensions The permutation of the subset of the input dimensions.
- /// @return True if @p AccMap has the expected form and false,
- /// otherwise.
- static bool isTCOperandAcc(isl::set Domain, isl::map AccMap,
- SmallDenseSet<int> &IndexSet,
- SmallVectorImpl<int> &DimensionSizes,
- SmallVectorImpl<int> &Dimensions) {
- isl::id Id = AccMap.get_tuple_id(isl::dim::out);
- const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id);
- assert(SAI && "AccMap should represent memory access");
- // Fix values of output dimensions with respect to their positions.
- // In the case of the tensor contraction, values of output dimensions are
- // fixed and form a permutation of a subset of values of input dimensions.
- //
- // For example, in the case of Stmt[i][j][k] -> A[k][i], which represents
- // the operand of the tensor contraction, we get the following map by fixing
- // the output dimensions Stmt[1][j][0] -> A[0][1].
- //
- // We store the permutation of the subset of the input dimensions {2, 0} into
- // @p Dimensions.
- //
- // The obtained permutation and the isCorrectAccessMap function are used to
- // check whether the access relation @p AccMap represents the tensor
- // contraction operand. For example, in the case of
- // Stmt[i][j][k] -> A[i-1][j+1], we get Stmt[1][0][k] -> A[0][1] and,
- // consequently, {1, 0}, which is rejected by isCorrectAccessMap,
- // since it corresponds to Stmt[i][j][k] -> A[j][i].
- isl::map CheckMap = isl::manage(AccMap.copy());
- unsigned OutDimNum = unsignedFromIslSize(CheckMap.dim(isl::dim::out));
- for (unsigned i = 0; i < OutDimNum; i++)
- CheckMap = CheckMap.fix_si(isl::dim::out, i, i);
- // Try to obtain the permutation and sizes of corresponding input dimensions.
- Dimensions.assign(OutDimNum, -1);
- for (unsigned i : rangeIslSize(0, CheckMap.dim(isl::dim::in))) {
- isl::val Val = getConstant(CheckMap, isl::dim::in, i);
- if (!Val.is_int())
- continue;
- int OutPos = -1;
- llvm::APInt ValAPInt = APIntFromVal(Val);
- if (ValAPInt.isSignedIntN(32))
- OutPos = ValAPInt.getSExtValue();
- if ((OutPos < 0) || (OutPos >= static_cast<int>(OutDimNum)) ||
- IndexSet.count(i))
- return false;
- IndexSet.insert(i);
- Dimensions[OutPos] = i;
- if (DimensionSizes[i] <= 0)
- DimensionSizes[i] = getDimSize(SAI, OutPos);
- }
- return isCorrectAccessMap(Domain, AccMap, Dimensions);
- }
- /// Find the intersection of two sets.
- ///
- /// Find the intersection of the set @p A and the set @p B.
- ///
- /// @param A, B Sets to intersect.
- /// @return The set intersection.
- static SmallDenseSet<int> intersect(const SmallDenseSet<int> &A,
- const SmallDenseSet<int> &B) {
- SmallDenseSet<int> Intersection = A;
- set_intersect(Intersection, B);
- return Intersection;
- }
- /// Check whether the set is a superset.
- ///
- /// Check that the set @p A is a superset of @p B.
- ///
- /// @param A, B Sets to be checked.
- /// @return True if the set A is a superset of B.
- static bool isSuperset(const SmallDenseSet<int> &A,
- const SmallDenseSet<int> &B) {
- return intersect(A, B).size() == B.size();
- }
- /// Find the union of two sets.
- ///
- /// Find the union of the set @p A and the set @p B.
- ///
- /// @param A, B Sets to unite.
- /// @return The set union.
- static SmallDenseSet<int> unite(const SmallDenseSet<int> &A,
- const SmallDenseSet<int> &B) {
- SmallDenseSet<int> Union = A;
- set_union(Union, B);
- return Union;
- }
- /// Determine the access that writes to the tensor, which contains
- /// the result of the tensor contraction.
- ///
- /// @param Domain The domain of the statement.
- /// @param Stmt The statement, which writes to memory.
- /// @param TCI The information about the tensor contraction.
- /// @param IandJIndexSet The set, which contains free indexes of tensors.
- /// @return The determined MemoryAccess, or nullptr if there is no necessary
- /// access within the SCoP.
- static MemoryAccess *getWriteAccess(isl::set Domain, ScopStmt *Stmt,
- TCInfoTy &TCI,
- SmallDenseSet<int> &IandJIndexSet) {
- TCI.WriteToC = nullptr;
- SmallVector<MemoryAccess *, 32> Accesses = getAccessesInOrder(*Stmt);
- for (MemoryAccess *MemA : reverse(Accesses)) {
- // A TC-like does not contain write scalar memory accesses
- if (!MemA->isLatestArrayKind())
- return nullptr;
- // The last memory access should be a write memory access.
- if (!MemA->isWrite())
- return nullptr;
- isl::map AccMap = MemA->getLatestAccessRelation();
- if (!isTCOperandAcc(Domain, AccMap, IandJIndexSet, TCI.DimensionSizes,
- TCI.CDimensions))
- return nullptr;
- return MemA;
- }
- return nullptr;
- }
- /// Determine an access, which reads elements of an operand of the tensor
- /// contraction
- ///
- /// @param MemAccessPtr The access, which reads elements of the tensor.
- /// @param IndexSet The set, which contains indexes of the tensors.
- /// @param IandJIndexSet The set, which contains free indexes of tensors.
- /// @param Dimensions The permutation of the subset of the input dimensions.
- /// @param TCI The information about the tensor contraction.
- /// @return True if the memory access @p MemAccessPtr corresponds
- /// to the tensor contraction.
- static bool setReadAccess(MemoryAccess *MemAccessPtr,
- const SmallDenseSet<int> &IndexSet,
- const SmallDenseSet<int> &IandJIndexSet,
- ArrayRef<int> Dimensions, TCInfoTy &TCI) {
- if (!TCI.A) {
- // Probably IndexSet is a union of I and P sets.
- if (!isSuperset(IndexSet, TCI.P))
- return false;
- // Obtain the set I.
- TCI.I = set_difference(IndexSet, TCI.P);
- if (!isSuperset(IandJIndexSet, TCI.I))
- return false;
- // Obtain the set J.
- TCI.J = set_difference(IandJIndexSet, TCI.I);
- // Set the first operand of the tensor contraction.
- TCI.A = MemAccessPtr;
- llvm::replace(TCI.ADimensions, TCI.ADimensions.begin(),
- TCI.ADimensions.end(), Dimensions.begin(), Dimensions.end());
- return true;
- }
- if (!TCI.B) {
- // IndexSet should be a union of J and P sets.
- if (unite(TCI.P, TCI.J) != IndexSet)
- return false;
- // Set the second operand of the tensor contraction.
- TCI.B = MemAccessPtr;
- llvm::replace(TCI.BDimensions, TCI.BDimensions.begin(),
- TCI.BDimensions.end(), Dimensions.begin(), Dimensions.end());
- return true;
- }
- return false;
- }
- /// Check that all memory accesses of the statement, except from the last
- /// one, are read memory accesses, which read elements of operands of the tensor
- /// contraction and its result.
- ///
- /// @param Domain The domain of the statement.
- /// @param Stmt The statement, which writes to memory.
- /// @param TCI The information about the tensor contraction.
- /// @param IandJIndexSet The set, which contains free indexes of tensors.
- /// @return True if all read memory accesses of the statement @p Stmt correspond
- /// to the tensor contraction.
- static bool setReadAccesses(isl::set Domain, ScopStmt *Stmt, TCInfoTy &TCI,
- SmallDenseSet<int> &IandJIndexSet) {
- TCI.A = nullptr;
- TCI.B = nullptr;
- TCI.ReadFromC = nullptr;
- SmallVector<MemoryAccess *, 32> Accesses = getAccessesInOrder(*Stmt);
- for (auto *MemA = Accesses.begin(); *MemA != TCI.WriteToC; MemA++) {
- MemoryAccess *MemAccessPtr = *MemA;
- // All memory accesses, except from the last one, should be read memory
- // accesses.
- if (MemAccessPtr->isWrite())
- return false;
- isl::map AccMap = MemAccessPtr->getLatestAccessRelation();
- if (!MemAccessPtr->isLatestArrayKind()) {
- // Check whether the scalar read memory access is not partial.
- if (!Domain.is_subset(AccMap.domain()))
- return false;
- continue;
- return false;
- }
- // There is only one memory access, which reads elements of the result of
- // the tensor contraction.
- if (AccMap.is_equal(TCI.WriteToC->getLatestAccessRelation())) {
- if (TCI.ReadFromC)
- return false;
- TCI.ReadFromC = MemAccessPtr;
- continue;
- }
- SmallVector<int> Dimensions;
- SmallDenseSet<int> IndexSet;
- if (!isTCOperandAcc(Domain, AccMap, IndexSet, TCI.DimensionSizes,
- Dimensions))
- return false;
- if (!setReadAccess(MemAccessPtr, IndexSet, IandJIndexSet, Dimensions, TCI))
- return false;
- }
- // Check that there are read memory accesses, which read elements of operands
- // of the tensor contraction and its result.
- return TCI.ReadFromC && TCI.A && TCI.B;
- }
- /// Check accesses to operands of the tensor contraction.
- ///
- /// Check that accesses of the SCoP statement, which corresponds to
- /// the partial schedule @p PartialSchedule, represent accesses
- /// to the non-scalar operands of the tensor contraction.
- ///
- /// @param Domain The domain of the SCoP statement.
- /// @param PartialSchedule The partial schedule of the SCoP statement.
- /// @param TCI Parameters of the tensor contraction operands.
- /// @return True if the corresponding SCoP statement
- /// represents tensor contraction and false,
- /// otherwise.
- static bool containsOnlyTCAcc(isl::set Domain, isl::map PartialSchedule,
- TCInfoTy &TCI) {
- isl::id InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
- ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
- // In region statements, the order of memory accesses execution is not
- // predictable at compile-time.
- if ((Stmt->size() <= 1) || Stmt->isRegionStmt())
- return false;
- unsigned DimNum = unsignedFromIslSize(PartialSchedule.dim(isl::dim::in));
- TCI.DimensionSizes.resize(DimNum);
- SmallDenseSet<int> IandJIndexSet;
- TCI.WriteToC = getWriteAccess(Domain, Stmt, TCI, IandJIndexSet);
- if (!TCI.WriteToC)
- return false;
- if (intersect(IandJIndexSet, TCI.P).size() != 0)
- return false;
- if (!setReadAccesses(Domain, Stmt, TCI, IandJIndexSet))
- return false;
- return true;
- }
- /// Check that dependency corresponds to the tensor contraction carried over
- /// loop dimension @p Dim.
- ///
- /// Check that the dependency has the form
- /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
- /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
- /// statement. For this purpose, we analyze the set @p DepDelta, which
- /// represents the differences between image elements and domain elements of
- /// the corresponding map.
- ///
- /// @param DepDelta The set contains the differences between image elements
- /// and corresponding domain elements of the map, which
- /// represents the dependency.
- /// @param Dim The position of the index ki.
- /// @param BoundDeltas In the case of indexes of ki, the difference between
- /// image elements and corresponding domain elements
- /// corresponds to the difference between lexicographic
- /// minimum and lexicographic maximum of the corresponding
- /// dimension of the domain of the statement.
- /// @param IndexSet Obtained indexes ki, which describe the dependency.
- /// @return True if dependencies correspond to the tensor contraction
- /// and false, otherwise.
- static bool isReductionCarriedOverDim(isl::set DepDelta, unsigned Dim,
- isl::pw_multi_aff BoundDeltas,
- const SmallDenseSet<int> &IndexSet) {
- isl::space Space = DepDelta.get_space();
- isl::set Superset = isl::set::universe(Space);
- for (unsigned i = 0; i < Dim; i += 1)
- Superset = Superset.fix_si(isl::dim::set, i, 0);
- Superset = Superset.fix_si(isl::dim::set, Dim, 1);
- // Check that the difference between the image element and the domain element
- // is equal to one in the case of the index ki. Image elements and
- // corresponding domain elements should be equal in the case of positions,
- // which are lower than the specified position.
- if (!DepDelta.is_subset(Superset))
- return false;
- // Compute a set, which is used to analyze how values of
- // the domain are related to the map that describes the dependency.
- isl_pw_multi_aff *DepDeltaPW = isl_pw_multi_aff_from_set(DepDelta.copy());
- BoundDeltas = BoundDeltas.add(isl::manage(DepDeltaPW));
- isl_set *ComplementRawSet = isl_set_from_pw_multi_aff(BoundDeltas.release());
- isl::set Complement = isl::manage(ComplementRawSet);
- for (unsigned i : rangeIslSize(Dim + 1, DepDelta.dim(isl::dim::set))) {
- if (!IndexSet.count(i)) {
- // Check the difference between the image element and the domain element
- // in the case of indexes, which do not describe the dependency.
- if (DepDelta.plain_get_val_if_fixed(isl::dim::set, i).is_zero())
- continue;
- return false;
- }
- // In the case of other indexes, which describe the dependency,
- // the difference between the image element and the domain element
- // should be equal to the difference between lexicographic minimum and
- // lexicographic maximum of the domain of the statement.
- if (!Complement.plain_get_val_if_fixed(isl::dim::set, i).is_zero())
- return false;
- }
- return true;
- }
- /// Check whether dependencies are over the complete domain.
- ///
- /// In the case of the tensor contraction RAW, WAW, WAR dependencies
- /// have the form
- /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
- /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
- /// statement. Consequently, the domain of the dependencies
- /// can be described as
- /// Domain / Domain ∩ S(…, max(kn),…) ∩ S(…, max(k(i + 1)),…),
- /// where Domain is the domain of the statement S.
- ///
- /// For example, in the case of the following tensor contraction,
- /// corresponding domains will have the following form.
- ///
- /// An example of the tensor contraction:
- /// for (i = 0; i < 1024; i++)
- /// for (j = 0; j < 1024; j++)
- /// for (l = 0; l < 64; ++l)
- /// for (w = 0; w < 64; ++w)
- /// C[i][j] += A[i][l][w] * B[w][j][l];
- ///
- /// The domain of the statement:
- /// { S[i0, i1, i2, i3] : i0 >= 0 and i0 <= 1023 and
- /// i1 >= 0 and i1 <= 1023 and
- /// i2 >= 0 and i2 <= 63 and
- /// i3 >= 0 and i3 <= 63 }
- ///
- /// The domain of the dependencies:
- /// { S[i0, i1, i2, i3] : (i0 >= 0 and i0 <= 1023 and
- /// i1 >= 0 and i1 <= 1023 and
- /// i2 >= 0 and i2 <= 63 and
- /// i3 >= 0 and i3 <= 62) or
- /// (i3 = 63 and i0 >= 0 and i0 <= 1023 and
- /// i1 >= 0 and i1 <= 1023 and
- /// i2 >= 0 and i2 <= 62) }
- ///
- /// @param Domain The domain of the statement.
- /// @param DepsForStmt RAW and RED dependencies for the statement.
- /// @param UpperBound The lexicographic maximum of the elements in
- /// the @p Domain.
- /// @param IndexSet Obtained indexes ki, which describe the dependencies.
- /// @return True if dependencies are over the complete domain
- /// and false, otherwise.
- static bool areDepsOverCompleteDomain(isl::set Domain, isl::map DepsForStmt,
- isl::pw_multi_aff UpperBound,
- SmallDenseSet<int> &IndexSet) {
- isl_set *UpperBoundRawSet = isl_set_from_pw_multi_aff(UpperBound.copy());
- isl::set UpperBoundSet = isl::manage(UpperBoundRawSet);
- isl::set DomainRed = isl::manage(Domain.copy());
- for (const auto It : IndexSet) {
- isl::val FixedVal = UpperBoundSet.plain_get_val_if_fixed(isl::dim::set, It);
- if (FixedVal.is_nan())
- return false;
- DomainRed = isl::manage(
- isl_set_fix_val(DomainRed.copy(), isl_dim_set, It, FixedVal.release()));
- }
- return DepsForStmt.domain().intersect(Domain).is_equal(
- Domain.subtract(DomainRed));
- }
- /// Check that dependencies correspond to the tensor contraction.
- ///
- /// Check that there are only true dependencies of the form
- /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
- /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
- /// statement represented by @p Schedule. Such dependencies are produced by
- /// the tensor contraction. Obtained indexes ki are stored into @p IndexSet.
- ///
- /// The form of anti and output dependencies is specified implicitly by
- /// the form the SCoP statement, which is checked by subsequent analysis.
- ///
- /// @param Schedule The schedule of the SCoP statement.
- /// @param D The SCoP dependencies.
- /// @param Domain The domain of the statement.
- /// @param IndexSet Obtained indexes ki, which describe the dependencies.
- /// @return True if dependencies correspond to the tensor contraction
- /// and false, otherwise.
- static bool containsOnlyTcDeps(isl::map Schedule, const Dependences *D,
- SmallDenseSet<int> &IndexSet, isl::set Domain) {
- IslMaxOperationsGuard MaxOpGuard(Schedule.ctx().get(), OptComputeOut);
- isl::union_map Dep =
- D->getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED);
- isl::space DomainSpace = Schedule.get_space().domain();
- isl::space Space = DomainSpace.map_from_domain_and_range(DomainSpace);
- isl::map DepsForStmt = Dep.extract_map(Space);
- isl::set DepDeltas = DepsForStmt.deltas();
- isl::size DeltasDimNum = DepDeltas.dim(isl::dim::set);
- isl::pw_multi_aff LowerBound = Domain.lexmin_pw_multi_aff();
- isl::pw_multi_aff UpperBound = Domain.lexmax_pw_multi_aff();
- isl::pw_multi_aff BoundDeltas = UpperBound.sub(LowerBound);
- for (int i : reverse(rangeIslSize(0, DeltasDimNum))) {
- // In the case of the tensor contraction, the difference between image
- // elements and domain elements lies on a hyperplane where a dimension
- // has the fixed value one.
- isl::set Intersection = DepDeltas.fix_si(isl::dim::set, i, 1);
- if (Intersection.is_empty())
- continue;
- if (!isReductionCarriedOverDim(Intersection, i, BoundDeltas, IndexSet))
- return false;
- IndexSet.insert(i);
- DepDeltas = DepDeltas.subtract(Intersection);
- }
- // In the case of the tensor contraction, all dependencies should have
- // the previously described form.
- if ((unsignedFromIslSize(DeltasDimNum) == 0) || !DepDeltas.is_empty())
- return false;
- return areDepsOverCompleteDomain(Domain, DepsForStmt, UpperBound, IndexSet);
- }
- /// Check if the SCoP statement could probably be optimized with analytical
- /// modeling.
- ///
- /// containsTCInfoTy tries to determine whether the following conditions
- /// are true:
- ///
- /// 1. The last memory access modeling an array, MA1, represents writing to
- /// memory and has the form S(..., I, ..., J, ...) -> M(shuffle(I, J)),
- /// where S is the SCoP statement under consideration and shuffle(I, J)
- /// is a permutation of indexes of sets I and J.
- /// 2. There are only true dependencies of the form
- /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
- /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
- /// statement represented by @p Schedule and ki are indexes of the set P.
- /// 3. SCoP contains an arbitrary number of reads from constants and only three
- /// access relations, MA2, MA3, and MA4 that represent reading from memory
- /// and have the form
- /// S(..., I, ..., P, ...) -> M(shuffle(I, P)),
- /// S(..., P, ..., J, ...) -> M(shuffle(J, P)),
- /// S(...) -> M(shuffle(I, J)), respectively.
- ///
- /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
- /// to check.
- /// @param D The SCoP dependencies.
- /// @param TCI Parameters of the tensor contraction operands.
- /// @param Domain The domain of the statement.
- /// @return True if dependencies and memory accesses correspond to the tensor
- /// contraction and false, otherwise.
- static bool containsTCInfoTy(isl::map PartialSchedule, const Dependences *D,
- TCInfoTy &TCI, isl::set Domain) {
- if (!containsOnlyTcDeps(PartialSchedule, D, TCI.P, Domain))
- return false;
- // TODO: handle cases of scalar multiplication if needed.
- if (TCI.P.size() == 0)
- return false;
- if (!containsOnlyTCAcc(Domain, PartialSchedule, TCI))
- return false;
- // TODO: handle cases of GEMV if needed.
- if ((TCI.I.size() == 0) || (TCI.J.size() == 0))
- return false;
- return true;
- }
- /// Check if this node contains a partial schedule that could
- /// probably be optimized with analytical modeling.
- ///
- /// isTCPattern is used to determine whether the SCoP represents a TC-like
- /// kernel [1], which is a perfectly nested set of loops, with a data usage
- /// pattern that is similar to that produced by the tensor contraction.
- ///
- /// A TC-like kernel can be defined as follows:
- ///
- /// 1. It satisfies the requirements of the polyhedral model.
- /// 2. Without loss of generality, it contains three nonempty bundles of
- /// one-dimensional for-loops with induction variables that are grouped into
- /// bundles I = i0...i(r-1), J = j0..j(s-1), and P = p0...p(t-1), and they
- /// are incremented by one.
- /// 3. The innermost loop body can be represented as a statement of the form
- /// C(shuffle(I, J)) = E(A(shuffle(I, P)), B(shuffle(P, J)),
- /// C(shuffle(I, J))), where A(shuffle(I, P)), B(shuffle(P, J)),
- /// C(shuffle(I, J)) are accesses to tensors A, B, C, respectively,
- /// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of the
- /// enclosed indices, and E is an expression that contains reads from
- /// the tensors A, B, C, and an arbitrary number of reads from constants
- /// with respect to bundles I, J, and P.
- ///
- /// TC can be considered as a particular case of a TC-like kernel.
- ///
- /// The order of loops with indexes from P should be preserved. Otherwise,
- /// isTCPattern should check if a commutative operation is used.
- ///
- /// isTCPattern performs the following steps to check whether the SCoP
- /// corresponds to a definition of a TC-like kernel:
- ///
- /// 1. Checks that the node is the innermost band node.
- /// 2. Checks that the partial schedule contains only one statement.
- /// 3. Check that all ancestors of the node contain all band nodes for
- /// the statement and only mark nodes interleave such band nodes. This
- /// corresponds to a straightforward implementation of TC.
- /// 4. Analyses the dependencies to determine contraction dimensions.
- /// 5. Check that the last memory access modeling an array, represents writing
- /// to the result of the TC-like kernel.
- /// 6. Check that SCoP contains only three access relations that represent
- /// reading of the operands of the TC-like kernel and an arbitrary number of
- /// reads from constants.
- ///
- /// [1] - Gareev R., Grosser T., Kruse M. High-Performance Generalized Tensor
- /// Operations: A Compiler-Oriented Approach // ACM Transactions
- /// Architecture and Code Optimization (TACO). 2018.
- /// Vol. 15, no. 3. P. 34:1–34:27. DOI: 10.1145/3235029.
- ///
- /// If this is the case, we could logically represent tensors as matrices and
- /// apply algorithms, which are used to get close-to-peak performance of
- /// matrix multiplications in manually tuned BLAS libraries (e.g., BLIS).
- ///
- /// @param Node The node to check.
- /// @param D The SCoP dependencies.
- /// @param TCI Parameters of the tensor contraction operands.
- static bool isTCPattern(isl::schedule_node Node, const Dependences *D,
- TCInfoTy &TCI) {
- Node = Node.child(0);
- isl::union_map PartialSchedule = Node.get_prefix_schedule_union_map();
- isl::union_set Domain = Node.domain();
- Node = Node.parent();
- // The partial schedule should contain only one statement.
- // TODO: This constraint should not be intrinsic to the algorithm.
- if (isl_union_set_n_set(Domain.get()) != 1)
- return false;
- isl_schedule_node_type NodeType = isl_schedule_node_get_type(Node.get());
- // Check that all ancestors of the node contain all band nodes for
- // the statement, which represents the TC-like kernel, and only mark nodes
- // interleave such band nodes. This corresponds to a straightforward
- // implementation of TC with/without DeLICM applied.
- //
- // For example, this covers the matrix multiplication pattern after a full
- // run of -polly-optree and -polly-delicm, where the write access is not
- // through the original memory access, but trough a PHI node that was
- // delicmed. Subsequently, such band nodes will be replaced by a single band
- // node.
- //
- // The corresponding schedule can be the following, where Stmt_for_body8
- // contains the matrix multiplication:
- //
- // domain: "{ Stmt_for_body8[i0, i1, i2] : 0 <= i0 <= 1599 and
- // 0 <= i1 <= 1799 and
- // 0 <= i2 <= 2199;
- // Stmt_for_body3[i0, i1] : 0 <= i0 <= 1599 and
- // 0 <= i1 <= 1799;
- // Stmt_for_body3_last[i0, i1] : 0 <= i0 <= 1599 and
- // 0 <= i1 <= 1799 }"
- // child:
- // sequence:
- // - filter: "{ Stmt_for_body3[i0, i1] }"
- // child:
- // schedule: "[{ Stmt_for_body3[i0, i1] -> [(i0)] },
- // { Stmt_for_body3[i0, i1] -> [(i1)] }]"
- // permutable: 1
- // coincident: [ 1, 1 ]
- // - filter: "{ Stmt_for_body3_last[i0, i1] }"
- // child:
- // schedule: "[{ Stmt_for_body3_last[i0, i1] -> [(i0)] },
- // { Stmt_for_body3_last[i0, i1] -> [(i1)] }]"
- // permutable: 1
- // coincident: [ 1, 1 ]
- // - filter: "{ Stmt_for_body8[i0, i1, i2] }"
- // child:
- // schedule: "[{ Stmt_for_body8[i0, i1, i2] -> [(i0)] },
- // { Stmt_for_body8[i0, i1, i2] -> [(i1)] },
- // { Stmt_for_body8[i0, i1, i2] -> [(i2)] }]"
- // permutable: 1
- // coincident: [ 1, 1, 0 ]
- //
- while (NodeType != isl_schedule_node_domain) {
- if (NodeType == isl_schedule_node_filter) {
- if (!Node.parent().isa<isl::schedule_node_sequence>() ||
- !Node.parent().parent().isa<isl::schedule_node_domain>())
- return false;
- break;
- }
- if ((NodeType != isl_schedule_node_band) &&
- (NodeType != isl_schedule_node_mark))
- return false;
- Node = Node.parent();
- NodeType = isl_schedule_node_get_type(Node.get());
- }
- isl::map PartialScheduleMap = isl::map::from_union_map(PartialSchedule);
- if (containsTCInfoTy(PartialScheduleMap, D, TCI, isl::set(Domain)))
- return true;
- return false;
- }
- } // namespace
- isl::schedule_node
- polly::tryOptimizeMatMulPattern(isl::schedule_node Node,
- const llvm::TargetTransformInfo *TTI,
- const Dependences *D) {
- TCInfoTy TCI;
- if (PMBasedTCOpts && isTCPattern(Node, D, TCI))
- LLVM_DEBUG(dbgs() << "The tensor contraction pattern was detected\n");
- MatMulInfoTy MMI;
- if (PMBasedMMMOpts && isMatrMultPattern(Node, D, MMI)) {
- LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
- return optimizeMatMulPattern(Node, TTI, MMI);
- }
- return {};
- }
|